JPH01259171A - Cutting tool member coated with hard film - Google Patents

Cutting tool member coated with hard film

Info

Publication number
JPH01259171A
JPH01259171A JP63084093A JP8409388A JPH01259171A JP H01259171 A JPH01259171 A JP H01259171A JP 63084093 A JP63084093 A JP 63084093A JP 8409388 A JP8409388 A JP 8409388A JP H01259171 A JPH01259171 A JP H01259171A
Authority
JP
Japan
Prior art keywords
film
diamond
coated
cutting tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63084093A
Other languages
Japanese (ja)
Other versions
JPH0623431B2 (en
Inventor
Kazutaka Kanda
一隆 神田
Kiyomi Takehata
竹端 精己
Shoichi Yoshida
吉田 昇一
Kenichiro Yamagishi
山岸 憲一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP8409388A priority Critical patent/JPH0623431B2/en
Publication of JPH01259171A publication Critical patent/JPH01259171A/en
Publication of JPH0623431B2 publication Critical patent/JPH0623431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve melt bonding and exfoliation resistances by coating a diamond film as an inner layer with an amorphous hard carbon film having no idiomorphic face as an outer layer. CONSTITUTION:The surface of the substrate of a cutting tool is coated with a high hardness polycrystalline diamond or diamondlike carbon film having the idiomorphic face as the inner layer and this inner layer is coated with the amorphous hard carbon film having no idiomorphic face as the outer layer. The surface of the resulting coating film can be made smooth, so the frictional resistance to a material to be cut is reduced, the film exfoliates hardly and the material to be cut melt-bonds hardly.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非鉄金属、セラミックスおよび複合材料の切削
において高い耐摩耗性と耐溶着性を示す硬質被膜被覆切
削工具部材に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a hard coating-coated cutting tool member that exhibits high wear resistance and adhesion resistance in cutting nonferrous metals, ceramics, and composite materials.

(従来の技術) 従来、切削工具基を才としては高速度工具鋼、炭化タン
グステン基超硬合金、サーメットないしはセラミックス
が一般に用いられており、さらに近年はそれらにより高
い耐摩耗性を1を与せしめるため、例えは特公昭54−
24914あるいは特公昭62−56231に示される
ことく、それらの表面にチタンの窒化物、炭化物、炭窒
化物および酸化アルミニウムの単層ないしは複層から成
る硬質層を被覆した切削工具部材も用いられている。
(Prior art) Conventionally, high-speed tool steel, tungsten carbide-based cemented carbide, cermets, or ceramics have been generally used for cutting tool bases, and in recent years, they have been made to have higher wear resistance. For this reason, the example is the
24914 or Japanese Patent Publication No. 62-56231, cutting tool members whose surfaces are coated with a hard layer consisting of a single layer or multiple layers of titanium nitride, carbide, carbonitride, and aluminum oxide are also used. There is.

しかし、これらの工具部材は、例えばAl−5i合金、
FRI’などのようにその材料内に硬質物質を含む材料
を高速で切削した場合には耐摩耗性の不足から工具寿命
が短く、より高い耐摩耗性を持つ切削工具が求められて
いた。
However, these tool members are made of, for example, Al-5i alloy,
When a material containing a hard substance such as FRI' is cut at high speed, the tool life is short due to lack of wear resistance, and cutting tools with higher wear resistance have been required.

これに対し、単結晶ダイヤモンドまたは焼結ダイヤモン
)・切削工具はダイヤモンドが現存する物質中で最高の
硬、度を持つことから上記の被削材の切削においても非
常に高い耐摩耗性を持つことが知られており、また被削
材の溶着も少ないという 、□特徴を持っている。しか
し、これらのダイヤモンド切削工具は高価でありまた複
雑形状に加工することが難しい。
On the other hand, cutting tools made of single crystal diamond or sintered diamond have the highest hardness and hardness among existing materials, so they have extremely high wear resistance even when cutting the above-mentioned work materials. It is known for its □ characteristics, and there is little welding of the work material. However, these diamond cutting tools are expensive and difficult to machine into complex shapes.

