JP2012161873A - Diamond-coated cutting tool - Google Patents

Diamond-coated cutting tool Download PDF

Info

Publication number
JP2012161873A
JP2012161873A JP2011023521A JP2011023521A JP2012161873A JP 2012161873 A JP2012161873 A JP 2012161873A JP 2011023521 A JP2011023521 A JP 2011023521A JP 2011023521 A JP2011023521 A JP 2011023521A JP 2012161873 A JP2012161873 A JP 2012161873A
Authority
JP
Japan
Prior art keywords
diamond
film
coated
layer
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011023521A
Other languages
Japanese (ja)
Other versions
JP5590330B2 (en
Inventor
Hideaki Takashima
英彰 高島
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011023521A priority Critical patent/JP5590330B2/en
Priority to CN201210023629.9A priority patent/CN102626853B/en
Publication of JP2012161873A publication Critical patent/JP2012161873A/en
Application granted granted Critical
Publication of JP5590330B2 publication Critical patent/JP5590330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diamond-coated cutting tool exerting excellent wear resistance in cutting of a difficult-to-cut material such as a CFRP material, a high Si contained aluminum alloy and a graphite.SOLUTION: In this diamond-coated cutting tool, a crystalline diamond layer is coated on a surface of a tool base body constituted of tungsten carbide group cemented carbide or titanium carbonitride group cermet, an alternate laminate film in which nanodiamond films having an average particle size of 1-50 nm and crystalline diamond films having an average particle size of 0.1-2 μm are alternately laminated at laminate layer intervals of 0.2-2.0 μm is coated on the crystalline diamond layer, a rake face (or further, a flank) is irradiated with an ultraviolet laser to eliminate the alternate laminate film of the rake face (or further, a flank), and an amorphous carbon film having a surface roughness Ra of ≤0.1 μm and a film thickness of 10-200 nm is formed on a rake face side surface layer (or further a flank side surface layer) of the alternate laminate film forming a cutting edge.

Description

この発明は、炭化タングステン(WC)基超硬合金あるいは炭窒化チタン(TiCN)基サーメットで構成された工具基体(以下、単に工具基体という)の表面に、少なくとも、結晶性ダイヤモンド層を被覆したダイヤモンド被覆切削工具に関し、特に、CFRP材、高Si含有アルミニウム合金、グラファイト等の難削材の切削加工において、切屑排出性にすぐれ、長期の使用に亘ってすぐれた耐摩耗性を発揮するダイヤモンド被覆切削工具(以下、ダイヤモンド被覆工具という)に関するものである。   The present invention is a diamond in which at least a crystalline diamond layer is coated on the surface of a tool base (hereinafter simply referred to as a tool base) composed of a tungsten carbide (WC) base cemented carbide or a titanium carbonitride (TiCN) base cermet. With respect to coated cutting tools, diamond coated cutting that excels in chip evacuation and provides excellent wear resistance over a long period of use, especially when cutting difficult-to-cut materials such as CFRP materials, high Si-containing aluminum alloys, and graphite. The present invention relates to a tool (hereinafter referred to as a diamond-coated tool).

従来、工具基体の表面に、ダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られており、皮膜の強度、靭性を高めるために、結晶性の高いダイヤモンドと微結晶ダイヤモンド(あるいは非晶質ダイヤモンド)の積層構造としてダイヤモンド皮膜を構成すること、また、皮膜の表面平滑性、被削材の仕上げ面精度を高めることを目的として、粒径が2μm以下の微結晶ダイヤモンドの多層構造としてダイヤモンド皮膜を構成することが知られている。
例えば、特許文献1に示されるように、第1の層は、粒子径0.1〜10μmの多結晶ダイヤモンド層、第2の層は、粒子径0.05〜8μmの双晶ダイヤモンド層または非晶質ダイヤモンド層からなる積層構造でダイヤモンド皮膜を構成することにより、強度と靭性を高めたダイヤモンド被覆工具が知られている。
また、特許文献2に示されるように、ダイヤモンドの結晶成長の起点となる核を表面に付着させる核付着工程と、該核を起点としてCVD法によりダイヤモンドを結晶成長させる結晶成長工程とを繰り返すことにより、結晶粒径が2μm以下の微結晶ダイヤモンドの多層構造でダイヤモンド皮膜を構成することにより、皮膜の表面平滑性を高め、また、被削材の仕上げ面精度を高めたダイヤモンド被覆工具が知られている。
また、特許文献3,4に示すように、切れ刃が形成された基体と、切れ刃を被覆するダイヤモンド被覆膜とを備えたダイヤモンド被覆工具において、該被覆膜を研削加工して刃先部分を鋭利に加工することにより、被削材の仕上げ面精度を高めたダイヤモンド被覆工具が知られている。
また、特許文献5に示すように、切れ刃が形成された基体と、切れ刃を被覆するダイヤモンド被覆膜とを備えたダイヤモンド被覆工具において、該被覆膜に紫外線レーザ光を照射して刃先部分を鋭利に加工することにより、黒鉛、アルミニウム合金などを高精度加工することができるダイヤモンド被覆工具が知られている。
Conventionally, diamond-coated tools with a diamond coating coated on the surface of the tool substrate are known. In order to increase the strength and toughness of the coating, a layer of highly crystalline diamond and microcrystalline diamond (or amorphous diamond) is laminated. Constructing a diamond film as a structure, and a diamond film as a multilayer structure of microcrystalline diamond with a grain size of 2 μm or less for the purpose of improving the surface smoothness of the film and the accuracy of the finished surface of the work material It has been known.
For example, as shown in Patent Document 1, the first layer is a polycrystalline diamond layer having a particle size of 0.1 to 10 μm, and the second layer is a twinned diamond layer having a particle size of 0.05 to 8 μm or a non-crystalline diamond layer. A diamond-coated tool is known in which strength and toughness are improved by forming a diamond film with a laminated structure composed of a crystalline diamond layer.
Further, as shown in Patent Document 2, a nucleus attaching step for attaching a nucleus serving as a starting point for crystal growth of diamond to the surface and a crystal growing step for crystal growing diamond by CVD using the nucleus as a starting point are repeated. Therefore, a diamond coating tool is known in which the diamond film is composed of a multilayer structure of microcrystalline diamond having a crystal grain size of 2 μm or less, thereby improving the surface smoothness of the film and improving the accuracy of the finished surface of the work material. ing.
In addition, as shown in Patent Documents 3 and 4, in a diamond-coated tool including a base on which a cutting edge is formed and a diamond coating film that covers the cutting edge, the coating film is ground to obtain a cutting edge portion. A diamond-coated tool is known in which the finished surface accuracy of a work material is improved by sharply machining the workpiece.
Further, as shown in Patent Document 5, in a diamond-coated tool including a base on which a cutting edge is formed and a diamond coating film that covers the cutting edge, the blade edge is irradiated with ultraviolet laser light on the coating film. There is known a diamond-coated tool capable of processing graphite, aluminum alloy and the like with high precision by processing a portion sharply.

特開平4−236779号公報JP-A-4-236797 特許第3477162号明細書Japanese Patent No. 3477162 特許第3477182号明細書Japanese Patent No. 3477182 特許第3477183号明細書Japanese Patent No. 3477183 特開2009−6436号公報JP 2009-6436 A

近年、CFRP、高Si含有Al合金、グラファイト等の難削材の切削加工においては、加工精度が求められるようになってきており、加工精度を向上させるためには、切れ刃をシャープにする必要がある。   In recent years, cutting accuracy of difficult-to-cut materials such as CFRP, high Si content Al alloy, and graphite has come to require processing accuracy, and it is necessary to sharpen the cutting edge in order to improve processing accuracy. There is.

例えば、特許文献1、2に示すダイヤモンド被覆工具を用いた難削材の切削においては、ダイヤモンド膜の摩耗が早いために、ダイヤモンド膜の膜厚を厚くする必要があるが、その反面、膜厚を厚くした場合にはシャープな切れ刃を形成することが困難になるため、加工精度の低下を招くという問題点が生じている。   For example, in the cutting of difficult-to-cut materials using diamond-coated tools shown in Patent Documents 1 and 2, since the diamond film wears quickly, it is necessary to increase the film thickness of the diamond film. When the thickness is increased, it becomes difficult to form a sharp cutting edge, which causes a problem that the processing accuracy is lowered.

また、ダイヤモンド焼結体からなる切削工具は、ダイヤモンド被覆工具に比して、耐摩耗性にすぐれるものの、シャープな切れ刃を形成することが困難であるため、加工精度の向上を図ることも困難である。   In addition, although a cutting tool made of a diamond sintered body has better wear resistance than a diamond-coated tool, it is difficult to form a sharp cutting edge. Have difficulty.

特許文献3〜5に示すダイヤモンド被覆工具においては、シャープな切れ刃が形成されているため、加工精度の向上は期待できるものの、切れ刃のダイヤモンド膜が脆くチッピングを発生しやすいため、比較的使用寿命が短いという問題点がある。   In the diamond-coated tools shown in Patent Documents 3 to 5, since a sharp cutting edge is formed, an improvement in processing accuracy can be expected, but the diamond film on the cutting edge is brittle and easily generates chipping. There is a problem that the lifetime is short.

