JP2012176471A - Diamond coated cutting tool - Google Patents

Diamond coated cutting tool Download PDF

Info

Publication number
JP2012176471A
JP2012176471A JP2011041472A JP2011041472A JP2012176471A JP 2012176471 A JP2012176471 A JP 2012176471A JP 2011041472 A JP2011041472 A JP 2011041472A JP 2011041472 A JP2011041472 A JP 2011041472A JP 2012176471 A JP2012176471 A JP 2012176471A
Authority
JP
Japan
Prior art keywords
layer
diamond
cutting edge
coated
diamond layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011041472A
Other languages
Japanese (ja)
Other versions
JP5590334B2 (en
Inventor
Hideaki Takashima
英彰 高島
Hidemitsu Takaoka
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011041472A priority Critical patent/JP5590334B2/en
Priority to CN201210023629.9A priority patent/CN102626853B/en
Publication of JP2012176471A publication Critical patent/JP2012176471A/en
Application granted granted Critical
Publication of JP5590334B2 publication Critical patent/JP5590334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02P70/54

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a diamond coated cutting tool which has excellent impact resistance, lubricity and chip discharge property at a cutting edge and exhibits excellent wearing resistance in long-time use.SOLUTION: In a diamond coated cutting tool with a tool substrate surface coated with a crystalline diamond layer, a nano diamond layer having an average particle size from 1-50 nm is formed for coating a surface of the crystalline diamond layer of a cutting blade. A shortest distance from a top end of the cutting blade to the crystalline diamond layer is set to 3-15 μm. Further, an amorphous carbon film having a surface roughness of 0.1 μm or less and having a film thickness of 10-200 nm, is formed on a cutting face side top layer of the nano diamond layer of the cutting blade (further on a flank side top layer of the nano diamond layer).

Description

この発明は、炭化タングステン(WC)基超硬合金あるいは炭窒化チタン(TiCN)基サーメットで構成された工具基体(以下、単に工具基体という)の表面に、少なくとも、結晶性ダイヤモンド層を被覆したダイヤモンド被覆切削工具に関し、特に、難削材であるCFRPCarbon fiber reinforced plastic材の切削加工において、刃先の耐衝撃性と潤滑性、切屑排出性にすぐれ、長期の使用に亘ってすぐれた耐摩耗性を発揮するダイヤモンド被覆切削工具(以下、ダイヤモンド被覆工具という)に関するものである。   The present invention is a diamond in which at least a crystalline diamond layer is coated on the surface of a tool base (hereinafter simply referred to as a tool base) composed of a tungsten carbide (WC) base cemented carbide or a titanium carbonitride (TiCN) base cermet. With regard to coated cutting tools, especially in cutting of difficult-to-cut materials such as CFP Carbon fiber reinforced plastic material, it has excellent impact resistance, lubricity and chip evacuation of the cutting edge, and exhibits excellent wear resistance over a long period of use. The present invention relates to a diamond-coated cutting tool (hereinafter referred to as a diamond-coated tool).

従来、工具基体の表面に、ダイヤモンド皮膜を被覆したダイヤモンド被覆工具が知られており、皮膜の強度、靭性を高めるために、結晶性の高いダイヤモンドと微結晶ダイヤモンド(あるいは非晶質ダイヤモンド)の積層構造としてダイヤモンド皮膜を構成すること、また、皮膜の表面平滑性、被削材の仕上げ面精度を高めることを目的として、粒径が2μm以下の微結晶ダイヤモンドの多層構造としてダイヤモンド皮膜を構成することが知られている。
例えば、特許文献1に示されるように、第1の層は、粒子径0.1〜10μmの多結晶ダイヤモンド層、第2の層は、粒子径0.05〜8μmの双晶ダイヤモンド層または非晶質ダイヤモンド層からなる積層構造でダイヤモンド皮膜を構成することにより、強度と靭性を高めたダイヤモンド被覆工具が知られている。
また、特許文献2に示されるように、ダイヤモンドの結晶成長の起点となる核を表面に付着させる核付着工程と、該核を起点としてCVD法によりダイヤモンドを結晶成長させる結晶成長工程とを繰り返すことにより、結晶粒径が2μm以下の微結晶ダイヤモンドの多層構造でダイヤモンド皮膜を構成することにより、皮膜の表面平滑性を高め、また、被削材の仕上げ面精度を高めたダイヤモンド被覆工具が知られている。
また、特許文献3,4に示すように、切れ刃が形成された基体と、切れ刃を被覆するダイヤモンド被覆膜とを備えたダイヤモンド被覆工具において、該被覆膜を研削加工して刃先部分を鋭利に加工することにより、被削材の仕上げ面精度を高めたダイヤモンド被覆工具が知られている。
また、特許文献5に示すように、切れ刃が形成された基体と、切れ刃を被覆するダイヤモンド被覆膜とを備えたダイヤモンド被覆工具において、該被覆膜に紫外線レーザ光を照射して刃先部分を鋭利に加工することにより、黒鉛、アルミニウム合金などを高精度加工することができるダイヤモンド被覆工具が知られている。
Conventionally, diamond-coated tools with a diamond coating coated on the surface of the tool substrate are known. In order to increase the strength and toughness of the coating, a layer of highly crystalline diamond and microcrystalline diamond (or amorphous diamond) is laminated. Constructing a diamond film as a structure, and a diamond film as a multilayer structure of microcrystalline diamond with a grain size of 2 μm or less for the purpose of improving the surface smoothness of the film and the accuracy of the finished surface of the work material It has been known.
For example, as shown in Patent Document 1, the first layer is a polycrystalline diamond layer having a particle size of 0.1 to 10 μm, and the second layer is a twinned diamond layer having a particle size of 0.05 to 8 μm or a non-crystalline diamond layer. A diamond-coated tool is known in which strength and toughness are improved by forming a diamond film with a laminated structure composed of a crystalline diamond layer.
Further, as shown in Patent Document 2, a nucleus attaching step for attaching a nucleus serving as a starting point for crystal growth of diamond to the surface and a crystal growing step for crystal growing diamond by CVD using the nucleus as a starting point are repeated. Therefore, a diamond coating tool is known in which the diamond film is composed of a multilayer structure of microcrystalline diamond having a crystal grain size of 2 μm or less, thereby improving the surface smoothness of the film and improving the accuracy of the finished surface of the work material. ing.
In addition, as shown in Patent Documents 3 and 4, in a diamond-coated tool including a base on which a cutting edge is formed and a diamond coating film that covers the cutting edge, the coating film is ground to obtain a cutting edge portion. A diamond-coated tool is known in which the finished surface accuracy of a work material is improved by sharply machining the workpiece.
Further, as shown in Patent Document 5, in a diamond-coated tool including a base on which a cutting edge is formed and a diamond coating film that covers the cutting edge, the blade edge is irradiated with ultraviolet laser light on the coating film. There is known a diamond-coated tool capable of processing graphite, aluminum alloy and the like with high precision by processing a portion sharply.

特開平4−236779号公報JP-A-4-236797 特許第3477162号明細書Japanese Patent No. 3477162 特許第3477182号明細書Japanese Patent No. 3477182 特許第3477183号明細書Japanese Patent No. 3477183 特開2009−6436号公報JP 2009-6436 A

近年、難削材であるCFRPの切削加工においては、加工精度が求められるようになってきており、加工精度を向上させるためには、切れ刃をシャープにする必要がある。   In recent years, machining accuracy of CFRP, which is a difficult-to-cut material, has been demanded, and in order to improve the machining accuracy, it is necessary to sharpen the cutting edge.