近年ダイヤモンドの気相合成技術が進展し、熱フイラメ
ント法、直流放電CVD法、マイクロ波放電法あるいは
高周波放電法などでダイヤモンドないしはダイヤモンド
状硬質炭素膜(以下ダイヤモンド膜と総称する)の合成
が行われるようになり、切削工具への応用も試みられて
いる。しかしながら、ダイヤモンド膜は従来のセラミッ
クス硬質被膜に較べ基材との閏の密着性が不足している
ため、切削時に膜に強い応力がかかった場合、膜が基材
から剥離してしまうという問題点があった。
In recent years, diamond vapor phase synthesis technology has progressed, and diamond or diamond-like hard carbon films (hereinafter collectively referred to as diamond films) are synthesized using thermal filament methods, DC discharge CVD methods, microwave discharge methods, or high-frequency discharge methods. As a result, attempts are being made to apply it to cutting tools. However, diamond film has poor adhesion to the base material compared to conventional hard ceramic coatings, so if strong stress is applied to the film during cutting, the film may peel off from the base material. was there.

(本発明が解決しようとする課題) ダイヤモンド膜は従来のセラミックス膜に較べ、工具基
材との間の密着性が低く剥離しやすいと言われている。
(Problems to be Solved by the Present Invention) It is said that diamond films have lower adhesion to tool base materials and are more likely to peel off than conventional ceramic films.

これはダイヤモンドが工具用基材との間で相互拡散層を
作りにくいこと、熱膨張係数が母材と大きく異なるため
ダイヤモンド合成時の基材の温度700℃〜1200℃
から室温まで冷却した場合ダイヤモンド膜に大きな圧縮
応力が残っているためと考えられる。
This is because it is difficult for diamond to form an interdiffusion layer with the base material for tools, and because the coefficient of thermal expansion is significantly different from that of the base material, the temperature of the base material during diamond synthesis is 700°C to 1200°C.
This is thought to be due to the fact that large compressive stress remains in the diamond film when it is cooled from to room temperature.

本発明者らがダイヤモンド被覆を施した切削工具を用い
て種々の条件にてAl−5i合金の切削試験を行い・ダ
イヤモンド膜の剥離の様子を調べた結果、刃先にかかる
応力が大きい場合および被削材の切削工具刃先への溶着
の起こりやすい条件下でダイヤモンド膜の剥離が起きや
すい傾向のあることが判った。次いて、この試験で用い
た切削工具上のダイヤモンド膜を光学顕微鏡で観察した
にろ、ダイヤモンド膜は自形面を持った多結晶から成り
起伏の激しい表面構造を持っていた。
The present inventors conducted cutting tests on Al-5i alloy under various conditions using diamond-coated cutting tools and investigated the peeling of the diamond film. It was found that the diamond film tends to peel off under conditions where cutting materials tend to adhere to the cutting tool edge. Next, when the diamond film on the cutting tool used in this test was observed using an optical microscope, it was found that the diamond film was composed of polycrystals with euhedral surfaces and had a highly undulating surface structure.

ダイヤモンド膜の成長過程を観察した場合、核発生後の
ダイヤモンド粒は時間とともに成長し、やがて付近のダ
イヤモンド粒と接触し膜を形成する。そして、膜となっ
た後はダイヤモンド粒の選択的な成長が起こり、膜の表
面から観察したダイヤモンド粒の平均粒径は増大し表面
粗さも増すのであるが、その過程の途中で新たなダイヤ
モンド粒の核発生が起こり、表面粗さの急激な増加は抑
えられる。しかし、自形面を持った高硬度のダイヤモン
ドから成る膜を合成する場合にはある程度膜の表面が粗
くなるのは避けがたい。
When observing the growth process of a diamond film, diamond grains grow over time after nucleation, and eventually come into contact with nearby diamond grains to form a film. After forming a film, selective growth of diamond grains occurs, and the average grain size of the diamond grains observed from the film surface increases and the surface roughness increases, but during this process, new diamond grains grow. nucleation occurs, and a rapid increase in surface roughness is suppressed. However, when synthesizing a film made of highly hard diamond with euhedral surfaces, it is unavoidable that the surface of the film becomes rough to some extent.