そこで、本発明者等は、CFRP、高Si含有Al合金、グラファイト等の難削材の切削に用いても、チッピングを発生することなく、加工精度、切屑排出性にすぐれ、長期の使用にわたってすぐれた耐摩耗性を発揮するダイヤモンド被覆工具を開発すべく鋭意研究を行った結果、次のような知見を得たのである。   Therefore, the present inventors have excellent machining accuracy and chip discharge performance without generating chipping even when used for cutting difficult-to-cut materials such as CFRP, high Si content Al alloy, and graphite. As a result of diligent research to develop a diamond-coated tool that exhibits excellent wear resistance, the following findings were obtained.

即ち、WC基超硬合金またはTiCN基サーメットからなる工具基体表面に、所定層厚の結晶性ダイヤモンド層を被覆形成し、その上に、さらに、ナノダイヤモンドと結晶性ダイヤモンドからなる交互積層膜を被覆形成した後、例えば、すくい面の表面に紫外線レーザを照射して、切れ刃以外の上記交互積層膜を照射除去することにより、結晶性ダイヤモンド層と交互積層膜によって被覆されたシャープな切れ刃を形成し、また、切れ刃の交互積層膜のすくい面側の表層には、ナノダイヤモンドの一部が紫外線レーザにより変性した平滑な非晶質カーボン膜を形成させることにより、ダイヤモンド被覆工具は、耐摩耗性、靭性、耐チッピング性、潤滑性、切屑排出性にすぐれた切れ刃を備え、その結果、難削材の切削加工において、長期の使用にわたって、すぐれた耐摩耗性を発揮し、工具寿命が大幅に長寿命化することを見出したのである。さらに、逃げ面の表面にも紫外線レーザを照射して、切れ刃以外の上記交互積層膜を照射除去することにより、結晶性ダイヤモンド層と交互積層膜によって被覆されたシャープな切れ刃を形成し、また、切れ刃の交互積層膜の逃げ面側の表層には、ダイヤモンドの一部が紫外線レーザにより変性した平滑な非晶質カーボン膜を形成させることにより、ダイヤモンド被覆工具は、耐摩耗性、靭性、耐チッピング性、潤滑性にすぐれた切れ刃と、摩擦抵抗にすぐれた逃げ面を備え、その結果、難削材の切削加工において、長期の使用にわたって、さらにすぐれた耐摩耗性を発揮し、工具寿命が大幅に長寿命化することを見出したのである。   That is, a crystalline diamond layer having a predetermined thickness is coated on the surface of a tool base made of a WC-based cemented carbide or TiCN-based cermet, and an alternate laminated film composed of nanodiamond and crystalline diamond is further coated thereon. After the formation, for example, by irradiating the surface of the rake face with an ultraviolet laser and irradiating and removing the alternate laminated film other than the cutting edge, a sharp cutting edge covered with the crystalline diamond layer and the alternate laminated film is obtained. In addition, a diamond-coated tool is formed by forming a smooth amorphous carbon film in which a part of nanodiamond is modified by an ultraviolet laser on the rake face side surface of the alternately laminated film of cutting edges. It has a cutting edge with excellent wear resistance, toughness, chipping resistance, lubricity, and chip evacuation, which results in long-term use in cutting difficult-to-cut materials. Over, it exhibits excellent wear resistance, it is the tool life was found to be significantly longer life. Furthermore, by irradiating the surface of the flank with an ultraviolet laser and irradiating and removing the alternate laminated film other than the cutting edge, a sharp cutting edge covered with the crystalline diamond layer and the alternating laminated film is formed, In addition, by forming a smooth amorphous carbon film in which a part of diamond has been modified by an ultraviolet laser on the surface layer on the flank side of the alternately laminated film of cutting edges, the diamond-coated tool is resistant to wear and toughness. It has a cutting edge with excellent chipping resistance and lubricity, and a flank surface with excellent frictional resistance. As a result, it exhibits superior wear resistance over long-term use in cutting difficult-to-cut materials. It has been found that the tool life is greatly prolonged.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に、3〜30μmの層厚の結晶性ダイヤモンド層が被覆されたダイヤモンド被覆切削工具において、
上記ダイヤモンド被覆切削工具の切れ刃の上記結晶性ダイヤモンド層の表面には、平均粒径1〜50nmのナノダイヤモンド膜と平均粒径0.1〜2μmの結晶性ダイヤモンド膜とが0.2〜2.0μmの積層間隔で交互に積層された交互積層膜が被覆形成され、該交互積層膜で構成される切れ刃の最先端から上記結晶性ダイヤモンド層までの最短距離は3〜15μmであり、さらに、切れ刃の交互積層膜のすくい面側表層には、表面粗さRaが0.1μm以下で膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とするダイヤモンド被覆切削工具。
This invention has been made based on the above findings,
“(1) In a diamond-coated cutting tool in which a crystalline diamond layer having a layer thickness of 3 to 30 μm is coated on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
On the surface of the crystalline diamond layer of the cutting edge of the diamond-coated cutting tool, a nanodiamond film having an average particle diameter of 1 to 50 nm and a crystalline diamond film having an average particle diameter of 0.1 to 2 μm are 0.2 to 2. . The alternate distance between the cutting edge composed of the alternate laminated films and the crystalline diamond layer is 3 to 15 micrometers, and the alternate laminated films are alternately laminated at a lamination interval of 0.0 μm. The diamond-coated cutting is characterized in that an amorphous carbon film having a surface roughness Ra of 0.1 μm or less and a film thickness of 10 to 200 nm is formed on the surface layer of the rake face side of the alternately laminated film of cutting edges. tool.

(2) 上記ダイヤモンド被覆切削工具の逃げ面の上記結晶性ダイヤモンド層の表面には、平均粒径1〜50nmのナノダイヤモンド膜と平均粒径0.1〜2μmの結晶性ダイヤモンド膜とが0.2〜2.0μmの積層間隔で交互に積層された交互積層膜が被覆形成されていることを特徴とする前記(1)に記載のダイヤモンド被覆切削工具。   (2) On the surface of the crystalline diamond layer on the flank face of the diamond-coated cutting tool, a nanodiamond film having an average particle diameter of 1 to 50 nm and a crystalline diamond film having an average particle diameter of 0.1 to 2 μm are 0.00. The diamond-coated cutting tool as described in (1) above, wherein the alternately laminated films alternately laminated at a lamination interval of 2 to 2.0 μm are coated.

(3) 上記ダイヤモンド被覆切削工具の切れ刃の交互積層膜の逃げ面側表層には、表面粗さRaが0.1μm以下で膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とする前記(1)に記載のダイヤモンド被覆切削工具。」
を特徴とするものである。
(3) An amorphous carbon film having a surface roughness Ra of 0.1 μm or less and a film thickness of 10 to 200 nm is formed on the flank surface layer of the alternately laminated film of cutting edges of the diamond-coated cutting tool. The diamond-coated cutting tool according to (1) above, wherein "
It is characterized by.

以下、本発明について、詳細に説明する。
結晶性ダイヤモンド層:
この発明では、WC超硬合金(配合組成の例を、例えば、表1に示す。)あるいはTiCN基サーメットからなる工具基体表面に被覆する結晶性ダイヤモンド層の層厚を3〜30μmと定めているが、層厚が3μm未満では、長期の使用に亘ってすぐれた耐摩耗性を発揮することができず、一方、結晶性ダイヤモンド層の層厚が30μmを超えると結晶粒が粗大化しやすくなり、耐欠損性の低下を招くばかりか、剥離を生じやすくなることから、本発明では、結晶性ダイヤモンド層の層厚を3〜30μmと定めた。
切れ刃の交互積層膜:
この発明のダイヤモンド被覆工具の切れ刃には、上記結晶性ダイヤモンド層の表面に、ナノダイヤモンド膜と結晶性ダイヤモンド膜とが交互に積層された交互積層膜を被覆形成する。
Hereinafter, the present invention will be described in detail.
Crystalline diamond layer:
In this invention, the layer thickness of the crystalline diamond layer coated on the surface of the tool substrate made of WC cemented carbide (examples of the composition is shown in Table 1, for example) or TiCN-based cermet is defined as 3 to 30 μm. However, if the layer thickness is less than 3 μm, it is not possible to exhibit excellent wear resistance over a long period of use, while if the layer thickness of the crystalline diamond layer exceeds 30 μm, the crystal grains tend to be coarsened, In this invention, the thickness of the crystalline diamond layer is determined to be 3 to 30 μm because not only the defect resistance is deteriorated but also peeling easily occurs.
Alternate laminated film of cutting edges:
The cutting edge of the diamond-coated tool of the present invention is formed by coating an alternating multilayer film in which nano-diamond films and crystalline diamond films are alternately stacked on the surface of the crystalline diamond layer.

切れ刃の交互積層膜の形成方法は、例えば、次のとおりである。   The method for forming the alternating laminated film of cutting edges is, for example, as follows.