例えば、特許文献1、2に示すダイヤモンド被覆工具を用いた難削材の切削においては、ダイヤモンド膜の摩耗が早いために、ダイヤモンド膜の膜厚を厚くする必要があるが、その反面、膜厚を厚くした場合にはシャープな切れ刃を形成することが困難になるため、加工精度の低下を招くという問題点が生じている。   For example, in the cutting of difficult-to-cut materials using diamond-coated tools shown in Patent Documents 1 and 2, since the diamond film wears quickly, it is necessary to increase the film thickness of the diamond film. When the thickness is increased, it becomes difficult to form a sharp cutting edge, which causes a problem that the processing accuracy is lowered.

また、ダイヤモンド焼結体からなる切削工具は、ダイヤモンド被覆工具に比して、耐摩耗性にすぐれるものの、シャープな切れ刃を形成することが困難であるため、加工精度の向上を図ることも困難である。   In addition, although a cutting tool made of a diamond sintered body has better wear resistance than a diamond-coated tool, it is difficult to form a sharp cutting edge. Have difficulty.

特許文献3〜5に示すダイヤモンド被覆工具においては、シャープな切れ刃が形成されているため、加工精度の向上は期待できるものの、切れ刃のダイヤモンド膜が脆くチッピングを発生しやすいため、比較的使用寿命が短いという問題点がある。   In the diamond-coated tools shown in Patent Documents 3 to 5, since a sharp cutting edge is formed, an improvement in processing accuracy can be expected, but the diamond film on the cutting edge is brittle and easily generates chipping. There is a problem that the lifetime is short.

そこで、本発明者等は、難削材であるCFRPの切削に用いても、チッピングを発生することなく、加工精度、切屑排出性にすぐれ、長期の使用にわたってすぐれた耐摩耗性を発揮するダイヤモンド被覆工具を開発すべく鋭意研究を行った結果、次のような知見を得たのである。   Therefore, the present inventors, even when used to cut CFRP, which is a difficult-to-cut material, do not generate chipping, have excellent machining accuracy and chip discharge, and exhibit excellent wear resistance over a long period of use. As a result of earnest research to develop a coated tool, the following knowledge was obtained.

即ち、WC基超硬合金またはTiCN基サーメットからなる工具基体表面に、所定層厚の結晶性ダイヤモンド層を被覆形成し、その上に、さらに、ナノダイヤモンド層を被覆形成した後、例えば、すくい面および逃げ面の表面に紫外線レーザを照射して、切れ刃以外の上記ナノダイヤモンド層を照射除去することにより、ナノダイヤモンド層によって被覆されたシャープな切れ刃を形成し、同時に、切れ刃のナノダイヤモンド層のすくい面側の表層には、ナノダイヤモンドの一部が紫外線レーザにより変性した平滑な非晶質カーボン膜を形成させることにより、ダイヤモンド被覆工具は、耐衝撃性、靭性、耐チッピング性、潤滑性、切屑排出性にすぐれ、その結果、CFRPの切削加工において、長期の使用にわたってすぐれた耐摩耗性を発揮し、工具寿命が大幅に長寿命化することを見出したのである。
さらに、切れ刃のナノダイヤモンド層の逃げ面側の表層にも、ダイヤモンドの一部が紫外線レーザにより変性した平滑な非晶質カーボン膜を形成させることにより、ダイヤモンド被覆工具は、耐衝撃性、靭性、耐チッピング性、潤滑性にすぐれるとともに、摩擦抵抗にすぐれた逃げ面を備え、その結果、CFRPの切削加工において、長期の使用にわたって、さらにすぐれた耐摩耗性を発揮し、工具寿命が大幅に長寿命化することを見出したのである。
That is, a crystalline diamond layer having a predetermined thickness is coated on the surface of a tool substrate made of a WC-based cemented carbide or TiCN-based cermet, and further a nanodiamond layer is coated thereon. By irradiating the surface of the flank with an ultraviolet laser and irradiating and removing the nanodiamond layer other than the cutting edge, a sharp cutting edge covered with the nanodiamond layer is formed. The surface layer on the rake face side of the layer is formed with a smooth amorphous carbon film in which a part of the nanodiamond is modified by an ultraviolet laser, so that the diamond-coated tool has impact resistance, toughness, chipping resistance, and lubrication. As a result, it has excellent wear resistance over long-term use in CFRP machining. And is was found that tool life is greatly longer life.
In addition, the diamond-coated tool is made resistant to impact and toughness by forming a smooth amorphous carbon film in which part of the diamond is modified by ultraviolet laser on the flank surface of the nano diamond layer of the cutting edge. In addition to excellent chipping resistance and lubricity, it also has a flank surface with excellent frictional resistance. As a result, in CFRP cutting processing, it exhibits even better wear resistance over a long period of time, resulting in a long tool life. It has been found that the service life is extended.

この発明は、上記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に、結晶性ダイヤモンド層が3〜30μmの層厚で被覆されたダイヤモンド被覆切削工具において、
上記ダイヤモンド被覆切削工具の切れ刃の上記結晶性ダイヤモンド層の表面には、平均粒径1〜50nmのナノダイヤモンド層が被覆形成され、切れ刃の最先端から上記結晶性ダイヤモンド層までの最短距離は3〜15μmであり、さらに、切れ刃の上記ナノダイヤモンド層のすくい面側表層には、表面粗さRaが0.1μm以下で、かつ、膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とするダイヤモンド被覆切削工具。
This invention has been made based on the above findings,
“(1) In a diamond-coated cutting tool in which a crystalline diamond layer is coated with a layer thickness of 3 to 30 μm on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The surface of the crystalline diamond layer of the cutting edge of the diamond-coated cutting tool is coated with a nanodiamond layer having an average particle diameter of 1 to 50 nm, and the shortest distance from the cutting edge of the cutting edge to the crystalline diamond layer is Furthermore, an amorphous carbon film having a surface roughness Ra of 0.1 μm or less and a film thickness of 10 to 200 nm is formed on the rake face side surface of the nanodiamond layer of the cutting edge. A diamond-coated cutting tool characterized by being made.

(2) 上記ダイヤモンド被覆切削工具の上記ナノダイヤモンド層の逃げ面側表層には、表面粗さRaが0.1μm以下で、かつ、膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とする前記(1)に記載のダイヤモンド被覆切削工具。」
を特徴とするものである。
(2) An amorphous carbon film having a surface roughness Ra of 0.1 μm or less and a film thickness of 10 to 200 nm is formed on the flank side surface layer of the nanodiamond layer of the diamond-coated cutting tool. The diamond-coated cutting tool as described in (1) above, wherein "
It is characterized by.

以下、本発明について、詳細に説明する。
結晶性ダイヤモンド層:
この発明では、WC超硬合金(配合組成の例を、例えば、表1に示す。)あるいはTiCN基サーメットからなる工具基体表面に被覆する結晶性ダイヤモンド層の層厚を3〜30μmと定めているが、層厚が3μm未満では、長期の使用に亘ってすぐれた耐摩耗性を発揮することができず、一方、結晶性ダイヤモンド層の層厚が30μmを超えると結晶粒が粗大化しやすくなり、耐欠損性の低下を招くばかりか、剥離を生じやすくなることから、本発明では、結晶性ダイヤモンド層の層厚を3〜30μmと定めた。
切れ刃のナノダイヤモンド層:
この発明のダイヤモンド被覆工具の切れ刃には、上記結晶性ダイヤモンド層の表面に、ナノダイヤモンド層をさらに被覆形成する。
Hereinafter, the present invention will be described in detail.
Crystalline diamond layer:
In this invention, the layer thickness of the crystalline diamond layer coated on the surface of the tool substrate made of WC cemented carbide (examples of the composition is shown in Table 1, for example) or TiCN-based cermet is defined as 3 to 30 μm. However, if the layer thickness is less than 3 μm, it is not possible to exhibit excellent wear resistance over a long period of use, while if the layer thickness of the crystalline diamond layer exceeds 30 μm, the crystal grains tend to be coarsened, In this invention, the thickness of the crystalline diamond layer is determined to be 3 to 30 μm because not only the defect resistance is deteriorated but also peeling easily occurs.
Cutting edge nano diamond layer:
On the cutting edge of the diamond-coated tool of the present invention, a nanodiamond layer is further formed on the surface of the crystalline diamond layer.