本発明者らはダイヤモンド□膜がその表面に激しい起伏
を持っているため、被削材の流れに対する摩擦抵抗が大
きくなり、膜が剥離しやすくなっているとともに被削材
の溶着をも助長していると判断した。そこで膜表面の起
伏を少なくするため切削工具基体上へダイヤモンドの被
覆を行った後ダイヤモンドの微粉末を用いて基体表面を
ラッピングにより鏡面に研磨し切削試験を行った。その
結果、切削工具刃先への被削材の溶着が焼結ダイヤモン
ドと同し程度となり切削工具寿命も格段に延びることが
判った。しかし、ダイヤモンド膜を被覆後期削工具表面
をさらに鏡面研磨する方法はダイヤモンド膜を研磨中に
剥離させる危険が大きく、また複雑な形状の工具にはこ
の方法は適用てきないなどの欠点があり実用化する上で
問題が多い。
The present inventors found that because the diamond □ film has severe undulations on its surface, the frictional resistance against the flow of the work material becomes large, making it easy for the film to peel off and also promoting welding of the work material. It was determined that Therefore, in order to reduce the unevenness of the film surface, a cutting tool substrate was coated with diamond, and then the substrate surface was polished to a mirror surface by lapping with fine diamond powder, and a cutting test was conducted. As a result, it was found that the welding of the work material to the cutting tool edge was comparable to that of sintered diamond, and the life of the cutting tool was significantly extended. However, the method of further mirror-polishing the surface of the cutting tool coated with a diamond film has the disadvantages that there is a high risk of the diamond film peeling off during polishing, and this method cannot be applied to tools with complex shapes, so it is not practical. There are many problems in doing so.

(課題を解決するための手段) ダイヤモンド膜の表面の起伏を小さくすることによって
切削工具刃先への被削材の溶着が減少し耐剥離性が向上
することから、本発明者らは切削工具基体表面に先ず自
形面を持った高硬度の多結晶ダイヤモンド膜を被覆し、
次いでその外層に自形面を持たないアモルファス硬質炭
素膜を被覆することによってその表面を平滑にすること
を゛考案するに到った。
(Means for Solving the Problems) By reducing the undulations on the surface of the diamond film, the adhesion of the work material to the cutting tool cutting edge is reduced and the peeling resistance is improved. The surface is first coated with a highly hard polycrystalline diamond film with an euhedral surface,
Next, they came up with the idea of smoothing the surface by coating the outer layer with an amorphous hard carbon film that does not have an idiomorphic surface.

ダイヤモンドのビッカース硬度が7000〜tooo。The Vickers hardness of diamond is 7000~too.