図1に示すように、まず、工具基体(9)の表面に、3〜30μmの層厚の結晶性ダイヤモンド層(1)を被覆形成した後、その上に、さらに、平均粒径1〜50nmのナノダイヤモンドと平均粒径0.1〜2.0μmの結晶性ダイヤモンドからなる交互積層膜(2)を被覆形成する(成膜条件の例を、例えば、表2に示す。)。交互積層膜(2)の積層間隔は0.2〜2.0μmとなるように積層する。   As shown in FIG. 1, first, a crystalline diamond layer (1) having a layer thickness of 3 to 30 μm is coated on the surface of the tool base (9), and then an average particle diameter of 1 to 50 nm is further formed thereon. An alternate laminated film (2) made of nano diamond and crystalline diamond having an average particle diameter of 0.1 to 2.0 μm is formed by coating (examples of film forming conditions are shown in Table 2, for example). The alternate laminated film (2) is laminated so that the lamination interval is 0.2 to 2.0 μm.

次いで、例えば、図1の最先端(4)からAにかけて紫外線レーザを照射して、図2のように切れ刃以外のすくい面に形成された交互積層膜(2)を照射除去する。
また、切れ刃の交互積層膜の最先端(4)から結晶性ダイヤモンド層までの最短距離(7)は3〜15μmとする。
ここで、すくい面の仮想延長面と逃げ面の仮想延長面の交差線を仮想先端とした場合に、該仮想先端の最も近くに位置する交互積層膜の先端(即ち、仮想先端との距離が最も短い交互積層膜の先端)を、この発明でいう「最先端」と定義する。
Next, for example, an ultraviolet laser is irradiated from the leading edge (4) of FIG. 1 to A to irradiate and remove the alternate laminated film (2) formed on the rake face other than the cutting edge as shown in FIG.
Further, the shortest distance (7) from the leading edge (4) of the alternately laminated film of cutting edges to the crystalline diamond layer is 3 to 15 μm.
Here, when the intersection line between the virtual extension surface of the rake face and the virtual extension surface of the flank face is the virtual tip, the tip of the alternate laminated film located closest to the virtual tip (that is, the distance from the virtual tip is The tip of the shortest alternating laminated film is defined as “the most advanced” in the present invention.

つまり、紫外線レーザの照射によって、切れ刃には、交互積層膜によって被覆されたシャープな切れ刃を形成するとともに、切れ刃の交互積層膜のすくい面側表層には、紫外線レーザによりダイヤモンドの一部が変性した平滑な非晶質カーボン膜を形成し、耐摩耗性、靭性、耐チッピング性、潤滑性、切屑排出性にすぐれた切れ刃を構成する。
なお、図3に示すように、すくい面の切れ刃の最先端(4)から、すくい面に露出する結晶性ダイヤモンド層までの距離(5)は好ましくは5〜25μmである。
In other words, by irradiating with ultraviolet laser, a sharp cutting edge covered with an alternating laminated film is formed on the cutting edge, and a part of diamond is formed on the rake face side surface of the alternating laminated film of the cutting edge by ultraviolet laser. A smooth amorphous carbon film with a modified surface is formed, and a cutting edge excellent in wear resistance, toughness, chipping resistance, lubricity, and chip dischargeability is formed.
As shown in FIG. 3, the distance (5) from the cutting edge (4) of the cutting edge of the rake face to the crystalline diamond layer exposed on the rake face is preferably 5 to 25 μm.

ここで、上記交互積層膜を構成するナノダイヤモンドの平均粒径が1nm未満では、耐摩耗性が低下し、一方、50nmを超えるとチッピングを発生しやすくなることから、ナノダイヤモンドの平均粒径は1〜50nmと定めた。   Here, when the average particle diameter of the nanodiamond constituting the above-mentioned alternately laminated film is less than 1 nm, the wear resistance is lowered. On the other hand, when it exceeds 50 nm, chipping is likely to occur. It was determined to be 1 to 50 nm.

また、上記交互積層膜を構成する結晶性ダイヤモンドの平均粒径が0.1μm未満になると、耐摩耗性が低下し、一方、2.0μmを超えると結晶粒が粗大化し、チッピング、剥離を発生しやすくなることから、結晶性ダイヤモンドの平均粒径は0.1〜2.0μmと定めた。   In addition, when the average grain size of the crystalline diamond constituting the alternating laminated film is less than 0.1 μm, the wear resistance is lowered, and when it exceeds 2.0 μm, the crystal grains are coarsened and chipping and peeling occur. Therefore, the average particle diameter of the crystalline diamond was determined to be 0.1 to 2.0 μm.

さらに、交互積層膜の積層間隔が0.2μm未満では、耐摩耗性が悪くなり、一方、2.0μmを超えるとチッピングが発生しやすくなることから、交互積層膜の積層間隔は0.2〜2.0μmと定めた。   Further, when the stacking interval of the alternate laminated film is less than 0.2 μm, the wear resistance is deteriorated. On the other hand, when it exceeds 2.0 μm, chipping is likely to occur. It was determined to be 2.0 μm.

ダイヤモンド被覆ドリルによるCFRPの切削において、切れ刃が結晶性ダイヤモンド単層で構成されると、結晶粒が大きく靭性が低いため、刃先で欠損およびチッピングを生じやすくなり、切れ味が低下し、早期にCFRPの被削材にデラミネーションを生じる原因となっていた。また、ナノダイヤモンド単層の場合には、耐欠損性が高いものの、十分な耐摩耗性がないため、刃先が摩滅して切れ味が低下し、同様にCFRP材にデラミネーションを生じた。そこで、ナノダイヤモンドと結晶性ダイヤモンドを積層した交互積層膜を切れ刃に設けることにより、切れ刃の靭性が向上して、欠損およびチッピングが生じにくくなるとともに、十分な耐摩耗性も具備できるようになった。   When cutting a CFRP with a diamond-coated drill, if the cutting edge is composed of a single layer of crystalline diamond, the crystal grains are large and the toughness is low. Caused delamination in the work material. In the case of a single layer of nanodiamond, although it has high fracture resistance, it has insufficient wear resistance, so that the cutting edge is worn away and the sharpness is lowered, and similarly, delamination occurs in the CFRP material. Therefore, by providing the cutting blade with an alternating multilayer film in which nano diamond and crystalline diamond are laminated, the toughness of the cutting edge is improved, so that chipping and chipping are less likely to occur, and sufficient wear resistance can be provided. became.

上記のレーザ照射によって、すくい面の結晶性ダイヤモンド層上に一旦形成された交互積層膜を除去するが、特に、切れ刃の交互積層膜のすくい面側の表層には、交互積層膜のダイヤモンドを一部変性させ、表面粗さが0.1μm以下で、膜厚が10〜200nmの非晶質カーボン膜を形成する。   The alternate laminated film once formed on the crystalline diamond layer on the rake face is removed by the laser irradiation described above. In particular, the diamond of the alternate laminated film is applied to the surface layer on the rake face side of the alternate laminated film of the cutting edge. Partially modified to form an amorphous carbon film having a surface roughness of 0.1 μm or less and a film thickness of 10 to 200 nm.

ここで、上記非晶質カーボン膜の表面粗さRaが0.1μmを超える場合には、切屑排出性が低下するため、上記非晶質カーボン膜の表面粗さRaを0.1μm以下と定めた。   Here, when the surface roughness Ra of the amorphous carbon film exceeds 0.1 μm, chip dischargeability is lowered, so the surface roughness Ra of the amorphous carbon film is determined to be 0.1 μm or less. It was.

また、上記非晶質カーボン膜の膜厚が10nm未満では、長期の使用にわたっての潤滑性を維持することができないため、切屑排出性が十分ではない。一方、非晶質カーボン膜の膜厚が200nmを超えると耐摩耗性の低下傾向がみられることから、非晶質カーボン膜の膜厚は10〜200nmと定めた。
粗加工においては切れ味と耐欠損性の両立が重要なため、すくい面のみをレーザ加工しても切れ味の向上効果が得られ、工具寿命の延長が可能である。さらに図3に示すように、例えば、図1の最先端(4)からAおよび最先端(4)からBにかけて、切れ刃以外のすくい面と逃げ面に形成された交互積層膜を紫外線レーザ照射で除去することで図3のように、切れ刃には、交互積層膜によって被覆されたさらにシャープな切れ刃を形成するとともに、切れ刃の交互積層膜のすくい面側の表層および逃げ面側の表層には、紫外線レーザによりダイヤモンドの一部が変性した平滑な非晶質カーボン膜を形成させる。その際、すくい面の切れ刃の最先端(4)から、すくい面に露出する結晶性ダイヤモンド層までの距離(5)、および、逃げ面の切れ刃の最先端(4)から、逃げ面に露出する結晶性ダイヤモンド層までの距離(8)は、いずれも、好ましくは5〜25μmである。すくい面に加えて逃げ面をレーザ加工することにより、若干刃先の靱性が低下するものの、切れ味が更に向上するため、CFRPの切削においてバリやデラミネーションが発生しにくく、一層の工具寿命延長が図れる場合がある。レーザ加工時に表層に生じた非晶質カーボン層は、すくい面においては切りくずの排出性の向上に寄与し、逃げ面においてはワークとの摩擦抵抗を低減し、加工精度を向上させる効果がある。
Further, when the amorphous carbon film has a thickness of less than 10 nm, the lubricity cannot be maintained over a long period of use, and thus the chip dischargeability is not sufficient. On the other hand, when the film thickness of the amorphous carbon film exceeds 200 nm, the wear resistance tends to decrease. Therefore, the film thickness of the amorphous carbon film is determined to be 10 to 200 nm.
In rough machining, it is important to achieve both sharpness and fracture resistance. Therefore, even if only the rake face is laser machined, the sharpness can be improved and the tool life can be extended. Further, as shown in FIG. 3, for example, the alternating laminated film formed on the rake face other than the cutting edge and the flank face is irradiated with an ultraviolet laser from the leading edge (4) to A and the leading edge (4) to B in FIG. As shown in FIG. 3, a sharper cutting edge covered with the alternating laminated film is formed on the cutting edge as shown in FIG. 3, and the surface layer on the rake face side and the flank side of the alternating laminated film of the cutting edge are formed. On the surface layer, a smooth amorphous carbon film in which a part of diamond is modified by an ultraviolet laser is formed. In this case, the distance from the cutting edge of the rake face (4) to the crystalline diamond layer exposed on the rake face (5) and the cutting edge of the flank face (4) to the flank face. The distance (8) to the exposed crystalline diamond layer is preferably 5 to 25 μm. Laser machining of the flank face in addition to the rake face will slightly reduce the toughness of the cutting edge, but the sharpness will be further improved. There is a case. The amorphous carbon layer formed on the surface during laser processing contributes to improved chip evacuation on the rake face, and reduces the frictional resistance with the workpiece on the flank face, improving the processing accuracy. .