切れ刃のナノダイヤモンド層の形成方法は、例えば、次のとおりである。   The method for forming the nano-diamond layer of the cutting edge is, for example, as follows.

図1に示すように、まず、工具基体の表面に、3〜30μmの層厚の結晶性ダイヤモンド層を被覆形成した後、その上に、さらに、平均粒径1〜50nmのナノダイヤモンド層を被覆形成する(成膜条件の例を、例えば、表2に示す。)。   As shown in FIG. 1, first, a crystalline diamond layer having a layer thickness of 3 to 30 μm is coated on the surface of a tool base, and then a nanodiamond layer having an average particle diameter of 1 to 50 nm is further coated thereon. (Examples of film forming conditions are shown in Table 2, for example).

次いで、例えば、図1に示すように切れ刃の最先端からAにかけて紫外線レーザを照射して、図2のように切れ刃のすくい面側の上記ナノダイヤモンド層およびすくい面のナノダイヤモンド層を照射除去し、同時に、ナノダイヤモンドの一部が変性した平滑な非晶質カーボン膜を形成する。
ここで、すくい面の仮想延長面と逃げ面の仮想延長面の交差線を仮想先端とした場合に、該仮想先端の最も近くに位置するナノダイヤモンド層の先端(即ち、仮想先端との距離が最も短いナノダイヤモンド層の先端)を、この発明でいう「最先端」と定義する。
Next, for example, as shown in FIG. 1, the ultraviolet laser is irradiated from the cutting edge of the cutting edge to A to irradiate the nano diamond layer on the rake face side of the cutting edge and the nano diamond layer on the rake face as shown in FIG. At the same time, a smooth amorphous carbon film in which a part of the nanodiamond is modified is formed.
Here, when the intersection line of the virtual extension surface of the rake face and the virtual extension surface of the flank face is a virtual tip, the tip of the nanodiamond layer located closest to the virtual tip (that is, the distance from the virtual tip is The tip of the shortest nanodiamond layer is defined as the “leading edge” in the present invention.

つまり、紫外線レーザの照射によって、切れ刃には、結晶性ダイヤモンド層上に形成されたナノダイヤモンド層によってシャープな切れ刃を構成するとともに、切れ刃のナノダイヤモンド層のすくい面側表層には、紫外線レーザによりナノダイヤモンドの一部が変性した平滑な非晶質カーボン膜を形成し、耐衝撃性、靭性、耐チッピング性、潤滑性、切屑排出性にすぐれた切れ刃を構成する。   In other words, a sharp cutting edge is formed on the cutting edge by the nanodiamond layer formed on the crystalline diamond layer by the irradiation of the ultraviolet laser, and the rake face side layer of the nanodiamond layer of the cutting edge has an ultraviolet ray on the surface layer. A smooth amorphous carbon film in which a part of nanodiamond is modified by a laser is formed to constitute a cutting edge having excellent impact resistance, toughness, chipping resistance, lubricity, and chip discharge.

また、切れ刃のナノダイヤモンド層の逃げ面側表層についても、同様に、紫外線レーザによりナノダイヤモンドの一部が変性した平滑な非晶質カーボン膜を形成し、耐衝撃性、靭性、耐チッピング性、潤滑性、切屑排出性にすぐれた切れ刃を構成するとともに、被削材との摩擦抵抗を低減し、加工精度を向上させることができる。
ここで、上記ナノダイヤモンド層を構成するナノダイヤモンドの平均粒径が1nm未満では、耐摩耗性が低下し、一方、50nmを超えるとチッピングを発生しやすくなることから、ナノダイヤモンドの平均粒径は1〜50nmと定めた。
Similarly, on the flank surface layer of the nano-diamond layer of the cutting edge, a smooth amorphous carbon film in which a part of the nano-diamond is modified by an ultraviolet laser is similarly formed, impact resistance, toughness, chipping resistance In addition, it is possible to form a cutting edge with excellent lubricity and chip discharge, reduce frictional resistance with the work material, and improve machining accuracy.
Here, when the average particle diameter of the nanodiamond constituting the nanodiamond layer is less than 1 nm, the wear resistance is lowered. On the other hand, when it exceeds 50 nm, chipping is likely to occur. It was set to 1 to 50 nm.

ダイヤモンド被覆ドリルによるCFRPの切削において、切れ刃が結晶性ダイヤモンド単層で構成されると、結晶粒が大きく靭性が低いため、刃先で欠損およびチッピングを生じやすくなり、切れ味が低下し、早期に被削材であるCFRPにデラミネーション(剥離、バリ、カエリ、ムシレ等)を生じる原因となっていた。
また、ナノダイヤモンド単層の場合には、耐欠損性が高いものの、十分な耐摩耗性がないため、刃先が摩滅して切れ味が低下し、同様にCFRPにデラミネーションを生じた。
When cutting a CFRP with a diamond-coated drill, if the cutting edge is composed of a crystalline diamond single layer, the crystal grains are large and the toughness is low. This was a cause of delamination (peeling, burrs, burrs, mussels, etc.) in CFRP as a cutting material.
Further, in the case of the nanodiamond single layer, although the fracture resistance is high, since the wear resistance is not sufficient, the cutting edge is worn out and the sharpness is lowered, and similarly, the CFRP is delaminated.

そこで、切れ刃のダイヤモンド被覆層を、結晶性ダイヤモンド層の表面にナノダイヤモンド層を被覆した構造とすることによって、切れ刃の耐衝撃性、靭性の向上を図り、欠損およびチッピングの発生を抑制し、さらに、切れ刃のナノダイヤモンド層のすくい面側表層に、平滑な非晶質カーボン膜を形成し、潤滑性、切屑排出性を向上させることにより、長期の使用にわたって、十分な加工精度を維持し、かつ耐摩耗性を発揮することができる。   Therefore, the diamond coating layer of the cutting edge has a structure in which the surface of the crystalline diamond layer is covered with the nano diamond layer, thereby improving the impact resistance and toughness of the cutting edge and suppressing the occurrence of defects and chipping. In addition, a smooth amorphous carbon film is formed on the surface of the rake face of the nano-diamond layer of the cutting edge to improve lubricity and chip evacuation, thereby maintaining sufficient processing accuracy over a long period of use. In addition, wear resistance can be exhibited.

また、切れ刃のナノダイヤモンド層の逃げ面側表層にも、平滑な非晶質カーボン膜を形成することにより、潤滑性、切屑排出性を向上させ、かつ、被削材との摩擦抵抗を低減させ、長期の使用にわたって、十分な加工精度を維持し、かつ耐摩耗性を発揮することができる。   Also, by forming a smooth amorphous carbon film on the flank side surface of the nano diamond layer of the cutting edge, lubricity and chip discharge are improved and frictional resistance with the work material is reduced. Thus, it is possible to maintain sufficient processing accuracy and exhibit wear resistance over a long period of use.