kg/mm2であるのに対し、アモルファス硬質炭素膜
はその合成条件によって硬度が大きく変わり、そのビッ
カース硬度は1000 kg /mm 2以下から約7
000kg/mm2まで分布し、合成雰囲気中に水素が
含まれる場合には合成温度が低いほど膜内に水素を多く
含むようになる。また、ラマン分光器を用いてラマンス
ペクトルを測定した場合、ダイヤモンドないしはダイヤ
モンド状硬質炭素膜がスペクトル中に少なくとも+33
0cl ’付近にシャープなピークな持つのに対し、ア
モルファス硬質炭素膜は1450〜1[300pm−’
に最大値を持つ半価幅の広いピークを有する。本発明の
ねらいとするアモルファス硬質炭素膜はこのうちヒラカ
ース硬度が2000kg/mm ′以上のもので1−カ
ーボンあるいはアモルファスダイヤと呼はれ、切削工具
に用いても十分に高い耐摩耗性を示すものである。
kg/mm2, whereas the hardness of an amorphous hard carbon film varies greatly depending on its synthesis conditions, and its Vickers hardness ranges from less than 1000 kg/mm2 to approximately 7.
If the synthesis atmosphere contains hydrogen, the lower the synthesis temperature, the more hydrogen will be contained in the film. Furthermore, when a Raman spectrum is measured using a Raman spectrometer, diamond or a diamond-like hard carbon film is present in the spectrum at least +33
Whereas the amorphous hard carbon film has a sharp peak around 0cl'
It has a wide peak at half maximum with a maximum value at . The amorphous hard carbon film that is the aim of the present invention has a Hiracus hardness of 2000 kg/mm or more, is called 1-carbon or amorphous diamond, and exhibits sufficiently high wear resistance even when used in cutting tools. It is.

アモルファス炭素膜はまた自形面を持たない状態で合成
されるため、切削工具内層に被覆された自形面をダイヤ
モンド膜の起伏を平滑にする効果があり、被削材の溶着
の減少および被削材と硬質被膜との間の摩擦抵抗の減少
が聞待されろ。
Since the amorphous carbon film is synthesized without an euhedral surface, it has the effect of smoothing the undulations of the diamond film on the euhedral surface coated on the inner layer of the cutting tool, reducing the adhesion of the workpiece material and reducing the adhesion of the diamond film. Expect a reduction in the frictional resistance between the cutting material and the hard coating.

超硬合金基体から成る切削工具上にタイヤセント膜を被
覆して切削工具の寿命延長効果が認められるのは膜の厚
さが0.5μm以上の場合であるが、100μmを越え
てダイヤモンド膜を被覆しようとすると、超硬合金とダ
イヤモンドの熱膨張係数が違うことからダイヤモンド膜
を被覆後部材を室温まで冷却する途中で膜が基体から剥
離してしまう。
The effect of coating a diamond film on a cutting tool made of a cemented carbide substrate to extend the life of the cutting tool is observed when the film thickness is 0.5 μm or more, but if the diamond film is coated with a diamond film over 100 μm, the effect of extending the life of the cutting tool is observed. If an attempt is made to coat the diamond, the diamond film will peel off from the base while the diamond film is being cooled down to room temperature, since the coefficients of thermal expansion of the cemented carbide and diamond are different.

そこで本発明者らは、この範囲内の厚さて超硬合金母材
から成る切削工具上へ直流放電C〜IO法およびマイク
ロ波放電法により自形面を持つダイヤモンド膜を合成し
観察した。その結果、ダイヤモンド粒の大きさと膜表面
の粗さは合成条件、基材上の位置および合成時間すなわ
ち膜厚によって変化するのであるが、膜厚をパラメータ
として膜表面の粗さを与えると膜厚が2μm付近におけ
る起伏の幅はo、i〜1μm、膜厚10μm付近では0
.5〜2μm、膜厚が50μm付近では 2〜5μmで
あった。
Therefore, the present inventors synthesized and observed a diamond film having an euhedral surface on a cutting tool made of a cemented carbide base material with a thickness within this range by the DC discharge C-IO method and the microwave discharge method. As a result, the size of the diamond grains and the roughness of the film surface change depending on the synthesis conditions, the position on the substrate, and the synthesis time, that is, the film thickness. The width of the undulations is o, i ~ 1 μm when the film thickness is around 2 μm, and 0 when the film thickness is around 10 μm.
.. It was 5 to 2 μm, and 2 to 5 μm when the film thickness was around 50 μm.