また、切れ刃に形成する交互積層膜の形状・サイズは、図2および図3に示すように、切れ刃の最先端(4)から結晶性ダイヤモンド層までの最短距離(7)、すなわち、交互積層膜の膜厚が3〜15μmとなるようにする。   In addition, as shown in FIGS. 2 and 3, the shape and size of the alternately laminated film formed on the cutting edge is the shortest distance (7) from the cutting edge (4) to the crystalline diamond layer, that is, alternately. The film thickness of the laminated film is set to 3 to 15 μm.

これは、切れ刃の最先端から上記結晶性ダイヤモンド層までの最短距離が3μm未満では、シャープな切れ刃を形成することができないため、長期の使用にわたっての加工精度の向上・維持を期待することができず、一方、その距離が15μmを超える場合には、チッピングを発生しやすくなるという理由による。   This is because the sharpest cutting edge cannot be formed if the shortest distance from the cutting edge to the crystalline diamond layer is less than 3 μm, so it is expected to improve and maintain the processing accuracy over a long period of use. On the other hand, if the distance exceeds 15 μm, chipping is likely to occur.

工具基体表面への結晶性ダイヤモンド層の成膜は、例えば、
フィラメント温度 2300 ℃、
基板温度 800 ℃、
反応圧力 30 Torr、
反応ガス流量 CH:80sccm,H:3000sccm、
の条件の熱フィラメント法で蒸着することによって成膜することができる。
Formation of the crystalline diamond layer on the surface of the tool substrate is, for example,
Filament temperature 2300 ° C,
Substrate temperature 800 ° C,
Reaction pressure 30 Torr,
Reaction gas flow rate CH 4 : 80 sccm, H 2 : 3000 sccm,
A film can be formed by vapor deposition by the hot filament method under the conditions described above.

また、交互積層膜の成膜は、例えば、
フィラメント温度 2200 ℃、
基板温度 700 ℃、
反応圧力 8 Torr、
反応ガス CH:60sccm,H:1500sccm、
の条件の熱フィラメント法でナノダイヤモンド膜を所定膜厚に蒸着した後、
上記結晶性ダイヤモンド層の成膜条件と同じ条件で所定膜厚の結晶性ダイヤモンド膜を蒸着し、ナノダイヤモンド膜の成膜と結晶性ダイヤモンド膜の成膜を、所定の交互積層膜の膜厚になるまで交互に繰り返し行うことによって成膜することができる。
Moreover, the film formation of the alternating laminated film is, for example,
Filament temperature 2200 ° C,
Substrate temperature 700 ° C,
Reaction pressure 8 Torr,
Reaction gas CH 4: 60sccm, H 2: 1500sccm,
After depositing a nanodiamond film to a predetermined thickness by the hot filament method of the conditions of
A crystalline diamond film having a predetermined thickness is vapor-deposited under the same conditions as those for forming the crystalline diamond layer, and the nano diamond film and the crystalline diamond film are formed to have a predetermined alternating laminated film thickness. Films can be formed by alternately repeating the process until it becomes.

この発明のダイヤモンド被覆工具は、工具基体表面に結晶性ダイヤモンド層が被覆形成され、かつ、切れ刃には、ナノダイヤモンド膜と結晶性ダイヤモンド膜からなる所定の形状・サイズの交互積層膜が形成され、さらに、レーザによる加工後の切れ刃の交互積層膜のすくい面側の表層には、所定表面粗さ、所定膜厚の非晶質カーボン膜が形成されており、シャープな切れ刃と潤滑性、切屑排出性にすぐれた特性を示す。さらに逃げ面にもレーザ加工を施すことにより、切れ刃の交互積層膜の逃げ面側の表層にも非晶質カーボン膜が形成され、シャープな切れ刃とすぐれた潤滑性、切屑排出性を示し、ワークとの摩擦抵抗を低減し、加工精度を向上させる効果がある。
このことから、CFRP、高Si含有Al合金、グラファイト等の難削材の切削に用いた場合でも、チッピングを発生することなく、加工精度、切屑排出性にすぐれ、長期の使用にわたってすぐれた耐摩耗性を発揮し、工具の長寿命化が図られるのである。
In the diamond-coated tool of the present invention, a crystalline diamond layer is coated on the surface of a tool base, and an alternating laminated film having a predetermined shape and size composed of a nanodiamond film and a crystalline diamond film is formed on the cutting edge. In addition, an amorphous carbon film with a specified surface roughness and thickness is formed on the surface layer on the rake face side of the alternating laminated film of cutting edges after processing by laser. In addition, it has excellent properties for chip discharge. In addition, by applying laser processing to the flank, an amorphous carbon film is also formed on the surface of the flank side of the alternating laminated film of cutting edges, showing a sharp cutting edge and excellent lubricity and chip discharge. It has the effect of reducing the frictional resistance with the workpiece and improving the machining accuracy.
Therefore, even when used for cutting difficult-to-cut materials such as CFRP, high Si content Al alloy, graphite, etc., it has excellent machining accuracy and chip discharge without generating chipping, and excellent wear resistance over a long period of use. The tool has a long service life.

本発明のダイヤモンド被覆工具のレーザ加工前の結晶性ダイヤモンド層と交互積層膜からなる切れ刃近傍の膜構造の概略断面模式図を示す。The schematic cross-sectional schematic diagram of the film | membrane structure of the cutting edge vicinity which consists of the crystalline diamond layer before laser processing of the diamond-coated tool of this invention and an alternating laminated film is shown. 本発明のダイヤモンド被覆工具のすくい面をレーザ加工した後の切れ刃近傍の膜構造の概略断面模式図を示す。The schematic cross-sectional schematic diagram of the film | membrane structure of the cutting edge vicinity after carrying out the laser processing of the rake face of the diamond-coated tool of this invention is shown. 本発明のダイヤモンド被覆工具のすくい面と逃げ面をレーザ加工した後の切れ刃近傍の膜構造の概略断面模式図を示す。The schematic cross-sectional schematic diagram of the film | membrane structure of the cutting edge vicinity after carrying out the laser processing of the rake face and flank face of the diamond-coated tool of this invention is shown.

つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。   Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.