上記のレーザ照射によって、切れ刃のナノダイヤモンド層のすくい面側の表層(あるいは、さらに逃げ面側の表層)には、ナノダイヤモンドを一部変性させ、表面粗さが0.1μm以下で、膜厚が10〜200nmの非晶質カーボン膜を形成するが、上記非晶質カーボン膜の表面粗さRaが0.1μmを超える場合には、切屑排出性が低下するため、上記非晶質カーボン膜の表面粗さRaを0.1μm以下と定めた。   By the above laser irradiation, the surface of the cutting edge of the nanodiamond layer on the rake face side (or the surface layer on the flank face side) is partially modified with nanodiamond so that the surface roughness is 0.1 μm or less. An amorphous carbon film having a thickness of 10 to 200 nm is formed. However, when the surface roughness Ra of the amorphous carbon film exceeds 0.1 μm, the chip discharge performance is lowered. The surface roughness Ra of the film was determined to be 0.1 μm or less.

また、上記非晶質カーボン膜の膜厚が10nm未満では、長期の使用にわたっての潤滑性を維持することができないため、切屑排出性が十分ではない。一方、非晶質カーボン膜の膜厚が200nmを超えると耐摩耗性の低下傾向がみられることから、非晶質カーボン膜の膜厚は10〜200nmと定めた。
粗加工においては切れ味と耐欠損性の両立が重要なため、切れ刃のすくい面側およびすくい面のみをレーザ加工しても切れ味の向上効果が得られ、工具寿命の延長が可能である。
しかし、図3に示すように、例えば、図1の最先端からAおよび最先端からBにかけて、切れ刃およびすくい面と逃げ面に形成されたナノダイヤモンド層を紫外線レーザ照射で除去することで、図3のように、切れ刃には、ナノダイヤモンド層によって被覆構成されたさらにシャープな切れ刃を形成するとともに、切れ刃のナノダイヤモンド層のすくい面側および逃げ面側の表層には、紫外線レーザによりナノダイヤモンドの一部が変性した平滑な非晶質カーボン膜を形成させることにより、若干刃先の靱性が低下するものの、切れ味が更に向上し、CFRPの切削においてバリやデラミネーションが発生しにくく、一層の工具寿命延長が図ることもできる。レーザ加工時に表層に生じた非晶質カーボン層は、すくい面においては切りくずの排出性の向上に寄与し、逃げ面においてはワークとの摩擦抵抗を低減し、加工精度を向上させる効果がある。
Further, when the amorphous carbon film has a thickness of less than 10 nm, the lubricity cannot be maintained over a long period of use, and thus the chip dischargeability is not sufficient. On the other hand, when the film thickness of the amorphous carbon film exceeds 200 nm, the wear resistance tends to decrease. Therefore, the film thickness of the amorphous carbon film is determined to be 10 to 200 nm.
In rough machining, it is important to achieve both sharpness and fracture resistance. Therefore, even if only the rake face side and the rake face of the cutting edge are laser machined, the sharpness can be improved and the tool life can be extended.
However, as shown in FIG. 3, for example, by removing the nanodiamond layer formed on the cutting edge and the rake face and the flank face from the leading edge of FIG. As shown in FIG. 3, a sharper cutting edge covered with a nanodiamond layer is formed on the cutting edge, and an ultraviolet laser is applied to the rake face side and flank side surface of the nanodiamond layer of the cutting edge. By forming a smooth amorphous carbon film in which a part of the nanodiamond is modified, the toughness of the blade edge is slightly reduced, but the sharpness is further improved, and burrs and delamination are less likely to occur in the cutting of CFRP, The tool life can be further extended. The amorphous carbon layer formed on the surface during laser processing contributes to improved chip evacuation on the rake face, and reduces the frictional resistance with the workpiece on the flank face, improving the processing accuracy. .

また、切れ刃に形成するナノダイヤモンド層は、図3に示すように、切れ刃の最先端から結晶性ダイヤモンド膜までの最短距離が3〜15μmとなるようにする。   Further, as shown in FIG. 3, the nanodiamond layer formed on the cutting edge is set such that the shortest distance from the cutting edge to the crystalline diamond film is 3 to 15 μm.

これは、切れ刃のナノダイヤモンド層の層厚が薄く、切れ刃の最先端から上記結晶性ダイヤモンド膜までの最短距離が3μm未満であるような場合には、シャープな切れ刃を形成することができず、長期の使用にわたっての加工精度の向上・維持を期待することができず、一方、その距離が15μmを超える場合には、チッピングを発生しやすくなるという理由による。   This is because when the nano diamond layer of the cutting edge is thin and the shortest distance from the cutting edge to the crystalline diamond film is less than 3 μm, a sharp cutting edge can be formed. This is because it cannot be expected that improvement and maintenance of processing accuracy over a long period of use can be expected. On the other hand, if the distance exceeds 15 μm, chipping is likely to occur.

工具基体表面への結晶性ダイヤモンド層の成膜は、例えば、
フィラメント温度 2300 ℃、
反応圧力 30 Torr、
反応ガス流量 CH:80sccm,H:3000sccm、
の条件の熱フィラメント法で蒸着することによって成膜することができる。
Formation of the crystalline diamond layer on the surface of the tool substrate is, for example,
Filament temperature 2300 ° C,
Reaction pressure 30 Torr,
Reaction gas flow rate CH 4 : 80 sccm, H 2 : 3000 sccm,
A film can be formed by vapor deposition by the hot filament method under the conditions described above.

また、ナノダイヤモンド層の成膜は、例えば、
フィラメント温度 2200 ℃、
反応圧力 8 Torr、
反応ガス流量 CH:60sccm,H:1500sccm、
の条件の熱フィラメント法で成膜することができる。
Moreover, the film formation of the nano diamond layer is, for example,
Filament temperature 2200 ° C,
Reaction pressure 8 Torr,
Reaction gas flow rate CH 4 : 60 sccm, H 2 : 1500 sccm,
The film can be formed by the hot filament method under the following conditions.

この発明のダイヤモンド被覆工具は、工具基体表面に結晶性ダイヤモンド層が被覆形成され、かつ、切れ刃には、結晶性ダイヤモンド層上にナノダイヤモンド層が形成され、さらに、レーザによる加工後の切れ刃のナノダイヤモンド層のすくい面側の表層には、所定膜厚の平滑な非晶質カーボン膜が形成されており、シャープな切れ刃と耐衝撃性、潤滑性、切屑排出性にすぐれた特性を示す。
さらに、逃げ面にもレーザ加工を施すことにより、切れ刃のナノダイヤモンド層の逃げ面側の表層にも非晶質カーボン膜が形成され、シャープな切れ刃と耐衝撃性、潤滑性、切屑排出性を示し、ワークとの摩擦抵抗を低減し、加工精度を向上させる効果がある。
このことから、CFRPの切削に用いた場合でも、チッピングを発生することなく、加工精度、切屑排出性にすぐれ、長期の使用にわたってすぐれた耐摩耗性を発揮し、工具の長寿命化が図られるのである。
In the diamond-coated tool of the present invention, a crystalline diamond layer is coated on the surface of a tool base, and a nano-diamond layer is formed on the crystalline diamond layer on the cutting edge. A smooth amorphous carbon film with a predetermined thickness is formed on the surface of the rake face side of the nanodiamond layer, which has excellent sharp cutting edges and excellent properties such as impact resistance, lubricity, and chip evacuation. Show.
In addition, by applying laser processing to the flank, an amorphous carbon film is also formed on the surface of the nano-diamond layer of the cutting edge on the flank side, sharp cutting edge and impact resistance, lubricity, chip discharge And has the effect of reducing the frictional resistance with the workpiece and improving the machining accuracy.
Therefore, even when used for CFRP cutting, chipping does not occur, machining accuracy and chip discharge are excellent, and excellent wear resistance is exhibited over a long period of use, thereby extending the tool life. It is.