次いて、これらのダイヤモンド膜の外層に高周波CV[
1法にてアモルファス硬質炭素膜をダイヤモンド膜の 
172の厚さを目標に被覆したにろ、その表面粗さがア
モルファス硬質炭素膜を被覆する前の約 173以下に
減少した。
Next, high-frequency CV [
Using method 1, an amorphous hard carbon film is coated with a diamond film.
Even though the target thickness was 172, the surface roughness was reduced to about 173 or less than before coating with the amorphous hard carbon film.

ダイヤモンド膜の外層に被覆するアモルファス硬質炭素
膜の厚さはダイヤモンド膜の表面粗さによって変えられ
るべきものであり、ダイヤモンド膜の表面粗さが0.5
μmであれはアモルファス硬質炭素膜の厚さは0.5μ
mで基体表面が十分に滑らかとなるが、ダイヤモンド膜
の厚さが100μm付近てはその表面粗さ−が約5μm
となりこれを平滑にするためには251zmのアモルフ
ァス硬質炭素膜を被覆する必要がある。
The thickness of the amorphous hard carbon film covering the outer layer of the diamond film should be changed depending on the surface roughness of the diamond film, and the surface roughness of the diamond film should be 0.5.
If it is μm, the thickness of the amorphous hard carbon film is 0.5 μm.
m, the surface of the substrate becomes sufficiently smooth, but when the thickness of the diamond film is around 100 μm, the surface roughness is about 5 μm.
Therefore, in order to make this smooth, it is necessary to cover it with an amorphous hard carbon film of 251 zm.

以下に本発明の具体的な実施例を示す。Specific examples of the present invention are shown below.

(実施例) メタンおよび水素の混合ガスを真空槽内に導入し、該真
空槽内に備えたフィラメントと陽極の間に直流放電プラ
ズマを発生させ、陽極上に置いたWC−Co基超超硬合
金ら成る5NGAI20408型の切削用チップにダイ
ヤモンド膜の被覆を行った。このときのダイヤモンドの
合成条件はメタンの流量が1105CC、水素の流量が
5005 CCM、フィラメントと基材の距離が3cm
、フィラメントの温度が約2100°C、フィラメント
と陽極間の電流が3Aで3時間合成を行った。この試料
を光学顕微鏡で調べたにろダイヤモンドは自形面を持っ
た多結晶から成っており、その表面粗さが約1μmであ
った。
(Example) A mixed gas of methane and hydrogen was introduced into a vacuum chamber, a DC discharge plasma was generated between a filament provided in the vacuum chamber and an anode, and a WC-Co-based supercarbide placed on the anode was A cutting tip of type 5NGAI20408 made of alloy was coated with a diamond film. The diamond synthesis conditions at this time were a methane flow rate of 1105 CCM, a hydrogen flow rate of 5005 CCM, and a distance between the filament and the base material of 3 cm.
The synthesis was carried out for 3 hours at a filament temperature of about 2100° C. and a current of 3 A between the filament and the anode. When this sample was examined using an optical microscope, the diamond was found to be composed of polycrystals with euhedral surfaces, and its surface roughness was approximately 1 μm.

次いて、この基体上にメタンを原料とし、容量結合型高
周波プラズマCVD装置を用いて1501wJの出力て
3時間アモルファス硬質炭素膜を被覆し観察したにろ起
伏差が0.5μm以下の滑らかな表面が得られた。
Next, an amorphous hard carbon film was coated on this substrate using methane as a raw material using a capacitively coupled high-frequency plasma CVD device at an output of 1501 wJ for 3 hours, and a smooth surface with a difference in undulation of 0.5 μm or less was observed. was gotten.

この本発明被覆切削用チップと前記の条件でダイヤモン
ド膜のみを被覆した切削用チップを用いて以下の条件で
切削試験を行った。
A cutting test was conducted under the following conditions using this cutting tip coated with the present invention and a cutting tip coated only with a diamond film under the conditions described above.

被削材    Al−Si合金(Siを13χ含有)切
削速度   800m/m i m 切込み深さ  0.2mm 送り速度   0.15mm/rev 切削方式   乾式連続切削 この結果、ダイヤモンド膜のみを被覆した超硬チップが
1時間切削後刃先のダイヤモンド膜が剥離し逃げ面摩耗
が進行していたのに対し、本発明切削用チップは3時間
切削後も刃先の硬質被膜が残っており、刃先への被削材
の溶着もダイヤモンド膜のみを被覆した切削用チップに
較べて少なかった。
Work material Al-Si alloy (contains 13χ Si) Cutting speed 800 m/m i m Depth of cut 0.2 mm Feed rate 0.15 mm/rev Cutting method Dry continuous cutting As a result, a carbide tip coated only with a diamond film After cutting for 1 hour, the diamond film on the cutting edge peeled off and flank wear progressed, whereas with the cutting tip of the present invention, the hard coating on the cutting edge remained even after 3 hours of cutting, and the workpiece material on the cutting edge There was also less welding compared to cutting tips coated with only a diamond film.

切削試験の後、これらの切削用チップを切断しダイヤモ
ンド膜およびアモルファス硬質炭素膜の厚さを調べたに
ろ、本発明切削用チップはダイヤモンド膜の厚さが約8
μm、アモルファス硬質炭素膜の厚さが3μmであり、
ダイヤモンド膜のみを被覆した比較用チップの膜厚は約
8μ蒙であった。
After the cutting test, these cutting tips were cut and the thicknesses of the diamond film and the amorphous hard carbon film were examined.
μm, the thickness of the amorphous hard carbon film is 3 μm,
The film thickness of the comparative chip coated with only the diamond film was about 8 μm.

本実施例ではダイヤモンド膜の被覆を直流放電プラズマ
法にて行ったが、これは熱フィラメントを用いた CV
D法、マイクロ波ないしは高周波を用いたCVD法など
の公知の手段によって行うことができ、またアモルファ
ス硬質炭素膜の被覆も本実施例の他に直流放電法、マイ
クロ波放電法などの公知の方法によって行うことができ
る。
In this example, the diamond film was coated by a DC discharge plasma method, which is a CV method using a hot filament.
D method, CVD method using microwaves or high frequency waves, and other known methods can be used to coat the amorphous hard carbon film. This can be done by

(効果〉 本発明による硬質被膜被覆切削工具は、高い耐摩耗性を
持つダイヤモンド膜を内層に被覆し、外層にアモルファ
ス硬質炭素膜を被覆し表面を平滑にしたことにより耐溶
着性および耐剥離性が増し非鉄金属、焼結セラミックス
、 FRPなどの複合材料の切削において長時間にわた
り優れた切削性能を維持することができる。
(Effects) The hard film-coated cutting tool of the present invention has excellent adhesion and peeling resistance due to the inner layer being coated with a highly wear-resistant diamond film and the outer layer being coated with an amorphous hard carbon film to make the surface smooth. It is possible to maintain excellent cutting performance for a long time when cutting composite materials such as nonferrous metals, sintered ceramics, and FRP.

Claims (3)

【特許請求の範囲】[Claims] (1)硬質被膜を被覆した切削工具部材において、基材
に接する最内層の被膜が自形面を持つ多結晶ダイヤモン
ドないしはダイヤモンド状炭素膜から成り、該被膜の外
層に自形面を持たないアモルファス状硬質炭素膜を被覆
したことを特徴とする硬質被膜被覆切削工具部材。
(1) In a cutting tool member coated with a hard coating, the innermost coating in contact with the base material is composed of polycrystalline diamond or diamond-like carbon film with euhedral surfaces, and the outer layer of the coating is amorphous without euhedral surfaces. A hard film-coated cutting tool member characterized by being coated with a hard carbon film.
(2)自形面を持つダイヤモンドないしはダイヤモンド
状炭素膜の厚さが0.5〜100μmであり、アモルフ
ァス状硬質炭素膜の厚さが0.5μm〜25μmである
ことを特徴とする請求項1記載の硬質被膜被覆切削工具
部材。
(2) The diamond or diamond-like carbon film having an euhedral surface has a thickness of 0.5 to 100 μm, and the amorphous hard carbon film has a thickness of 0.5 μm to 25 μm. The hard film-coated cutting tool member described above.
(3)上記切削工具部材の基体が炭化タングステンを主
成分とする超硬合金であることを特徴とする請求項1記
載の硬質被膜被覆切削工具。
(3) The hard film-coated cutting tool according to claim 1, wherein the base of the cutting tool member is made of a cemented carbide whose main component is tungsten carbide.
JP8409388A 1988-04-07 1988-04-07 Hard coating coated cutting tool parts Expired - Lifetime JPH0623431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8409388A JPH0623431B2 (en) 1988-04-07 1988-04-07 Hard coating coated cutting tool parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8409388A JPH0623431B2 (en) 1988-04-07 1988-04-07 Hard coating coated cutting tool parts

Publications (2)

Publication Number Publication Date
JPH01259171A true JPH01259171A (en) 1989-10-16
JPH0623431B2 JPH0623431B2 (en) 1994-03-30

Family

ID=13820895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8409388A Expired - Lifetime JPH0623431B2 (en) 1988-04-07 1988-04-07 Hard coating coated cutting tool parts

Country Status (1)

Country Link
JP (1) JPH0623431B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353070A (en) * 1989-07-20 1991-03-07 Mitsubishi Materials Corp Surface coated tool member having excellent wear resistance
JP2011062775A (en) * 2009-09-17 2011-03-31 Mitsubishi Materials Corp Hard carbon film-coated cutting tool
JP2012161873A (en) * 2011-02-07 2012-08-30 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2012176471A (en) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp Diamond coated cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353070A (en) * 1989-07-20 1991-03-07 Mitsubishi Materials Corp Surface coated tool member having excellent wear resistance
JP2011062775A (en) * 2009-09-17 2011-03-31 Mitsubishi Materials Corp Hard carbon film-coated cutting tool
JP2012161873A (en) * 2011-02-07 2012-08-30 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2012176471A (en) * 2011-02-28 2012-09-13 Mitsubishi Materials Corp Diamond coated cutting tool

Also Published As

Publication number Publication date
JPH0623431B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JP3675577B2 (en) Method for producing diamond-coated article
US6063149A (en) Graded grain size diamond layer
EP0503822B2 (en) A diamond- and/or diamond-like carbon-coated hard material
JPH01153228A (en) Vapor phase composite method for producing diamond tool
KR20000005202A (en) Boron and nitrogen containing coating and method for making
KR20020019467A (en) Coated Hard Alloy
CA2029873A1 (en) Diamond-coated member and process for the preparation thereof
JPH01259171A (en) Cutting tool member coated with hard film
JP2001328005A (en) Surface-covered tungsten carbide group cemented carbide throw-away cutting tip with hard covering layer having excellent interlayer adhesion
JP3353239B2 (en) Method for producing diamond-coated member
US5567522A (en) Diamond cutting tool and method of manufacturing the same
JP2964669B2 (en) Boron nitride coated hard material
JPH0818163B2 (en) Alumina coating tool and manufacturing method thereof
JPH0710443B2 (en) Cutting tip
JPS63306805A (en) Diamond coated cutting tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP3212057B2 (en) Diamond coated substrate and method for producing the same
JPS5925970A (en) Coated sintered hard alloy
JPS62107067A (en) Diamond coated cutting tool
JPH08151297A (en) Production of diamond
JPH0941145A (en) Wear resistant member
JPH01225774A (en) High-hardness polycrystalline diamond tool
JPH05125542A (en) Manufacture of thin diamond film tool
RU2018411C1 (en) Article, mainly cutting tool, containing sintered base of tungsten carbide base and diamond coating
JPH0623601A (en) Diamond covered super hard alloy tool