ここでは、Al合金の切削用のインサートとして用いた場合の例とCFRPの切削用のドリルとして用いた場合の例を示すが、本発明はこれに限定されるものではなく、エンドミル等の各種の切削工具にも適用可能である。特にダイヤモンド被覆ドリルによるCFRPの切削においては、切れ刃のシャープさに加え、切れ刃に靭性および耐摩耗性が要求されることから本発明工具はCFRP切削用のダイヤモンド被覆ドリルに適している。   Here, an example when used as an insert for cutting an Al alloy and an example when used as a drill for cutting CFRP are shown, but the present invention is not limited to this, and various types of end mills and the like are used. It can also be applied to cutting tools. Particularly, in cutting CFRP with a diamond-coated drill, in addition to the sharpness of the cutting edge, toughness and wear resistance are required for the cutting edge, the tool of the present invention is suitable for a diamond-coated drill for CFRP cutting.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、研磨加工を施し、切れ刃のすくい面を鏡面仕上げすることにより、いずれもWC基超硬合金からなり、かつISO規格・SPGN12308のインサート形状をもった超硬合金基体1〜10を製造した。
(a)上記超硬合金基体1〜10をCVD装置に装入し、まず、表2に示される条件で、上記基体1〜10の切れ刃、すくい面、逃げ面に、所定の平均層厚、平均粒径の結晶性ダイヤモンド層を蒸着形成し、
(b)ついで、同じく表2に示される条件で、所定の平均膜厚、平均粒径のナノダイヤモンド膜を蒸着し、この上に、同じく表2に示される条件で、所定の平均膜厚、平均粒径の結晶性ダイヤモンド膜を蒸着し、ナノダイヤモンド膜の蒸着と結晶性ダイヤモンド膜の蒸着を交互に繰り返し行うことにより、上記基体1〜10の切れ刃、すくい面、逃げ面に、所定の平均膜厚の交互積層膜を蒸着形成し、
(c)ついで、上記結晶性ダイヤモンド層と交互積層膜を蒸着形成した超硬合金基体を、レーザ加工装置に装着し、紫外線レーザ(波長:262nm)のレーザ光源を駆動し、焦点レンズを紫外線レーザの光軸方向に移動させ、紫外線レーザ光を試料ステージの中心と重なる位置で集光させ、ついで、試料ステージを移動させて、紫外線レーザを切れ刃に照射し、ガルバノスキャナでレーザをすくい面に走査することで、すくい面の切れ刃以外の交互積層膜を除去し、
(d)切れ刃には、表3に示す結晶性ダイヤモンド層と交互積層膜を被覆形成するとともに、交互積層膜のすくい面側の表層に表6に示す非晶質カーボン膜を形成する。
(e)また、基体1〜5については、さらに、逃げ面の切れ刃を研磨することで、逃げ面の切れ刃以外の交互積層膜を除去する。
As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the blending composition shown in Table 1, Wet-mix for 96 hours with a ball mill, dry, and press-mold into a green compact at a pressure of 100 MPa. The green compact is sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour and polished. By machining and mirror-finishing the rake face of the cutting edge, cemented carbide substrates 1 to 10 each made of a WC-based cemented carbide and having an ISO standard / SPGN12308 insert shape were produced.
(A) The cemented carbide substrates 1 to 10 are charged into a CVD apparatus. First, under the conditions shown in Table 2, a predetermined average layer thickness is formed on the cutting edge, rake face and flank of the substrates 1 to 10. , Depositing a crystalline diamond layer with an average grain size,
(B) Next, a nanodiamond film having a predetermined average film thickness and an average particle diameter is vapor-deposited under the same conditions as shown in Table 2, and a predetermined average film thickness under the same conditions as shown in Table 2 By depositing a crystalline diamond film having an average particle size and alternately repeating the deposition of the nano diamond film and the deposition of the crystalline diamond film, a predetermined edge is formed on the cutting edge, rake face, and flank face of the substrates 1 to 10. Vapor deposition of alternating laminated films with average film thickness
(C) Next, the cemented carbide substrate on which the crystalline diamond layer and the alternate laminated film are vapor-deposited is mounted on a laser processing apparatus, a laser light source of an ultraviolet laser (wavelength: 262 nm) is driven, and a focus lens is an ultraviolet laser. The laser beam is focused at a position that overlaps the center of the sample stage, and then the sample stage is moved to irradiate the ultraviolet laser to the cutting edge, and the laser is applied to the rake face by a galvano scanner. By scanning, remove the alternate laminated film other than the cutting edge of the rake face,
(D) On the cutting edge, a crystalline diamond layer and an alternate laminated film shown in Table 3 are formed so as to cover, and an amorphous carbon film shown in Table 6 is formed on the rake face side of the alternate laminated film.
(E) Moreover, about the base | substrates 1-5, the alternate laminated film other than the cutting edge of a flank is further removed by grind | polishing the cutting edge of a flank.

以上、(a)〜(e)により、すくい面側の切れ刃に非晶質カーボン膜が形成され、また、逃げ面の切れ刃が研磨され、逃げ面側の切れ刃が交互積層膜で形成され、切れ刃以外の逃げ面には結晶性ダイヤモンド層のみが被覆されている請求項1に該当する本発明ダイヤモンド被覆工具としての本発明被覆工具(インサ−ト)1〜5を製造した。   As described above, according to (a) to (e), an amorphous carbon film is formed on the cutting edge on the rake face side, the cutting edge on the flank face is polished, and the cutting edge on the flank face side is formed of an alternately laminated film. The invention coated tools (inserts) 1 to 5 as the diamond coated tool of the present invention corresponding to claim 1 in which only the crystalline diamond layer is coated on the flank other than the cutting edge were manufactured.

また、(a)〜(d)により、すくい面側の切れ刃に非晶質カーボン膜が形成され、逃げ面には、結晶性ダイヤモンド層と交互積層膜が被覆形成されている請求項2に該当する本発明被覆工具(インサ−ト)6〜10を製造した。   Further, according to (a) to (d), the amorphous carbon film is formed on the cutting edge on the rake face side, and the crystalline diamond layer and the alternating laminated film are coated on the flank face. Corresponding invention coated tools (inserts) 6 to 10 were produced.

比較のために、
(a’)上記超硬合金基体1〜10をCVD装置に装入し、まず、表4に示される条件で、上記基体の切れ刃、すくい面、逃げ面に、所定の平均層厚、平均粒径の結晶性ダイヤモンド層を蒸着形成し、
(b’)ついで、同じく表4に示される条件で、所定の平均膜厚、平均粒径のナノダイヤモンド膜を蒸着し、この上に、同じく表4に示される条件で、所定の平均膜厚、平均粒径の結晶性ダイヤモンド膜を蒸着し、ナノダイヤモンド膜の蒸着と結晶性ダイヤモンド膜の蒸着を交互に繰り返し行うことにより、上記基体の切れ刃、すくい面、逃げ面に、所定の平均膜厚の交互積層膜を蒸着形成し、
(c’)ついで、上記結晶性ダイヤモンド層と交互積層膜を蒸着形成した超硬合金基体を、レーザ加工装置に装着し、紫外線レーザ(波長:262nm)のレーザ光源を駆動し、焦点レンズを紫外線レーザの光軸方向に移動させ、紫外線レーザ光を試料ステージの中心と重なる位置で集光させ、ついで、試料ステージを移動させて、紫外線レーザを切れ刃に照射し、ガルバノスキャナでレーザをすくい面に走査することで、切れ刃以外の交互積層膜を除去し、
(d’)すくい面の切れ刃と逃げ面には、表5に示す結晶性ダイヤモンド層と交互積層膜を被覆形成するとともに、交互積層膜のすくい面側の表層に表6に示す非晶質カーボン膜を形成する。
(e‘)また、上記(a’)〜(d’)で得られたものの一部については、さらに、逃げ面の切れ刃を研磨することで、逃げ面の切れ刃以外の交互積層膜を除去する。
For comparison,
(A ′) The cemented carbide bases 1 to 10 are charged into a CVD apparatus. First, under the conditions shown in Table 4, a predetermined average layer thickness and average are formed on the cutting edge, rake face, and flank face of the base. Depositing a crystalline diamond layer of grain size,
(B ′) Next, a nanodiamond film having a predetermined average film thickness and average particle diameter is vapor-deposited under the same conditions as shown in Table 4, and a predetermined average film thickness is also formed thereon under the same conditions as shown in Table 4. By depositing a crystalline diamond film having an average particle diameter and alternately depositing a nanodiamond film and a crystalline diamond film, a predetermined average film is formed on the cutting edge, rake face, and flank face of the substrate. Vapor deposition of thick alternating layers
(C ′) Next, the cemented carbide substrate on which the crystalline diamond layer and the alternating laminated film are vapor-deposited is mounted on a laser processing apparatus, a laser light source of an ultraviolet laser (wavelength: 262 nm) is driven, and a focus lens is made ultraviolet. Move in the direction of the laser's optical axis, collect the ultraviolet laser beam at a position that overlaps the center of the sample stage, then move the sample stage, irradiate the ultraviolet laser to the cutting edge, and rake the laser with a galvano scanner By scanning to remove the alternate laminated film other than the cutting edge,
(D ′) The cutting edge and flank face of the rake face are coated with a crystalline diamond layer and an alternating laminated film shown in Table 5, and the amorphous layer shown in Table 6 is formed on the surface layer on the rake face side of the alternating laminated film. A carbon film is formed.
(E ′) Further, with respect to a part of those obtained in the above (a ′) to (d ′), an alternate laminated film other than the flank cutting edge is further polished by polishing the flank cutting edge. Remove.

以上、(a’)〜(e’)により、すくい面側の切れ刃に非晶質カーボン膜が形成され、また、逃げ面の切れ刃が研磨され、逃げ面側の切れ刃が交互積層膜が形成され、切れ刃以外の逃げ面には、結晶性ダイヤモンド層のみが被覆されている比較例ダイヤモンド被覆工具としての比較被覆工具(インサ−ト)1〜6を製造し、さらに、(a’)〜(d’)により、すくい面側の切れ刃に非晶質カーボン膜が形成され、逃げ面には、結晶性ダイヤモンド層と交互積層膜が被覆形成されている比較例ダイヤモンド被覆工具としての比較被覆工具(インサ−ト)8〜15を製造した。   As described above, according to (a ′) to (e ′), the amorphous carbon film is formed on the cutting edge on the rake face side, the cutting edge on the flank face is polished, and the cutting edges on the flank face are alternately laminated films. Comparative coating tools (inserts) 1 to 6 are manufactured as comparative diamond coated tools in which only the crystalline diamond layer is coated on the flank other than the cutting edge, and (a ′ ) To (d ′), an amorphous carbon film is formed on the cutting edge on the rake face side, and a crystalline diamond layer and an alternating laminated film are formed on the flank face as a comparative diamond-coated tool. Comparative coated tools (inserts) 8 to 15 were produced.

なお、比較被覆工具(インサ−ト)7については、交互積層膜の形成は行わなかった。   For the comparative coated tool (insert) 7, the alternate laminated film was not formed.