本発明のダイヤモンド被覆工具のレーザ加工前の結晶性ダイヤモンド層とナノダイヤモンド層からなる切れ刃近傍の膜構造の概略断面模式図を示す。The schematic cross-sectional schematic diagram of the film | membrane structure of the cutting edge vicinity which consists of the crystalline diamond layer and nano diamond layer before laser processing of the diamond-coated tool of this invention is shown. 本発明のダイヤモンド被覆工具のすくい面をレーザ加工した後、すくい面側の切れ刃のみに非晶質カーボン膜を形成した切れ刃近傍の膜構造の概略断面模式図を示す。1 is a schematic cross-sectional schematic view of a film structure in the vicinity of a cutting edge in which an amorphous carbon film is formed only on the cutting edge on the rake face side after laser machining of the rake face of the diamond-coated tool of the present invention. 本発明のダイヤモンド被覆工具のすくい面、逃げ面をレーザ加工した後、切れ刃のすくい面側および逃げ面側の双方に非晶質カーボン膜を形成した切れ刃近傍の膜構造の概略断面模式図を示す。Schematic cross-sectional schematic diagram of the film structure in the vicinity of the cutting edge in which an amorphous carbon film is formed on both the rake face side and the flank face side of the cutting edge after laser machining of the rake face and flank face of the diamond-coated tool of the present invention Indicates.

つぎに、この発明のダイヤモンド被覆工具を実施例により具体的に説明する。   Next, the diamond-coated tool of the present invention will be specifically described with reference to examples.

ここでは、CFRPの切削用エンドミルとして用いた場合の例を示すが、本発明はこれに限定されるものではなく、ドリル等の各種の切削工具にも適用可能である。
なお、ダイヤモンド被覆エンドミルによるCFRPの切削においては、切れ刃のシャープさに加え、切れ刃に耐衝撃性、靭性および耐摩耗性が要求されることから、本発明のダイヤモンド被覆切削工具は、CFRP切削用のダイヤモンド被覆エンドミルに好適といえる。
Here, an example in the case of using as an end mill for CFRP is shown, but the present invention is not limited to this, and can be applied to various cutting tools such as a drill.
In addition, in cutting CFRP with a diamond-coated end mill, in addition to the sharpness of the cutting edge, impact resistance, toughness, and wear resistance are required for the cutting edge. It can be said that it is suitable for a diamond-coated end mill.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで96時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角10度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)1〜10をそれぞれ製造した。   As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the blending composition shown in Table 1, After wet mixing with a ball mill for 96 hours and drying, the green compact was pressed into a green compact at a pressure of 100 MPa, and this green compact was sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour. Is formed into a tool base forming round bar sintered body having a diameter of 13 mm, and the above-mentioned round bar sintered body is subjected to grinding to obtain a cutting blade portion diameter × length of 10 mm × 22 mm and a twist angle of 10 mm. WC-base cemented carbide tool bases (end mills) 1 to 10 each having a four-blade square shape were manufactured.

ついで、これらの超硬合金基体(エンドミル)1〜10の表面をアセトン中で超音波洗浄し、乾燥した後、酸溶液によるエッチングおよび/またはアルカリ溶液によるエッチング処理を行い、さらに、ダイヤモンド粉末スラリー液を用いて超音波洗浄器で超音波処理を行なった後、
(a)上記超硬合金基体1〜10をCVD装置に装入し、まず、表2に示される条件で、所定の平均層厚、平均粒径の結晶性ダイヤモンド層を蒸着形成し、
(b)ついで、この上に、同じく表2に示される条件で、所定の平均層厚、平均粒径のナノダイヤモンド層を蒸着形成し、
(c)ついで、上記結晶性ダイヤモンド層上にナノダイヤモンド層を蒸着形成した超硬合金基体を、レーザ加工装置に装着し、紫外線レーザ(波長:262nm)のレーザ光源を駆動し、焦点レンズを紫外線レーザの光軸方向に移動させ、紫外線レーザ光を試料ステージの中心と重なる位置で集光させ、ついで、試料ステージを移動させて、紫外線レーザを切れ刃に照射し、ガルバノスキャナでレーザを走査することで、切れ刃のすくい面側のナノダイヤモンド層およびすくい面の結晶性ダイヤモンド層上のナノダイヤモンド層の除去を行い、あるいは、さらに、切れ刃の逃げ面側のナノダイヤモンド層および逃げ面の結晶性ダイヤモンド層上のナノダイヤモンド層の除去を行い、
(d)切れ刃のすくい面側のナノダイヤモンド層の表層、あるいは、さらに、切れ刃の逃げ面側のナノダイヤモンド層の表層には、表6に示す非晶質カーボン膜を形成した。
Next, the surfaces of these cemented carbide substrates (end mills) 1 to 10 are subjected to ultrasonic cleaning in acetone and dried, and then etching with an acid solution and / or etching with an alkali solution is performed. After performing sonication with an ultrasonic cleaner using
(A) The above cemented carbide bases 1 to 10 are charged into a CVD apparatus, and first, a crystalline diamond layer having a predetermined average layer thickness and average particle diameter is formed by vapor deposition under the conditions shown in Table 2.
(B) Next, a nanodiamond layer having a predetermined average layer thickness and an average particle diameter is vapor-deposited on the same conditions as shown in Table 2,
(C) Next, the cemented carbide substrate on which the nanodiamond layer is deposited on the crystalline diamond layer is mounted on a laser processing apparatus, the laser light source of the ultraviolet laser (wavelength: 262 nm) is driven, and the focal lens is made ultraviolet. The laser beam is moved in the direction of the optical axis of the laser, and the ultraviolet laser beam is condensed at a position overlapping the center of the sample stage. Then, the sample stage is moved, the ultraviolet laser is irradiated onto the cutting edge, and the laser is scanned by the galvano scanner. The nano diamond layer on the rake face side of the cutting edge and the nano diamond layer on the crystalline diamond layer on the rake face are removed, or the nano diamond layer on the flank face side of the cutting edge and the crystal on the flank face are further removed. Removing the nanodiamond layer on the conductive diamond layer,
(D) The amorphous carbon film shown in Table 6 was formed on the surface of the nanodiamond layer on the rake face side of the cutting edge, or on the surface of the nanodiamond layer on the flank face side of the cutting edge.

以上、(a)〜(d)により、本発明ダイヤモンド被覆工具としての本発明被覆エンドミル1〜15を製造した。   As described above, the coated end mills 1 to 15 of the present invention as the diamond coated tool of the present invention were manufactured by (a) to (d).

なお、本発明被覆エンドミル1〜15のうち、本発明被覆エンドミル1〜10については、切れ刃のすくい面側のナノダイヤモンド層の表層に、表6に示す非晶質カーボン膜を形成した。一方、本発明被覆エンドミル11〜15については、切れ刃のすくい面側及び逃げ面側のナノダイヤモンド層の表層に、表6に示す非晶質カーボン膜を形成した。   Of the coated end mills 1 to 15 according to the present invention, the amorphous carbon films shown in Table 6 were formed on the surface of the nanodiamond layer on the rake face side of the cutting edge for the coated end mills 1 to 10. On the other hand, for the coated end mills 11 to 15 of the present invention, amorphous carbon films shown in Table 6 were formed on the surface of the nano diamond layer on the rake face side and flank face side of the cutting edge.

比較のために、
(a’)上記超硬合金基体をCVD装置に装入し、まず、表4に示される条件で、所定の平均層厚、平均粒径の結晶性ダイヤモンド層を蒸着形成し、
(b’)ついで、同じく表4に示される条件で、所定の平均層厚、平均粒径のナノダイヤモンド層を蒸着形成し、
(c’)ついで、上記結晶性ダイヤモンド層とナノダイヤモンド層を蒸着形成した超硬合金基体を、レーザ加工装置に装着し、紫外線レーザ(波長:262nm)のレーザ光源を駆動し、焦点レンズを紫外線レーザの光軸方向に移動させ、紫外線レーザ光を試料ステージの中心と重なる位置で集光させ、ついで、試料ステージを移動させて、紫外線レーザを切れ刃に照射し、ガルバノスキャナでレーザを走査することで、切れ刃のすくい面側のナノダイヤモンド層の除去、あるいは、さらに、切れ刃の逃げ面側のナノダイヤモンド層の除去を行い、
(d’)切れ刃のすくい面側のナノダイヤモンド層の表層およびすくい面の結晶性ダイヤモンド層の表層、あるいは、さらに、切れ刃の逃げ面側のナノダイヤモンド層の表層には、表6に示す非晶質カーボン膜を形成した。
For comparison,
(A ′) The above cemented carbide substrate is charged into a CVD apparatus, and first, a crystalline diamond layer having a predetermined average layer thickness and average particle diameter is formed by vapor deposition under the conditions shown in Table 4.
(B ′) Next, under the same conditions as shown in Table 4, a nanodiamond layer having a predetermined average layer thickness and an average particle diameter is formed by vapor deposition.
(C ′) Next, the cemented carbide substrate on which the crystalline diamond layer and the nanodiamond layer are vapor-deposited is mounted on a laser processing apparatus, a laser light source of an ultraviolet laser (wavelength: 262 nm) is driven, and a focal lens is made ultraviolet. The laser beam is moved in the direction of the optical axis of the laser, and the ultraviolet laser beam is condensed at a position overlapping the center of the sample stage. Then, the sample stage is moved, the ultraviolet laser is irradiated onto the cutting edge, and the laser is scanned by the galvano scanner. By removing the nano diamond layer on the rake face side of the cutting edge, or further removing the nano diamond layer on the flank side of the cutting edge,
(D ′) The surface layer of the nano diamond layer on the rake face side of the cutting edge and the surface layer of the crystalline diamond layer on the rake face, or the surface layer of the nano diamond layer on the flank face side of the cutting edge are shown in Table 6. An amorphous carbon film was formed.

以上、(a’)〜(d’)により、比較例ダイヤモンド被覆工具としての比較被覆エンドミル1〜15を製造した。   As described above, comparative coated end mills 1 to 15 as comparative diamond coated tools were manufactured by (a ′) to (d ′).

なお、比較被覆エンドミル1〜15のうち、比較被覆エンドミル1〜6、8〜10については、切れ刃のすくい面側のナノダイヤモンド層の表層に、表6に示す非晶質カーボン膜を形成した。一方、比較被覆エンドミル11〜15について、切れ刃のすくい面側及び逃げ面側のナノダイヤモンド層の表層に、表6に示す非晶質カーボン膜を形成した。なお、比較被覆エンドミル7については、ナノダイヤモンド層の形成は行わなかった。   Of the comparative coated end mills 1 to 15, for the comparative coated end mills 1 to 6 and 8 to 10, the amorphous carbon film shown in Table 6 was formed on the surface of the nano diamond layer on the rake face side of the cutting edge. . On the other hand, for the comparative coated end mills 11 to 15, the amorphous carbon films shown in Table 6 were formed on the surface of the nano diamond layer on the rake face side and the flank face side of the cutting edge. For the comparative coated end mill 7, no nanodiamond layer was formed.

この結果得られた本発明被覆エンドミル1〜15および比較被覆エンドミル1〜15について、ナノダイヤモンド層と結晶性ダイヤモンド層の層厚を、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   About the present invention coated end mills 1 to 15 and comparative coated end mills 1 to 15 obtained as a result, the layer thicknesses of the nano diamond layer and the crystalline diamond layer were measured using a scanning electron microscope (longitudinal section measurement). All showed the average layer thickness (average value of 5-point measurement) substantially the same as the target layer thickness.

また、切れ刃のすくい面側のナノダイヤモンド層の表層、切れ刃の逃げ面側のナノダイヤモンド層の表層に形成された非晶質カーボン膜をArガスレーザより得られた可視光を用いたラマン分光分析により評価し、紫外線レーザの照射によりダイヤモンドのピークを示す1333cm-1のピークが消失したことを確認した。
また、非晶質カーボン膜からなる表層の表面粗さRaはレーザ顕微鏡により10箇所の10μm四方の表面粗さの測定値の平均値として求めた。
ナノダイヤモンドの平均粒径は透過型電子顕微鏡により観察された界面と平行な100nmの線分を、100nmの線分に占めるダイヤモンド粒子の総数で割った値で算出した。
さらに、切れ刃の最先端から結晶性ダイヤモンド層までの最短距離は、試料を断面加工した後、マイクロスコープにより測定した。
Raman spectroscopy using visible light obtained from an Ar gas laser on the surface of the nano diamond layer on the rake face side of the cutting edge and on the surface of the nano diamond layer on the flank face side of the cutting edge It was evaluated by analysis, and it was confirmed that a peak at 1333 cm −1 indicating a diamond peak disappeared by irradiation with an ultraviolet laser.
Further, the surface roughness Ra of the surface layer made of the amorphous carbon film was determined as an average value of the measured values of the surface roughness of ten 10 μm squares by a laser microscope.
The average particle diameter of the nanodiamond was calculated by dividing the 100 nm line segment parallel to the interface observed by the transmission electron microscope by the total number of diamond particles in the 100 nm line segment.
Furthermore, the shortest distance from the cutting edge to the crystalline diamond layer was measured with a microscope after the sample was processed in cross section.

表3、5、6に、これらの結果を示す。   Tables 3, 5, and 6 show these results.

Figure 2012176471
Figure 2012176471

Figure 2012176471
Figure 2012176471

Figure 2012176471
Figure 2012176471

Figure 2012176471
Figure 2012176471

Figure 2012176471
Figure 2012176471

Figure 2012176471
つぎに、上記の本発明被覆エンドミル1〜15および比較被覆エンドミル1〜15について、CFRPの切削評価を行い、本発明被覆エンドミルを使用することによるバリ抑制の効果について調べた。
上記の本発明被覆エンドミル1〜15および比較被覆エンドミル1〜15を使用して、厚み5mmのCFRPを被削材として、
切削速度:160m/min.、
送り速度:0.03 mm/tooth、
テーブル送り:600mm/分、
エアーブローおよび吸引
の条件で、乾式高速切削加工試験を行ない、バリが発生するまでの切削溝長を測定した。
試験結果を表7に示す。
Figure 2012176471
Next, cutting evaluation of CFRP was performed on the above-described coated end mills 1 to 15 and comparative coated end mills 1 to 15, and the effect of suppressing burrs by using the coated end mill of the present invention was investigated.
Using the above-described coated end mills 1-15 and comparative coated end mills 1-15, CFRP having a thickness of 5 mm as a work material,
Cutting speed: 160 m / min. ,
Feed rate: 0.03 mm / tooth,
Table feed: 600 mm / min,
A dry high-speed cutting test was performed under the conditions of air blow and suction, and the length of the cutting groove until burr was measured was measured.
The test results are shown in Table 7.