この結果得られた本発明被覆工具1〜10および比較被覆工具1〜15について、上記の各膜の膜厚と結晶性ダイヤモンド層の層厚を、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   For the inventive coated tools 1 to 10 and comparative coated tools 1 to 15 obtained as a result, the film thickness of each of the above films and the layer thickness of the crystalline diamond layer were measured using a scanning electron microscope (longitudinal section measurement). ), All showed an average layer thickness (average value of five-point measurement) substantially the same as the target layer thickness.

また、切れ刃のすくい面側の表層の膜の結晶性をArガスレーザより得られた可視光を用いたラマン分光分析により、1333cm−1のラマンピークにおける半価幅より評価した。切れ刃のすくい面側の表層の膜の表面粗さRaはレーザ顕微鏡により測定した。ダイヤモンドの平均粒径は、界面と平行な線分を、線分に占めるダイヤモンド粒子の総数で割った値で算出した。さらに、交互積層膜の最先端から結晶性ダイヤモンド層までの最短距離は、試料を断面加工した後、マイクロスコープにより測定した。 Further, the crystallinity of the surface layer film on the rake face side of the cutting edge was evaluated from the half width at the Raman peak of 1333 cm −1 by Raman spectroscopic analysis using visible light obtained from an Ar gas laser. The surface roughness Ra of the surface layer film on the rake face side of the cutting edge was measured with a laser microscope. The average particle diameter of diamond was calculated by dividing a line segment parallel to the interface by the total number of diamond particles in the line segment. Furthermore, the shortest distance from the most advanced alternate laminated film to the crystalline diamond layer was measured with a microscope after the sample was processed in cross section.

表3、5、6に、これらの結果を示す。   Tables 3, 5, and 6 show these results.

Figure 2012161873
Figure 2012161873

Figure 2012161873
Figure 2012161873

Figure 2012161873
Figure 2012161873

Figure 2012161873
Figure 2012161873

Figure 2012161873
Figure 2012161873

Figure 2012161873
つぎに、上記の本発明被覆工具1〜10および比較被覆工具1〜15を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、JIS・A4032(組成は、質量%で、Al−12%Si)からなる丸棒を被削材として、表7に示す切削条件1、切削条件2で高Si含有Al合金の乾式連続高速切削加工試験を行なった。
Figure 2012161873
Next, in the state where the present invention coated tools 1 to 10 and the comparative coated tools 1 to 15 are screwed to the tip of the tool steel tool with a fixing jig, JIS A4032 (composition is mass%, Using a round bar made of Al-12% Si) as a work material, a dry continuous high-speed cutting test of a high Si-containing Al alloy was performed under cutting conditions 1 and 2 shown in Table 7.

いずれの切削加工試験でも切れ刃の逃げ面摩耗幅を測定した。   In any cutting test, the flank wear width of the cutting edge was measured.

表8に測定結果を示す。   Table 8 shows the measurement results.

Figure 2012161873
Figure 2012161873

Figure 2012161873
表8に示される結果から、この発明のダイヤモンド被覆工具は、難削材の切削に用いた場合でも、チッピングを発生することなく、加工精度、切屑排出性にすぐれ、長期の使用にわたってすぐれた耐摩耗性を発揮するのに対して、比較被覆工具1〜15は、耐チッピング性、耐摩耗性が劣り、切削性能が満足できるものでないことは明らかである。
次に本発明のダイヤモンドコーティングドリルを使用することによるバリ抑制の効果について調べた。
下記仕様のドリルを使用して、表2および表4の成膜条件でダイヤモンド膜をドリルに成膜し、紫外線レーザを用いてドリルの切れ刃のすくい面を加工した。ダイヤモンド被覆工具を用いて、バリが発生するまで貫通穴の数を調査した。
使用ドリル:外径φ6mm、2枚刃、Co6wt% 超硬合金製ドリル
切削条件:切削速度V=60m/min、送りf=0.05mm/rev
被削材:CFRP(厚み20mm)
試験結果を表9に示す。
Figure 2012161873
From the results shown in Table 8, the diamond-coated tool according to the present invention has excellent machining accuracy and chip discharge characteristics without causing chipping even when used for cutting difficult-to-cut materials. It is clear that the comparative coated tools 1 to 15 are inferior in chipping resistance and wear resistance and are not satisfactory in cutting performance while exhibiting wear.
Next, the effect of suppressing burrs by using the diamond coating drill of the present invention was investigated.
Using a drill with the following specifications, a diamond film was formed on the drill under the film formation conditions shown in Tables 2 and 4, and the rake face of the drill's cutting edge was processed using an ultraviolet laser. Using a diamond-coated tool, the number of through holes was investigated until burrs were generated.
Drill used: outer diameter φ 6 mm, 2-flute, Co 6 wt% cemented carbide drill Cutting conditions: Cutting speed V = 60 m / min, Feed f = 0.05 mm / rev
Work material: CFRP (thickness 20mm)
The test results are shown in Table 9.

Figure 2012161873
表9に示される結果から、本発明工具6〜10は本発明被覆工具1〜5に比べ、切れ刃のシャープさがない分、切削寿命が短くなっているが、CFRPの切削性能を十分に満足することを示した。本発明のダイヤモンド被覆工具は、CFRPの切削に用いた場合でも、長期の使用にわたって、バリを発生することなく、加工精度、切屑排出性にすぐれ、すぐれた耐摩耗性を発揮するのに対して、比較被覆工具7〜15は、耐チッピング性、耐摩耗性が劣り、バリが早期に生じることから、切削性能が満足できるものでないことは明らかである。比較被覆工具1〜6は比較被覆工具7〜15より、刃先がシャープなため工具寿命が延びているものの、チッピングなどの要因により、切削性能を満足できるものではないないことは明らかである。
Figure 2012161873
From the results shown in Table 9, the inventive tools 6 to 10 have a shorter cutting life than the inventive coated tools 1 to 5 due to the lack of sharpness of the cutting edge, but the cutting performance of CFRP is sufficient. Showed satisfaction. The diamond-coated tool of the present invention exhibits excellent processing accuracy, chip dischargeability, and excellent wear resistance without generating burrs over a long period of use, even when used for CFRP cutting. Since the comparative coated tools 7 to 15 are inferior in chipping resistance and wear resistance, and burrs are generated early, it is clear that the cutting performance is not satisfactory. Although the comparative coated tools 1 to 6 have a longer tool life than the comparative coated tools 7 to 15 due to their sharp edges, it is clear that the cutting performance is not satisfactory due to factors such as chipping.

(a)実施例1で成膜された結晶性ダイヤモンド層と交互積層膜を蒸着形成した超硬合金基体を、レーザ加工装置に装着し、紫外線レーザ(波長:262nm)のレーザ光源を駆動し、焦点レンズを紫外線レーザの光軸方向に移動させ、紫外線レーザ光を試料ステージの中心と重なる位置で集光させ、ついで、試料ステージを移動させて、紫外線レーザを切れ刃以外のすくい面と逃げ面に照射し、ガルバノスキャナでレーザを走査することで、すくい面と逃げ面の切れ刃以外の表層の交互積層膜を除去し、
(b)切れ刃には、表10に示す結晶性ダイヤモンド層と交互積層膜を被覆形成するとともに、交互積層膜のすくい面側の表層および逃げ面側の表層には、表11に示す非晶質カーボン膜を形成した。
(A) The cemented carbide substrate on which the crystalline diamond layer and the alternating laminated film formed in Example 1 are vapor-deposited is mounted on a laser processing apparatus, and a laser light source of an ultraviolet laser (wavelength: 262 nm) is driven. Move the focus lens in the direction of the optical axis of the ultraviolet laser, focus the ultraviolet laser light at a position that overlaps the center of the sample stage, then move the sample stage to make the ultraviolet laser rake face and flank other than the cutting edge , And by scanning the laser with a galvano scanner, the alternate laminated film of the surface layer other than the cutting edge of the rake face and the flank face is removed,
(B) The cutting edge is coated with a crystalline diamond layer and an alternating laminated film shown in Table 10, and the amorphous layer shown in Table 11 is formed on the surface layer on the rake face side and the flank side of the alternating laminated film. A quality carbon film was formed.

以上、(a)〜(b)により、すくい面および逃げ面の切れ刃の表面に非晶質カーボン膜が形成された請求項3に該当する本発明ダイヤモンド被覆工具としての本発明被覆工具(インサ−ト)11〜20を製造した。   As described above, according to (a) to (b), the present invention coated tool (insulator) as the diamond coated tool according to the present invention corresponding to the present invention 3 in which the amorphous carbon film is formed on the surface of the cutting edge of the rake face and the flank face. -G) 11-20 were manufactured.