Figure 2012176471
表7に示される結果から、この発明のダイヤモンド被覆工具(エンドミル)は、CFRPの切削に用いた場合でも、耐衝撃性にすぐれ、長期の使用にわたって、バリを発生することなく、すぐれた加工精度、切屑排出性、耐摩耗性を発揮するのに対して、比較被覆エンドミルは、耐衝撃性、耐チッピング性、耐摩耗性が劣り、バリが早期に生じることから、切削性能が満足できるものでないことは明らかである。
Figure 2012176471
From the results shown in Table 7, the diamond-coated tool (end mill) of the present invention has excellent impact resistance even when used for CFRP cutting, and excellent machining accuracy without generating burrs over a long period of use. Compared to the chip removal performance and wear resistance, the comparative coated end mill has poor impact resistance, chipping resistance, and wear resistance, and burrs are generated at an early stage, so the cutting performance is not satisfactory. It is clear.

上述のように、この発明のダイヤモンド被覆工具は、すぐれた耐衝撃性、潤滑性、切屑排出性とすぐれた耐摩耗性を備えるものであって、加工精度が求められるCFRPの難削材の切削加工においては、長期の使用にわたってすぐれた切削性能を発揮するものである。   As described above, the diamond-coated tool according to the present invention has excellent impact resistance, lubricity, chip evacuation property, and excellent wear resistance, and is capable of cutting a difficult-to-cut CFRP material that requires machining accuracy. In machining, it exhibits excellent cutting performance over a long period of use.

1 結晶性ダイヤモンド層
2 ナノダイヤモンド層
3 切れ刃の先端部
4 最先端
5 非晶質カーボン膜
6 最先端から結晶性ダイヤモンド層までの最短距離
7 工具基体
DESCRIPTION OF SYMBOLS 1 Crystalline diamond layer 2 Nano diamond layer 3 Cutting edge tip part 4 Cutting edge 5 Amorphous carbon film 6 Shortest distance from cutting edge to crystalline diamond layer 7 Tool base

Claims (2)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体表面に、結晶性ダイヤモンド層が3〜30μmの層厚で被覆されたダイヤモンド被覆切削工具において、
上記ダイヤモンド被覆切削工具の切れ刃の上記結晶性ダイヤモンド層の表面には、平均粒径1〜50nmのナノダイヤモンド層が被覆形成され、切れ刃の最先端から上記結晶性ダイヤモンド層までの最短距離は3〜15μmであり、さらに、切れ刃の上記ナノダイヤモンド層のすくい面側表層には、表面粗さRaが0.1μm以下で、かつ、膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とするダイヤモンド被覆切削工具。
In a diamond-coated cutting tool in which a crystalline diamond layer is coated with a layer thickness of 3 to 30 μm on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The surface of the crystalline diamond layer of the cutting edge of the diamond-coated cutting tool is coated with a nanodiamond layer having an average particle diameter of 1 to 50 nm, and the shortest distance from the cutting edge of the cutting edge to the crystalline diamond layer is Furthermore, an amorphous carbon film having a surface roughness Ra of 0.1 μm or less and a film thickness of 10 to 200 nm is formed on the rake face side surface of the nanodiamond layer of the cutting edge. A diamond-coated cutting tool characterized by being made.
上記ダイヤモンド被覆切削工具の上記ナノダイヤモンド層の逃げ面側表層には、表面粗さRaが0.1μm以下で、かつ、膜厚が10〜200nmの非晶質カーボン膜が形成されていることを特徴とする請求項1に記載のダイヤモンド被覆切削工具。   A surface roughness Ra of 0.1 μm or less and an amorphous carbon film having a film thickness of 10 to 200 nm are formed on the flank side surface layer of the nanodiamond layer of the diamond-coated cutting tool. The diamond-coated cutting tool according to claim 1, wherein the cutting tool is a diamond-coated cutting tool.
JP2011041472A 2011-02-07 2011-02-28 Diamond coated cutting tool Expired - Fee Related JP5590334B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011041472A JP5590334B2 (en) 2011-02-28 2011-02-28 Diamond coated cutting tool
CN201210023629.9A CN102626853B (en) 2011-02-07 2012-02-03 Diamond-coated cutting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041472A JP5590334B2 (en) 2011-02-28 2011-02-28 Diamond coated cutting tool

Publications (2)

Publication Number Publication Date
JP2012176471A true JP2012176471A (en) 2012-09-13
JP5590334B2 JP5590334B2 (en) 2014-09-17

Family

ID=46978704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041472A Expired - Fee Related JP5590334B2 (en) 2011-02-07 2011-02-28 Diamond coated cutting tool

Country Status (1)

Country Link
JP (1) JP5590334B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103831858A (en) * 2014-03-05 2014-06-04 昆山盛夏复合材料科技有限公司 Cutter structure of carbon fiber cutting machine
EP2813304A2 (en) 2013-05-20 2014-12-17 Japan Aviation Electronics Industry Limited Edge tool
WO2015036557A1 (en) * 2013-09-13 2015-03-19 Cemecon Ag Tool and method for machining fiber-reinforced materials
CN104588705A (en) * 2013-10-31 2015-05-06 佑能工具株式会社 Hard-coated cutting tool
WO2015163470A1 (en) * 2014-04-24 2015-10-29 京セラ株式会社 Coated tool
WO2015163408A1 (en) * 2014-04-24 2015-10-29 帝人株式会社 Machined carbon-fiber-reinforced resin product having end face and production method therefor
CN105765102A (en) * 2013-11-22 2016-07-13 六号元素技术有限公司 Polycrystalline chemical vapour deposited diamond tool parts and methods of fabricating, mounting, and using the same
CN106457411A (en) * 2014-03-25 2017-02-22 兼房株式会社 Cutting tool
JPWO2017188154A1 (en) * 2016-04-25 2019-02-28 京セラ株式会社 Cutting tools
WO2019065949A1 (en) * 2017-09-29 2019-04-04 三菱マテリアル株式会社 Diamond-coated rotation cutting tool
CN109848472A (en) * 2019-02-14 2019-06-07 合肥鼎鑫模具有限公司 A kind of vertical type square milling machine blade and its production technology
KR20210027441A (en) 2018-08-01 2021-03-10 고쿠리쓰다이가쿠호진 규슈다이가쿠 Diamond smoothing method
US11684981B2 (en) * 2018-03-29 2023-06-27 Ningbo Institute Of Materials Technology & Engineering. Chinese Academy Of Sciences Ultra-fine nanocrystalline diamond precision cutting tool and manufacturing method therefor
CN116605925A (en) * 2023-07-17 2023-08-18 四川新能源汽车创新中心有限公司 Positive electrode material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259171A (en) * 1988-04-07 1989-10-16 Nachi Fujikoshi Corp Cutting tool member coated with hard film
JPH0328373A (en) * 1989-06-23 1991-02-06 Idemitsu Petrochem Co Ltd Diamond-coated member and its production
JPH04146007A (en) * 1990-10-08 1992-05-20 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool and its manufacture
JPH04240007A (en) * 1991-01-16 1992-08-27 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool and manufacture thereof
JP2002540970A (en) * 1999-03-31 2002-12-03 セメコン−セラミック メタル コーティングス−ドクトル−インジェネア アントニウス レイエンデッカー ゲーエムベーハー Diamond coated tool and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259171A (en) * 1988-04-07 1989-10-16 Nachi Fujikoshi Corp Cutting tool member coated with hard film
JPH0328373A (en) * 1989-06-23 1991-02-06 Idemitsu Petrochem Co Ltd Diamond-coated member and its production
JPH04146007A (en) * 1990-10-08 1992-05-20 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool and its manufacture
JPH04240007A (en) * 1991-01-16 1992-08-27 Sumitomo Electric Ind Ltd Polycrystal diamond cutting tool and manufacture thereof
JP2002540970A (en) * 1999-03-31 2002-12-03 セメコン−セラミック メタル コーティングス−ドクトル−インジェネア アントニウス レイエンデッカー ゲーエムベーハー Diamond coated tool and method of making same