比較のために、
(a’)表1の超硬合金基体をCVD装置に装入し、まず、表4に示される条件で、所定の平均層厚、平均粒径の結晶性ダイヤモンド層を蒸着形成し、
(b’)ついで、同じく表4に示される条件で、所定の平均膜厚、平均粒径のナノダイヤモンド膜を蒸着し、この上に、同じく表4に示される条件で、所定の平均膜厚、平均粒径の結晶性ダイヤモンド膜を蒸着し、ナノダイヤモンド膜の蒸着と結晶性ダイヤモンド膜の蒸着を交互に繰り返し行うことにより、表12の平均膜厚の交互積層膜を蒸着形成し、
(c’)表12の結晶性ダイヤモンド層と交互積層膜を蒸着形成した超硬合金基体を、レーザ加工装置に装着し、紫外線レーザ(波長:262nm)のレーザ光源を駆動し、焦点レンズを紫外線レーザの光軸方向に移動させ、紫外線レーザ光を試料ステージの中心と重なる位置で集光させ、ついで、試料ステージを移動させて、紫外線レーザを切れ刃以外のすくい面と逃げ面に照射し、ガルバノスキャナでレーザを走査することで、切れ刃以外の交互積層膜を除去し、
(d’)切れ刃には、表12に示す結晶性ダイヤモンド層と交互積層膜を被覆形成するとともに、交互積層膜のすくい面の表層および逃げ面側の表層には、表13に示す非晶質カーボン膜を形成した。
For comparison,
(A ') Insert the cemented carbide substrate of Table 1 into a CVD apparatus, first, under the conditions shown in Table 4, vapor-deposited a crystalline diamond layer having a predetermined average layer thickness and average particle diameter,
(B ′) Next, a nanodiamond film having a predetermined average film thickness and average particle diameter is vapor-deposited under the same conditions as shown in Table 4, and a predetermined average film thickness is also formed thereon under the same conditions as shown in Table 4. , By depositing a crystalline diamond film having an average grain size, and alternately depositing a nanodiamond film and depositing a crystalline diamond film to form an alternately laminated film having an average film thickness in Table 12,
(C ′) The cemented carbide substrate on which the crystalline diamond layer and the alternating laminated film of Table 12 are vapor-deposited is mounted on a laser processing apparatus, the laser light source of the ultraviolet laser (wavelength: 262 nm) is driven, and the focus lens is made ultraviolet. Move in the optical axis direction of the laser, collect the ultraviolet laser light at a position overlapping the center of the sample stage, then move the sample stage and irradiate the rake surface and flank other than the cutting edge with the ultraviolet laser, By scanning the laser with a galvano scanner, the alternate laminated film other than the cutting edge is removed,
(D ′) The cutting edge is coated with a crystalline diamond layer and an alternating laminated film shown in Table 12, and the amorphous layer shown in Table 13 is formed on the rake face and flank side of the alternating laminated film. A quality carbon film was formed.

以上、(a’)〜(d’)により、すくい面および逃げ面の切れ刃の表面に非晶質カーボン膜が形成された比較例ダイヤモンド被覆工具としての比較被覆工具(インサ−ト)21〜26、28〜35を製造した。   As described above, according to (a ′) to (d ′), the comparative coated tool (insert) 21 as a comparative diamond coated tool in which an amorphous carbon film is formed on the surfaces of the rake face and the flank cutting edge. 26, 28-35 were produced.

なお、比較被覆工具(インサ−ト)27については、交互積層膜の形成およびレーザによる加工は行わなかった。   The comparative coated tool (insert) 27 was not subjected to the formation of the alternating laminated film and the processing by the laser.

Figure 2012161873
Figure 2012161873

Figure 2012161873
Figure 2012161873

Figure 2012161873
Figure 2012161873

Figure 2012161873
つぎに、上記の本発明被覆工具11〜20を工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、JIS・A4032(組成は、質量%で、Al−12%Si)からなる丸棒を被削材として、表7に示す切削条件1、切削条件2で高Si含有Al合金の乾式連続高速切削加工試験を行なった。
Figure 2012161873
Next, in a state where the above-described coated tools 11 to 20 of the present invention are screwed to the tip of the tool steel tool with a fixing jig, from JIS A4032 (composition is mass%, Al-12% Si). A dry continuous high-speed cutting test of a high Si-containing Al alloy was performed under the cutting conditions 1 and 2 shown in Table 7 using the round bar as a work material.

いずれの切削加工試験でも切れ刃の逃げ面摩耗幅を測定した。   In any cutting test, the flank wear width of the cutting edge was measured.

表14に測定結果を示す。   Table 14 shows the measurement results.

Figure 2012161873
次に本発明のダイヤモンドコーティングドリルを使用することによるバリ抑制の効果について調べた。
使用ドリル:外径φ6mm、2枚刃、Co6wt% 超硬合金製ドリル
切削条件:切削速度V=60m/min、送りf=0.05mm/rev
被削材:CFRP(厚み20mm)
試験結果を表15に示す。
Figure 2012161873
Next, the effect of suppressing burrs by using the diamond coating drill of the present invention was investigated.
Drill used: outer diameter φ 6 mm, 2-flute, Co 6 wt% cemented carbide drill Cutting conditions: Cutting speed V = 60 m / min, Feed f = 0.05 mm / rev
Work material: CFRP (thickness 20mm)
The test results are shown in Table 15.

Figure 2012161873
表14に示される結果から、この発明のダイヤモンド被覆工具は、難削材の切削に用いた場合でも、チッピングを発生することなく、加工精度、切屑排出性にすぐれ、長期の使用にわたってすぐれた耐摩耗性を発揮するのに対して、比較被覆工具21〜35は、耐チッピング性、耐摩耗性が劣り、切削性能が満足できるものでないことは明らかである。
また、表15に示される結果から、この発明のダイヤモンド被覆工具は、CFRPの切削に用いた場合でも、長期の使用にわたって、バリを発生することなく、加工精度、切屑排出性にすぐれ、すぐれた耐摩耗性を発揮するのに対して、比較被覆工具21〜35は、耐チッピング性、耐摩耗性が劣り、バリが早期に生じることから、切削性能が満足できるものでないことは明らかである。
Figure 2012161873
From the results shown in Table 14, the diamond-coated tool of the present invention has excellent machining accuracy and chip discharge characteristics without causing chipping even when used for cutting difficult-to-cut materials, and excellent resistance to long-term use. It is clear that the comparative coated tools 21 to 35 are inferior in chipping resistance and wear resistance and are not satisfactory in cutting performance while exhibiting wear characteristics.
Further, from the results shown in Table 15, the diamond-coated tool of the present invention was excellent in processing accuracy and chip dischargeability without generating burrs over a long period of use even when used for cutting CFRP. In contrast to the wear resistance, the comparative coated tools 21 to 35 are inferior in chipping resistance and wear resistance, and burrs are generated early, so that it is clear that the cutting performance is not satisfactory.

上述のように、この発明のダイヤモンド被覆工具は、すぐれた潤滑性、切屑排出性とすぐれた耐摩耗性を備えるものであって、加工精度が求められるCFRP、高Si含有Al合金、グラファイト等の難削材の切削加工においては、長期の使用にわたってすぐれた切削性能を発揮するものである。   As described above, the diamond-coated tool of the present invention has excellent lubricity, chip evacuation and excellent wear resistance, such as CFRP, high Si content Al alloy, and graphite that require high processing accuracy. In cutting difficult-to-cut materials, excellent cutting performance is demonstrated over a long period of use.

1 結晶性ダイヤモンド層
2 交互積層膜
3 切れ刃の先端部
4 最先端
5 すくい面の最先端から結晶性ダイヤモンド層までの距離
6 非晶質カーボン膜
7 最先端から結晶性ダイヤモンド層までの最短距離
8 逃げ面の最先端から結晶性ダイヤモンド層までの距離
9 工具基体
DESCRIPTION OF SYMBOLS 1 Crystalline diamond layer 2 Alternating laminated film 3 Cutting edge tip 4 Cutting edge 5 Distance from cutting edge to crystalline diamond layer 6 Amorphous carbon film 7 Shortest distance from cutting edge to crystalline diamond layer 8 Distance from the most advanced flank to the crystalline diamond layer 9 Tool base

Claims (3)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に、3〜30μmの層厚の結晶性ダイヤモンド層が被覆されたダイヤモンド被覆切削工具において、
上記ダイヤモンド被覆切削工具の切れ刃の上記結晶性ダイヤモンド層の表面には、平均粒径1〜50nmのナノダイヤモンド膜と平均粒径0.1〜2μmの結晶性ダイヤモンド膜とが0.2〜2.0μmの積層間隔で交互に積層された交互積層膜が被覆形成され、該交互積層膜で構成される切れ刃の最先端から上記結晶性ダイヤモンド層までの最短距離は3〜15μmであり、さらに、切れ刃の交互積層膜のすくい面側表層には、表面粗さRaが0.1μm以下で膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とするダイヤモンド被覆切削工具。
In a diamond-coated cutting tool in which a crystalline diamond layer having a layer thickness of 3 to 30 μm is coated on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
On the surface of the crystalline diamond layer of the cutting edge of the diamond-coated cutting tool, a nanodiamond film having an average particle diameter of 1 to 50 nm and a crystalline diamond film having an average particle diameter of 0.1 to 2 μm are 0.2 to 2. . The alternate distance between the cutting edge composed of the alternate laminated films and the crystalline diamond layer is 3 to 15 micrometers, and the alternate laminated films are alternately laminated at a lamination interval of 0.0 μm. The diamond-coated cutting is characterized in that an amorphous carbon film having a surface roughness Ra of 0.1 μm or less and a film thickness of 10 to 200 nm is formed on the surface layer of the rake face side of the alternately laminated film of cutting edges. tool.
上記ダイヤモンド被覆切削工具の逃げ面の上記結晶性ダイヤモンド層の表面には、平均粒径1〜50nmのナノダイヤモンド膜と平均粒径0.1〜2μmの結晶性ダイヤモンド膜とが0.2〜2.0μmの積層間隔で交互に積層された交互積層膜が被覆形成されていることを特徴とする請求項1に記載のダイヤモンド被覆切削工具。   On the surface of the crystalline diamond layer on the flank face of the diamond-coated cutting tool, a nanodiamond film having an average particle diameter of 1 to 50 nm and a crystalline diamond film having an average particle diameter of 0.1 to 2 μm are 0.2 to 2. The diamond-coated cutting tool according to claim 1, wherein the alternately laminated films alternately laminated at a lamination interval of 0.0 μm are coated. 上記ダイヤモンド被覆切削工具の切れ刃の交互積層膜の逃げ面側表層には、表面粗さRaが0.1μm以下で膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とする請求項1に記載のダイヤモンド被覆切削工具。   An amorphous carbon film having a surface roughness Ra of 0.1 μm or less and a film thickness of 10 to 200 nm is formed on a surface layer of the flank face of the alternately laminated film of the cutting edges of the diamond-coated cutting tool. The diamond-coated cutting tool according to claim 1.
JP2011023521A 2011-02-07 2011-02-07 Diamond coated cutting tool Active JP5590330B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011023521A JP5590330B2 (en) 2011-02-07 2011-02-07 Diamond coated cutting tool
CN201210023629.9A CN102626853B (en) 2011-02-07 2012-02-03 Diamond-coated cutting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011023521A JP5590330B2 (en) 2011-02-07 2011-02-07 Diamond coated cutting tool

Publications (2)

Publication Number Publication Date
JP2012161873A true JP2012161873A (en) 2012-08-30
JP5590330B2 JP5590330B2 (en) 2014-09-17

Family

ID=46841813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011023521A Active JP5590330B2 (en) 2011-02-07 2011-02-07 Diamond coated cutting tool

Country Status (1)

Country Link
JP (1) JP5590330B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544219C1 (en) * 2013-09-05 2015-03-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Diamond coating and method for its production
WO2015163408A1 (en) * 2014-04-24 2015-10-29 帝人株式会社 Machined carbon-fiber-reinforced resin product having end face and production method therefor
US20160243625A1 (en) * 2013-09-30 2016-08-25 Kyocera Corporation Cutting tool and method for manufacturing cut product using same
JP2019063904A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Diamond-coated rotary cutting tool
JPWO2021054019A1 (en) * 2019-09-18 2021-03-25
WO2021199220A1 (en) * 2020-03-30 2021-10-07 国立大学法人東海国立大学機構 Blade edge processing device and cutting device
CN114206537A (en) * 2019-08-01 2022-03-18 住友电工硬质合金株式会社 Method for manufacturing cutting tool and cutting tool
JP2022069523A (en) * 2020-03-30 2022-05-11 国立大学法人東海国立大学機構 Cutting device
JP2022128523A (en) * 2020-03-30 2022-09-01 国立大学法人東海国立大学機構 Cutting device
CN115012011A (en) * 2022-06-24 2022-09-06 赣州海盛硬质合金有限公司 Hard alloy surface nano coating and preparation method thereof
US12030143B2 (en) 2019-08-01 2024-07-09 Sumitomo Electric Hardmetal Corp. Method for manufacturing a cutting tool, and the cutting tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259171A (en) * 1988-04-07 1989-10-16 Nachi Fujikoshi Corp Cutting tool member coated with hard film
JPH0463606A (en) * 1990-07-03 1992-02-28 Nippon Steel Corp Diamond tool having amorphous carbon layer formed on surface
JPH04146007A (en) * 1990-10-08 1992-05-20 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool and its manufacture
JPH04210315A (en) * 1990-08-10 1992-07-31 Nachi Fujikoshi Corp Rotary cutting tool
JPH04236779A (en) * 1991-01-21 1992-08-25 Sumitomo Electric Ind Ltd High-toughness polycrystalline diamond and production thereof
JP2009248249A (en) * 2008-04-07 2009-10-29 Mitsubishi Materials Corp Diamond-coated tool having superior chipping resistance and abrasion resistance
JP2010194629A (en) * 2009-02-23 2010-09-09 Union Tool Co Diamond coat for cutting tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259171A (en) * 1988-04-07 1989-10-16 Nachi Fujikoshi Corp Cutting tool member coated with hard film
JPH0463606A (en) * 1990-07-03 1992-02-28 Nippon Steel Corp Diamond tool having amorphous carbon layer formed on surface
JPH04210315A (en) * 1990-08-10 1992-07-31 Nachi Fujikoshi Corp Rotary cutting tool
JPH04146007A (en) * 1990-10-08 1992-05-20 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool and its manufacture
JPH04236779A (en) * 1991-01-21 1992-08-25 Sumitomo Electric Ind Ltd High-toughness polycrystalline diamond and production thereof
JP2009248249A (en) * 2008-04-07 2009-10-29 Mitsubishi Materials Corp Diamond-coated tool having superior chipping resistance and abrasion resistance
JP2010194629A (en) * 2009-02-23 2010-09-09 Union Tool Co Diamond coat for cutting tool
EP2230327A1 (en) * 2009-02-23 2010-09-22 Union Tool Co. Diamond coating for cutting tool

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2544219C1 (en) * 2013-09-05 2015-03-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Diamond coating and method for its production
US20160243625A1 (en) * 2013-09-30 2016-08-25 Kyocera Corporation Cutting tool and method for manufacturing cut product using same
US10081065B2 (en) * 2013-09-30 2018-09-25 Kyocera Corporation Cutting tool and method for manufacturing cut product using same
WO2015163408A1 (en) * 2014-04-24 2015-10-29 帝人株式会社 Machined carbon-fiber-reinforced resin product having end face and production method therefor
JP2019063904A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Diamond-coated rotary cutting tool
CN114206537A (en) * 2019-08-01 2022-03-18 住友电工硬质合金株式会社 Method for manufacturing cutting tool and cutting tool
US12030143B2 (en) 2019-08-01 2024-07-09 Sumitomo Electric Hardmetal Corp. Method for manufacturing a cutting tool, and the cutting tool
EP4008474A4 (en) * 2019-08-01 2022-11-23 Sumitomo Electric Hardmetal Corp. Cutting tool manufacturing method and cutting tool
JPWO2021054019A1 (en) * 2019-09-18 2021-03-25
EP4032642A4 (en) * 2019-09-18 2022-11-09 Sumitomo Electric Hardmetal Corp. Diamond cutting tool
WO2021054019A1 (en) * 2019-09-18 2021-03-25 住友電工ハードメタル株式会社 Diamond cutting tool
CN114430704A (en) * 2019-09-18 2022-05-03 住友电工硬质合金株式会社 Diamond cutting tool
JP7444523B2 (en) 2019-09-18 2024-03-06 住友電工ハードメタル株式会社 diamond cutting tools
WO2021199220A1 (en) * 2020-03-30 2021-10-07 国立大学法人東海国立大学機構 Blade edge processing device and cutting device
JP2022128523A (en) * 2020-03-30 2022-09-01 国立大学法人東海国立大学機構 Cutting device
JP7144101B2 (en) 2020-03-30 2022-09-29 国立大学法人東海国立大学機構 cutting equipment
JP7066242B2 (en) 2020-03-30 2022-05-13 国立大学法人東海国立大学機構 Cutting edge processing equipment
CN113747997A (en) * 2020-03-30 2021-12-03 国立大学法人东海国立大学机构 Cutting edge processing device and cutting device
JP7303587B2 (en) 2020-03-30 2023-07-05 国立大学法人東海国立大学機構 cutting equipment
JP2022069523A (en) * 2020-03-30 2022-05-11 国立大学法人東海国立大学機構 Cutting device
JPWO2021199220A1 (en) * 2020-03-30 2021-10-07
CN115012011A (en) * 2022-06-24 2022-09-06 赣州海盛硬质合金有限公司 Hard alloy surface nano coating and preparation method thereof

Also Published As

Publication number Publication date
JP5590330B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5590330B2 (en) Diamond coated cutting tool
JP5590334B2 (en) Diamond coated cutting tool
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5344204B2 (en) Surface coated cutting tool
JP5838769B2 (en) Surface coated cutting tool
JP5176621B2 (en) Amorphous carbon coated tool
KR20150045425A (en) Surface-coated cutting tool
JP5295325B2 (en) Surface coated cutting tool
WO2018216256A1 (en) Coating and cutting tool
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP5488873B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
CN102626853B (en) Diamond-coated cutting element
JP2015101746A (en) Cemented carbide and surface-coated cutting tool prepared using the same
JP5163879B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP6102571B2 (en) Surface coated cutting tool
JP5858363B2 (en) Substrate for cutting tool and surface-coated cutting tool including the same
JP4845615B2 (en) Surface coated cutting tool
JP2019063937A (en) Surface-coated cutting tool excellent in deposition chipping resistance
JP2011131347A (en) Diamond-coated cemented carbide cutting tool
JP2018030206A (en) Surface coated cutting tool and method for manufacturing the same
JP2009248221A (en) Diamond-coated tool having superior chipping resistance and abrasion resistance
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2019093521A (en) Cutting tool made by diamond-coated hard metal
JP5499751B2 (en) Diamond-coated tools with excellent fracture resistance
JP2001152209A (en) High adhesion surface coated sintered member and its producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5590330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250