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2813304A2 (en) 2013-05-20 2014-12-17 Japan Aviation Electronics Industry Limited Edge tool
JP2016534890A (en) * 2013-09-13 2016-11-10 セメコン アーゲー Tools and methods for machining fiber reinforced materials
WO2015036557A1 (en) * 2013-09-13 2015-03-19 Cemecon Ag Tool and method for machining fiber-reinforced materials
US10099297B2 (en) 2013-09-13 2018-10-16 Cemecon Ag Tool and method for machining fiber-reinforced materials
CN104588705A (en) * 2013-10-31 2015-05-06 佑能工具株式会社 Hard-coated cutting tool
EP2868413A1 (en) * 2013-10-31 2015-05-06 Union Tool Co. Hard-coated cutting tool
EP2868413B1 (en) 2013-10-31 2018-09-12 Union Tool Co. Hard-coated cutting tool
US9868160B2 (en) 2013-10-31 2018-01-16 Union Tool Co. Hard-coated cutting tool
CN105765102A (en) * 2013-11-22 2016-07-13 六号元素技术有限公司 Polycrystalline chemical vapour deposited diamond tool parts and methods of fabricating, mounting, and using the same
US9981317B2 (en) * 2013-11-22 2018-05-29 Element Six Technologies Limited Polycrystalline chemical vapour deposited diamond tool parts and methods of fabricating, mounting, and using the same
US20160250691A1 (en) * 2013-11-22 2016-09-01 Element Six Technologies Limited Polycrystalline chemical vapour deposited diamond tool parts and methods of fabricating, mounting, and using the same
CN105765102B (en) * 2013-11-22 2019-02-22 六号元素技术有限公司 The diamond tool component of plycrystalline diamond chemical vapor deposition and manufacture, installation and the method using it
CN103831858A (en) * 2014-03-05 2014-06-04 昆山盛夏复合材料科技有限公司 Cutter structure of carbon fiber cutting machine
CN103831858B (en) * 2014-03-05 2016-01-20 昆山盛夏复合材料科技有限公司 The cutting knife structure of carbon cloth guillotine
US10179366B2 (en) 2014-03-25 2019-01-15 Kanefusa Kabushiki Kaisha Cutting tool
CN106457411A (en) * 2014-03-25 2017-02-22 兼房株式会社 Cutting tool
EP3106250A4 (en) * 2014-03-25 2017-11-01 Kanefusa Kabushiki Kaisha Cutting tool
CN106232276B (en) * 2014-04-24 2019-04-05 京瓷株式会社 Coated tool
JP2015231666A (en) * 2014-04-24 2015-12-24 帝人株式会社 Manufacturing method of carbon fiber reinforced resin processed article having end face
JPWO2015163470A1 (en) * 2014-04-24 2017-04-20 京セラ株式会社 Coated tool
WO2015163408A1 (en) * 2014-04-24 2015-10-29 帝人株式会社 Machined carbon-fiber-reinforced resin product having end face and production method therefor
WO2015163470A1 (en) * 2014-04-24 2015-10-29 京セラ株式会社 Coated tool
US10118229B2 (en) 2014-04-24 2018-11-06 Kyocera Corporation Coated tool
JP5908188B2 (en) * 2014-04-24 2016-04-26 帝人株式会社 Carbon fiber reinforced resin processed product with end face
CN106232276A (en) * 2014-04-24 2016-12-14 京瓷株式会社 Coated tool
EP3257968A4 (en) * 2014-04-24 2017-12-20 Kyocera Corporation Coated tool
US11440270B2 (en) 2014-04-24 2022-09-13 Teijin Limited Carbon fiber reinforced resin processed product having end surface and method of manufacturing the same
JPWO2017188154A1 (en) * 2016-04-25 2019-02-28 京セラ株式会社 Cutting tools
US11642730B2 (en) * 2016-04-25 2023-05-09 Kyocera Corporation Cutting tool
EP3689521A4 (en) * 2017-09-29 2021-03-24 Mitsubishi Materials Corporation Diamond-coated rotation cutting tool
WO2019065949A1 (en) * 2017-09-29 2019-04-04 三菱マテリアル株式会社 Diamond-coated rotation cutting tool
US11878353B2 (en) 2017-09-29 2024-01-23 Mitsubishi Materials Corporation Diamond-coated rotary cutting tool
JP2019063904A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Diamond-coated rotary cutting tool
US11684981B2 (en) * 2018-03-29 2023-06-27 Ningbo Institute Of Materials Technology & Engineering. Chinese Academy Of Sciences Ultra-fine nanocrystalline diamond precision cutting tool and manufacturing method therefor
KR20210027441A (en) 2018-08-01 2021-03-10 고쿠리쓰다이가쿠호진 규슈다이가쿠 Diamond smoothing method
CN112513345A (en) * 2018-08-01 2021-03-16 国立大学法人九州大学 Diamond smoothing method
US11986905B2 (en) 2018-08-01 2024-05-21 Kyushu University, National University Corporation Diamond smoothing method
CN109848472B (en) * 2019-02-14 2020-06-05 合肥鼎鑫模具有限公司 Blade for vertical profiling milling machine and production process thereof
CN109848472A (en) * 2019-02-14 2019-06-07 合肥鼎鑫模具有限公司 A kind of vertical type square milling machine blade and its production technology
CN116605925A (en) * 2023-07-17 2023-08-18 四川新能源汽车创新中心有限公司 Positive electrode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5590334B2 (en) 2014-09-17

Similar Documents

Publication Publication Date Title
JP5590334B2 (en) Diamond coated cutting tool
JP5590330B2 (en) Diamond coated cutting tool
JP5499650B2 (en) Diamond-coated tools with excellent peeling and wear resistance
JP5124790B2 (en) Diamond coated cutting tool
JP5176621B2 (en) Amorphous carbon coated tool
JP2019063904A (en) Diamond-coated rotary cutting tool
JP5488873B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
CN102626853B (en) Diamond-coated cutting element
CN112384318A (en) Diamond coated tool
JP5163879B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2011104721A (en) Diamond coating tool showing excellent anti-defective property and abrasion resistance
JP5292900B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP5858363B2 (en) Substrate for cutting tool and surface-coated cutting tool including the same
WO2019065678A1 (en) Surface-coated cutting tool having excellent adhesion-induced chipping resistance
JP2011131347A (en) Diamond-coated cemented carbide cutting tool
JP2019093521A (en) Cutting tool made by diamond-coated hard metal
WO2014200005A1 (en) Coated cutting tool
JP2015182154A (en) Surface-coated cutting tool having superior chipping resistance
JP5708075B2 (en) Diamond-coated end mill with excellent peel resistance and wear resistance
JP5499751B2 (en) Diamond-coated tools with excellent fracture resistance
JP5246597B2 (en) Diamond coated tools
JP5163878B2 (en) Diamond coated tool with excellent fracture resistance and wear resistance
JP2011121142A (en) Diamond-coated cutting tool
JP2019181574A (en) Diamond-coated hard metal-made cutting tool
JP5402543B2 (en) Diamond-coated tool with excellent fracture and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140715

R150 Certificate of patent or registration of utility model

Ref document number: 5590334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees