JP2015182154A - Surface-coated cutting tool having superior chipping resistance - Google Patents

Surface-coated cutting tool having superior chipping resistance Download PDF

Info

Publication number
JP2015182154A
JP2015182154A JP2014059159A JP2014059159A JP2015182154A JP 2015182154 A JP2015182154 A JP 2015182154A JP 2014059159 A JP2014059159 A JP 2014059159A JP 2014059159 A JP2014059159 A JP 2014059159A JP 2015182154 A JP2015182154 A JP 2015182154A
Authority
JP
Japan
Prior art keywords
layer
distribution ratio
cutting edge
constituent
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014059159A
Other languages
Japanese (ja)
Other versions
JP6191873B2 (en
Inventor
西田 真
Makoto Nishida
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014059159A priority Critical patent/JP6191873B2/en
Publication of JP2015182154A publication Critical patent/JP2015182154A/en
Application granted granted Critical
Publication of JP6191873B2 publication Critical patent/JP6191873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool that exhibits a superior chipping resistance in the heavy interrupted cutting having a long interval of interruption and a heavy impact applied on a cutting edge tip.SOLUTION: A surface-coated cutting tool that exhibits a superior chipping resistance in the heavy interrupted cutting is formed by covering (a) a Ti compound layer containing at least one TiCN layer as a lower layer, and (b) an aluminum oxide layer as an upper layer, on the surface of a tool substrate constituted of a WC-based cemented carbide or a TiCN-based cermet, as a hard coating layer. The surface-coated cutting tool is constituted of the TiCN layer showing an atom sharing lattice point distribution in which a distribution ratio of Σ3 is 5-13% in a cutting edge ridge line part, and the distribution ratio of Σ3 accounts for 50% or more in the region other than the cutting edge ridge line part, when finding the atom sharing lattice point distribution by using a field emission scanning electron microscope and an electron backscattering diffraction image device about the TiCN layer.

Description

この発明は、 切れ刃に強い衝撃が加わる強断続加工を行った場合にも、硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent fracture resistance even when a hard interrupted process in which a strong impact is applied to the cutting edge.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、いずれも化学蒸着形成された、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの2層以上からなり、かつ3〜20μmの合計平均層厚を有するTi化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム(以下、Alで示す)層、
以上(a)および(b)で構成された硬質被覆層を形成してなる被覆工具が知られており、この被覆工具が、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられていることも知られている。
そして、上記の被覆工具において、これを切れ刃に衝撃がかかる断続切削加工に供した場合に、チッピング、欠損等の異常損傷が発生することを防止するために、いくつかの提案がなされている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) Ti carbide (hereinafter referred to as TiC) layer, nitride (hereinafter also referred to as TiN) layer, carbonitride (hereinafter referred to as TiCN) layer formed by chemical vapor deposition of the lower layers. A Ti compound layer consisting of two or more of a carbon oxide (hereinafter referred to as TiCO) layer and a carbonitride oxide (hereinafter referred to as TiCNO) layer and having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer having an average layer thickness of 1 to 15 μm, in which the upper layer is formed by chemical vapor deposition;
A coated tool formed by forming a hard coating layer composed of the above (a) and (b) is known, and this coated tool is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is also known that
In the above-mentioned coated tool, some proposals have been made to prevent occurrence of abnormal damage such as chipping and chipping when this is subjected to intermittent cutting processing in which impact is applied to the cutting edge. .

例えば、特許文献1には、WC基超硬合金またはTiCN基サーメットからなる工具基体の表面に、3〜20μmの合計平均層厚を有するTi化合物層を下部層として、また、1〜15μmの平均層厚を有するAl層を上部層として被覆形成するとともに、Ti化合物層のΣ3の分布割合を従来の30%以下から60〜80%まで高めることで、高温強度を向上させ、その結果、短いピッチで繰り返し機械的衝撃の加わる鋼や鋳鉄の高速断続切削で耐チッピング性が向上させることが提案されている。 For example, in Patent Document 1, a Ti compound layer having a total average layer thickness of 3 to 20 μm as a lower layer on the surface of a tool base made of a WC-based cemented carbide or TiCN-based cermet, and an average of 1 to 15 μm As a result, the Al 2 O 3 layer having a layer thickness is formed as an upper layer, and the distribution ratio of Σ3 in the Ti compound layer is increased from 30% or less to 60 to 80%, thereby improving the high temperature strength. It has been proposed that chipping resistance is improved by high-speed intermittent cutting of steel or cast iron that is repeatedly subjected to mechanical impact at a short pitch.

特開2006−75976号公報JP 2006-75976 A

上記特許文献1に示される従来被覆工具は、これを、通常の高速断続切削条件で用いた場合には、所望の耐チッピング性を発揮するが、例えば、これを船舶用大型クランクスローの加工に代表される様に、断続の間隔が広く、すなわち切れ刃の温度上昇は抑えられるものの、切れ刃に加わる衝撃が極めて強い強断続加工においては、切れ刃先端は欠損しやすく、十分な耐チッピング性を備えるとはいえなかった。   The conventional coated tool disclosed in Patent Document 1 exhibits desired chipping resistance when used under normal high-speed interrupted cutting conditions. For example, this can be used for processing a large crank throw for ships. As shown, the interval between interrupts is wide, that is, the temperature rise of the cutting edge can be suppressed, but the tip of the cutting edge is likely to be chipped and the chipping resistance is sufficient in the strong interrupting process where the impact applied to the cutting edge is extremely strong. It could not be said that it was equipped with.

そこで、本発明者は、断続の間隔が広く、切れ刃に加わる衝撃が極めて強い強断続切削加工条件下において使用した場合でも、切れ刃がすぐれた耐チッピング性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、次のような知見を得た。   Therefore, the present inventor should develop a coated tool that exhibits excellent chipping resistance even when used under severe interrupted cutting conditions where the interval between interrupts is wide and the impact applied to the cutting edge is extremely strong. As a result of earnest research, the following findings were obtained.

本発明者らは、特許文献1に示される従来被覆工具を強断続切削加工に使用した場合について、チッピング発生のメカニズムを検討したところ、
(1)断続の間隔が長く切れ刃先端に強い衝撃が加わる強断続加工において、被覆工具の切れ刃先端部における硬質被覆層の下部層のΣ3の分布割合が5〜13%を満たす場合には、切れ刃稜線部の硬質被覆層に生じる亀裂の発生が促され亀裂本数が増加するが、これに伴い、破壊にまで至る応力集中が分散されるために、チッピング、欠損に至る深い亀裂が発生しない。
そのため、切れ刃先端部のチッピング、欠損の発生が抑制され、耐チッピング性が向上することを見出したのである。
When the present inventors examined the mechanism of chipping occurrence when using the conventional coated tool shown in Patent Document 1 for strongly interrupted cutting,
(1) When the intermittent interval is long and a strong interrupting process in which a strong impact is applied to the cutting edge tip, when the distribution ratio of Σ3 in the lower layer of the hard coating layer at the cutting edge tip portion of the coated tool satisfies 5 to 13% , Cracks generated in the hard coating layer at the edge of the cutting edge are promoted and the number of cracks increases, but with this, the stress concentration leading to fracture is dispersed, so deep cracks leading to chipping and defects occur do not do.
Therefore, it has been found that chipping and chipping at the tip of the cutting edge are suppressed and chipping resistance is improved.

さらに、本発明者らは、
(2)被覆工具におけるΣ3分布割合が、例えば上記(1)と同様に5〜13%の場合には、逃げ面摩耗が生じる領域において被削材とのこすれによって強いせん断応力が作用し、硬質被覆層を構成する結晶粒の脱落に伴うすき取り摩耗が促進されて寿命が短くなるが、Σ3分布割合が22%以上の値である場合には耐摩耗性の低下は少なく、特に、Σ3分布割合が50%以上である場合には、その高い高温強度により結晶粒の脱落発生が抑制され、すぐれた耐摩耗性を発揮するようになることを見出したのである。
Furthermore, the inventors have
(2) When the Σ3 distribution ratio in the coated tool is, for example, 5 to 13% as in the above (1), a strong shear stress acts by rubbing with the work material in a region where flank wear occurs, and the hard coating The scraping wear accompanying the drop of crystal grains constituting the layer is promoted and the life is shortened. However, when the Σ3 distribution ratio is 22% or more, the wear resistance is less deteriorated, and in particular, the Σ3 distribution ratio. It has been found that when it is 50% or more, the high-temperature strength suppresses the occurrence of crystal grains falling and exhibits excellent wear resistance.

つまり、本発明者は、被覆工具の切れ刃稜線部の硬質被覆層の下部層のΣ3の分布割合を5〜13%と定め、一方、切れ刃稜線部以外の領域におけるΣ3の分布割合を50%以上とすることによって、断続の間隔が長く切れ刃先端には強い衝撃が加わる強断続加工において、耐摩耗性の低下を招くことなく、すぐれた耐チッピング性を発揮することを見出したのである。   That is, the present inventor determines the distribution ratio of Σ3 in the lower layer of the hard coating layer of the cutting edge ridge line portion of the coated tool as 5 to 13%, while the distribution ratio of Σ3 in the region other than the cutting edge ridge line portion is 50%. It has been found that, by setting the ratio to at least%, the interrupting interval is long and a strong impact is applied to the tip of the cutting edge, so that it exhibits excellent chipping resistance without causing a decrease in wear resistance. .

本発明は、上記知見に基づいてなされたものであって、
「炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、チタンの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ、その内の1層はチタンの炭窒化物層からなり、3〜20μmの合計平均層厚を有するチタン化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆切削工具において、
上記(a)のチタン化合物層の内のチタンの炭窒化物層について、電界放出型走査電子顕微鏡を用い、縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、基体表面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の点からN=28を上限とする)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの単位形態の分布割合を、前記Σ3〜Σ29の単位形態全体の合計分布割合に占める割合で示す構成原子共有格子点分布グラフにおいて、切れ刃稜線部では前記Σ3の分布割合が前記単位形態全体の合計分布割合の5〜13%を示し、切れ刃稜線部以外の領域では前記Σ3の分布割合が前記単位形態全体の合計分布割合の50%以上を占める構成原子共有格子点分布グラフを示すチタンの炭窒化物層、
で構成したことを特徴とする強断続加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“On the surface of the tool base made of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(A) the lower layer is composed of two or more of titanium carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer, all formed by chemical vapor deposition; and One of them consists of a titanium carbonitride layer, a titanium compound layer having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
In the surface-coated cutting tool formed with the hard coating layer composed of (a) and (b) above,
For the titanium carbonitride layer in the titanium compound layer of (a) above, using a field emission scanning electron microscope, each crystal grain present within the measurement range of the longitudinal section is irradiated with an electron beam, and electron backscattering is performed. Using a diffraction image apparatus, the inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface at predetermined intervals of 0.1 μm / step In this case, the crystal grains have a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points, respectively. And calculating a distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains, and the constituent Exists between atomic shared lattice points The number of lattice points that do not share the constituent atoms is determined for each N (in this case, N is an even number of 2 or more in the crystal structure of the NaCl type cubic crystal, but N = 28 is the upper limit in terms of distribution frequency). The distribution ratio of each constituent atomic shared lattice point form (unit form) represented by ΣN + 1 is calculated, and the distribution ratio of each unit form of Σ3 to Σ29 is changed to the total distribution ratio of the whole unit form of Σ3 to Σ29. In the constituent atom shared lattice point distribution graph represented by the proportion occupied, the distribution ratio of Σ3 indicates 5 to 13% of the total distribution ratio of the whole unit shape in the cutting edge ridge line portion, and the Σ3 in the region other than the cutting edge ridge line portion. A titanium carbonitride layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of occupies 50% or more of the total distribution ratio of the whole unit form,
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in a strong intermittent process characterized by comprising "
It is characterized by.

つぎに、この発明の被覆工具の硬質被覆層について、以下に説明する。
(a)Ti化合物層(下部層)
Ti化合物層は、自体が高温強度を有し、これの存在によって硬質被覆層が高温強度を具備するようになるほか、工具基体と上部層であるAl層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用をもつが、その合計平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その合計平均層厚が20μmを越えると、切れ刃先端に強い衝撃がかかる強断続切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚を3〜20μmと定めた。
Next, the hard coating layer of the coated tool of the present invention will be described below.
(A) Ti compound layer (lower layer)
The Ti compound layer itself has high-temperature strength, and the presence of the Ti compound layer makes the hard coating layer have high-temperature strength, and firmly adheres to both the tool base and the upper Al 2 O 3 layer. Therefore, it has an effect of improving the adhesion of the hard coating layer to the tool base, but if the total average layer thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exhibited, while the total average layer thickness is If it exceeds 20 μm, it becomes easy to cause thermoplastic deformation by strong intermittent cutting in which a strong impact is applied to the tip of the cutting edge, and this causes uneven wear. Therefore, the total average layer thickness is set to 3 to 20 μm.

(b)下部層の炭窒化チタン層
この発明においては、上記下部層のうちのチタンの炭窒化物層(以下、炭窒化チタン層,TiCN層ともいう))について構成原子共有格子点分布グラフを求めた場合、切れ刃稜線部におけるΣ3の分布割合は、Σ3〜Σ29のそれぞれの単位形態の合計分布割合の5〜13%を示し、一方、切れ刃稜線部以外の領域におけるΣ3の分布割合は、Σ3〜Σ29のそれぞれの単位形態の合計分布割合の50%以上を占めることが重要である。
切れ刃稜線部におけるΣ3の分布割合が5%未満の場合には、切れ刃稜線部の下部層の炭窒化チタン層に発生する亀裂本数が過度に増加するため、下部層自体が脆弱化し、一方、切れ刃稜線部におけるΣ3の分布割合が13%を超える場合には、切れ刃稜線部における亀裂形成による応力集中緩和効果が低下し、チッピング、欠損を発生し易くなるので、切れ刃稜線部におけるΣ3の分布割合は5〜13%と定めた。
ここで、本発明でいう切れ刃稜線部とは、超硬合金母材の逃げ面およびすくい面が交差する稜線においてホーニング加工が施された領域(図1および図2のE−Fの領域)上に被覆された硬質被覆層表面(図1および図2のA−Bの領域)のことを言い、また、切れ刃稜線部の炭窒化チタン層(以下、切れ刃稜線部におけるΣ3の分布割合が5〜13%である炭窒化チタン層を、「改質TiCN層」で示す。)とは、図1および図2のC−D−F−Eで囲まれた領域の炭窒化チタン層を言う。
なお、以下では、下部層のうちの炭窒化チタン層を「TiCN層」で示し、このうち、特に、切れ刃稜線部の炭窒化チタン層を、「改質TiCN層」で示す。
また、切れ刃稜線部以外の領域における下部層の炭窒化チタン層のΣ3の分布割合が、22%以上になると、すき取り摩耗に対する耐摩耗性改善効果が徐々にあらわれ、Σ3分布割合が50%以上である場合には、その高い高温強度により結晶粒の脱落発生が抑制され、すぐれた耐摩耗性を発揮するようになることから、切れ刃稜線部以外の領域における下部層の炭窒化チタン層のΣ3の分布割合は50%以上と定めた。
(B) Titanium carbonitride layer of lower layer In the present invention, a constituent atomic shared lattice point distribution graph is shown for the titanium carbonitride layer (hereinafter also referred to as titanium carbonitride layer or TiCN layer) of the lower layer. When obtained, the distribution ratio of Σ3 in the cutting edge ridge line portion shows 5 to 13% of the total distribution ratio of each unit form of Σ3 to Σ29, while the distribution ratio of Σ3 in the region other than the cutting edge ridge line portion is It is important to occupy 50% or more of the total distribution ratio of each unit form of Σ3 to Σ29.
When the distribution ratio of Σ3 in the cutting edge ridge line portion is less than 5%, the number of cracks generated in the titanium carbonitride layer in the lower layer of the cutting edge ridge line portion increases excessively. In the case where the distribution ratio of Σ3 in the cutting edge ridge line portion exceeds 13%, the stress concentration relaxation effect due to crack formation in the cutting edge ridge line portion is reduced, and chipping and chipping are likely to occur. The distribution ratio of Σ3 was determined to be 5 to 13%.
Here, the cutting edge ridge line portion referred to in the present invention is a region where the honing process is performed on the ridge line where the flank face and the rake face of the cemented carbide base material intersect (area EF in FIGS. 1 and 2). This refers to the surface of the hard coating layer coated thereon (area AB in FIGS. 1 and 2), and also the titanium carbonitride layer at the cutting edge ridge line (hereinafter referred to as Σ3 distribution ratio at the cutting edge ridge line) The titanium carbonitride layer having a content of 5 to 13% is indicated by “modified TiCN layer”.) The titanium carbonitride layer in the region surrounded by CDFE in FIG. 1 and FIG. say.
In the following, the titanium carbonitride layer in the lower layer is indicated by “TiCN layer”, and among these, the titanium carbonitride layer at the cutting edge ridge line portion is indicated by “modified TiCN layer”.
Further, when the distribution ratio of Σ3 in the lower layer of the titanium carbonitride layer in the region other than the cutting edge ridge line portion is 22% or more, the effect of improving the wear resistance against scraping wear gradually appears, and the Σ3 distribution ratio is 50%. If this is the case, the high high-temperature strength suppresses the occurrence of crystal grains falling and exhibits excellent wear resistance, so that the lower layer of the titanium carbonitride layer in the region other than the cutting edge ridge The distribution ratio of Σ3 was determined to be 50% or more.

ここで、構成原子共有格子点分布グラフは、この出願前から既によく知られているように、電界放出型走査電子顕微鏡を用い、例えば、硬質被覆層の層厚方向に平行な縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し(この場合、前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有する炭窒化チタン結晶粒です)、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の観点からN=28を上限とします)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの単位形態の分布割合を、前記Σ3〜Σ29の単位形態全体の合計分布割合に占める割合で示す構成原子共有格子点分布グラフを作成する。   Here, as already well known from this application, the constituent atomic shared lattice distribution graph is measured using a field emission scanning electron microscope, for example, a longitudinal section parallel to the layer thickness direction of the hard coating layer. Each crystal grain existing in the range is irradiated with an electron beam, and an electron backscatter diffraction image apparatus is used to form a predetermined region at an interval of 0.1 μm / step with respect to the normal line of the surface polished surface. The inclination angle formed by the normal lines of the (001) plane and the (011) plane that are crystal planes is measured (in this case, the crystal grains are NaCl in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points, respectively. Titanium carbonitride grains having a type face centered cubic crystal structure), and based on the measured tilt angle obtained as a result, each of the constituent atoms is interfacially connected to each other at the interface between adjacent grains. One constituent atom between The distribution of shared lattice points (constituent atom shared lattice points) is calculated, and the number N of lattice points that do not share constituent atoms existing between the constituent atomic shared lattice points (in this case, N is a NaCl-type cubic crystal) (It is an even number of 2 or more in the structure, but N = 28 is the upper limit from the viewpoint of distribution frequency.) Calculate the distribution ratio of each constituent atom shared lattice point form (unit form) represented by ΣN + 1 , Σ3 to Σ29, a constituent atomic shared lattice point distribution graph showing the distribution ratio of the unit forms in the total distribution ratio of the whole unit forms of Σ3 to Σ29 is created.

また、上記特定割合のΣ3を有するTiCN層、即ち、切れ刃稜線部ではΣ3の分布割合が5〜13%の改質TiCN層、一方、切れ刃稜線部以外の領域においてはΣ3の分布割合が50%以上であるTiCN層は、例えば、以下の方法によって形成することができる。
まず超硬合金製母材において、粒径4〜6μmのWC粉末を使用し、またブラシ、弾性砥石、ウェットブラスト等の方法により、その表面粗さがRa<0.05μmとなる様に、切れ刃にホーニング処理を施すとともに、切れ刃におけるホーニング部以外の箇所は加工がなされていない焼肌の状態、すなわち超硬合金製母材表面の炭化タングステン粒子に対して研磨等の加工が行われておらず、その表面粗さはRa>0.4μmの状態とする。
次に、工具基体表面に、通常の化学蒸着によって、チタンの炭化物層、窒化物層、炭酸化物層、炭窒酸化物層の少なくともいずれかを蒸着形成した後(なお、これらを形成しなくても可)、
≪第1段階≫
反応ガス組成(容量%):TiCl:2〜10%、CHCN:0.05〜0.3%、Ar:5〜15%、N:5〜15%、H:残り、
反応雰囲気温度:780〜820 ℃、
反応雰囲気圧力:5〜10 kPa、
反応時間:30 分、
の低温条件で、第1段階の蒸着を行い、次いで、
≪第2段階≫
反応ガス組成(容量%):TiCl:0.1〜0.8%、CHCN:0.05〜0.3%、Ar:10〜30%、H:残り、
反応雰囲気温度:930〜1000 ℃、
反応雰囲気圧力:6〜20 kPa、
反応時間:(所定の層厚になるまで継続)、
の条件で第2段階の蒸着を行うことによって、上記特定割合のΣ3を有するTiCN層を形成することができる。
In addition, the TiCN layer having the specific ratio Σ3, that is, the modified TiCN layer in which the distribution ratio of Σ3 is 5 to 13% in the cutting edge ridge portion, while the distribution ratio of Σ3 is in the region other than the cutting edge ridge line portion. The TiCN layer that is 50% or more can be formed, for example, by the following method.
First, in the base material made of cemented carbide, WC powder having a particle size of 4 to 6 μm is used, and by a method such as brush, elastic grindstone, wet blasting, etc., the surface roughness is cut so that Ra <0.05 μm. The blade is subjected to honing treatment, and the portions other than the honing portion of the cutting blade are not processed, that is, the tungsten carbide particles on the surface of the base material made of cemented carbide are subjected to processing such as polishing. The surface roughness is Ra> 0.4 μm.
Next, after depositing and forming at least one of a titanium carbide layer, a nitride layer, a carbonate layer, and a carbonitride oxide layer on the surface of the tool base by ordinary chemical vapor deposition (there is no need to form these) Is also possible)
≪First stage≫
Reaction gas composition (volume%): TiCl 4: 2~10% , CH 3 CN: 0.05~0.3%, Ar: 5~15%, N 2: 5~15%, H 2: remainder,
Reaction atmosphere temperature: 780 to 820 ° C.
Reaction atmosphere pressure: 5 to 10 kPa,
Reaction time: 30 minutes,
Under the low temperature conditions of the first stage,
≪Second stage≫
Reaction gas composition (volume%): TiCl 4: 0.1~0.8% , CH 3 CN: 0.05~0.3%, Ar: 10~30%, H 2: remainder,
Reaction atmosphere temperature: 930 to 1000 ° C.,
Reaction atmosphere pressure: 6-20 kPa,
Reaction time: (Continues until a predetermined layer thickness),
The TiCN layer having the specific ratio Σ3 can be formed by performing the second-stage vapor deposition under the above conditions.

(c)Al層(上部層)
Al層は、すぐれた高温硬さと耐熱性を有し、硬質被覆層の耐摩耗性向上に寄与するが、その平均層厚が1μm未満では、硬質被覆層に十分な耐摩耗性を発揮せしめることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(C) Al 2 O 3 layer (upper layer)
The Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the wear resistance of the hard coating layer. However, if the average layer thickness is less than 1 μm, the hard coating layer has sufficient wear resistance. On the other hand, if the average layer thickness exceeds 15 μm and becomes too thick, chipping tends to occur. Therefore, the average layer thickness is set to 1 to 15 μm.

なお、切削工具の使用前後の識別を目的として、黄金色の色調を有するTiN層を、必要に応じて蒸着形成してもよいが、この場合の平均層厚は0.1〜1μmでよく、これは0.1μm未満では、十分な識別効果が得られず、一方前記TiN層による前記識別効果は1μmまでの平均層厚で十分であるという理由からである。   In addition, for the purpose of identification before and after the use of the cutting tool, a TiN layer having a golden color tone may be vapor-deposited as necessary, but the average layer thickness in this case may be 0.1 to 1 μm, This is because if the thickness is less than 0.1 μm, a sufficient discrimination effect cannot be obtained, while the discrimination effect by the TiN layer is sufficient with an average layer thickness of up to 1 μm.

この発明の被覆工具は、断続の間隔が長く切れ刃先端に強い衝撃が加わる鋼や鋳鉄などの強断続加工において、硬質被覆層の下部層のうちの1層であるΣ3の分布割合が5〜13%の改質TiCN層がその切れ刃稜線部におけるチッピング、欠損の発生を抑制するとともに、切れ刃稜線部以外の領域におけるΣ3の分布割合が50%以上であるTiCN層がすぐれた高温強度を有し、結晶粒の脱落発生を抑制することから、チッピング、欠損の発生もなくすぐれた耐摩耗性を長期の使用にわたって発揮するものである。   In the coated tool of the present invention, the distribution ratio of Σ3, which is one of the lower layers of the hard coating layer, is 5 to 5 in a strong intermittent process such as steel or cast iron in which the intermittent interval is long and a strong impact is applied to the tip of the cutting edge. The 13% modified TiCN layer suppresses the occurrence of chipping and defects at the cutting edge ridge, and the TiCN layer with a distribution ratio of Σ3 in the region other than the cutting edge ridge has an excellent high temperature strength. In addition, since it suppresses the occurrence of crystal grains falling, it exhibits excellent wear resistance over a long period of use without the occurrence of chipping and defects.

本発明の一つの実施態様の被覆工具の縦断面の模式図を示し、C−D−F−Eで囲まれた領域が、切れ刃稜線部の下部層の改質TiCN層であることを示す。The schematic diagram of the longitudinal section of the covering tool of one embodiment of the present invention is shown, and it shows that the area surrounded by CDFE is the modified TiCN layer of the lower layer of the cutting edge ridge line part. . 本発明の他の実施の態様の被覆工具の縦断面の模式図を示し、C−D−F−Eで囲まれた領域が、切れ刃稜線部の下部層の改質TiCN層であることを示す。The schematic diagram of the longitudinal cross-section of the coating tool of the other embodiment of the present invention is shown, and the region surrounded by CDFE is the modified TiCN layer of the lower layer of the cutting edge ridge line portion. Show. 本発明被覆工具の切れ刃稜線部の下部層の改質TiCN層の構成原子共有格子点分布グラフの一例を示す。An example of the constituent atom shared lattice point distribution graph of the modified TiCN layer of the lower layer of the cutting edge ridge line portion of the coated tool of the present invention is shown. 本発明被覆工具の切れ刃稜線部以外の領域である逃げ面の下部層のTiCN層の構成原子共有格子点分布グラフの一例を示す。An example of the constituent atomic shared lattice point distribution graph of the TiCN layer of the lower layer of the flank which is an area | region other than the cutting edge ridgeline part of this invention coated tool is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも4〜6μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切れ刃部にR:0.07mmのホーニング加工を施し、ホーニング部表面粗さをRa<0.05μmとし、ホーニング部以外は焼肌のまま(即ち、Ra>0.4μm)とすることによりISO・SNMG120412に規定するインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 4 to 6 μm are prepared. The raw material powder is blended in the blending composition shown in Table 1, added with wax, ball mill mixed in acetone for 24 hours, dried under reduced pressure, and press-molded into a green compact of a predetermined shape at a pressure of 98 MPa. The green compact is sintered in a vacuum of 5 Pa at a predetermined temperature within the range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Insulator specified in ISO / SNMG120212 by setting the surface roughness of the honing part to Ra <0.05 μm and leaving the non-honed part as burned skin (that is, Ra> 0.4 μm). The WC-based cemented carbide tool substrate A~C having bets shape was produced, respectively.

つぎに、これらの工具基体A〜Cの表面に、通常の化学蒸着装置を用い、硬質被覆層の下部層として、表2に示される条件で、改質TiCN層以外のTi化合物層を、表4に示される目標層厚になるまで蒸着形成した。
また、改質TiCN層については、表3に示す条件で表4に示される目標層厚になるまで蒸着形成した。
Next, a Ti compound layer other than the modified TiCN layer is formed on the surface of these tool bases A to C under the conditions shown in Table 2 as a lower layer of the hard coating layer using a normal chemical vapor deposition apparatus. Vapor deposition was performed until the target layer thickness shown in FIG.
Further, the modified TiCN layer was formed by vapor deposition until the target layer thickness shown in Table 4 was reached under the conditions shown in Table 3.

次に、表3に示される条件にて、上部層としてのAl層を表5に示される目標層厚になるまで蒸着形成することにより表5に示す本発明被覆工具1〜13をそれぞれ製造した。 Next, under the conditions shown in Table 3, the present invention coated tools 1 to 13 shown in Table 5 were formed by vapor-depositing an Al 2 O 3 layer as an upper layer until the target layer thickness shown in Table 5 was reached. Each was manufactured.

また、比較の目的で、硬質被覆層の下部層として、表2に示される条件で、改質TiCN層以外のTi化合物層を、表7に示される目標層厚になるまで蒸着形成した。
また、TiCN層については、表6に示す条件で表7に示される目標層厚になるまで蒸着形成した。
さらに、表2に示される条件にて、上部層としてのAl層を表8に示される目標層厚になるまで蒸着形成することにより表8に示す比較例被覆工具1〜13をそれぞれ製造した。
For comparison purposes, a Ti compound layer other than the modified TiCN layer was deposited as a lower layer of the hard coating layer under the conditions shown in Table 2 until the target layer thickness shown in Table 7 was reached.
Further, the TiCN layer was formed by vapor deposition until the target layer thickness shown in Table 7 was reached under the conditions shown in Table 6.
Further, under the conditions shown in Table 2, each of the comparative example coated tools 1 to 13 shown in Table 8 was formed by vapor-depositing an Al 2 O 3 layer as an upper layer until the target layer thickness shown in Table 8 was reached. Manufactured.

次に、上記の本発明被覆工具と比較例被覆工具の切れ刃稜線部におけるTiCN層と切れ刃稜線部以外の領域(具体的には、逃げ面)におけるTiCN層について、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
即ち、上記構成原子共有格子点分布グラフは、上記の切れ刃稜線と逃げ面の縦断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記表面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記表面研磨面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(NはNaCl型面心立方晶の結晶構造上2以上の偶数となる)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体(ただし、頻度の関係で上限値をN=28とする)に占める分布割合を求めることにより作成した。
Next, a field emission scanning electron microscope is used for the TiCN layer in the cutting edge ridge line portion of the present invention coated tool and the comparative example coated tool and the TiCN layer in the region other than the cutting edge ridge line portion (specifically, the flank). Was used to create the constituent atom shared lattice point distribution graphs.
That is, the constituent atomic shared lattice point distribution graph is set in a lens barrel of a field emission scanning electron microscope in a state where the cutting edge ridge line and the longitudinal section of the flank face are polished surfaces, and the polished surface has 70 An electron beam having an acceleration voltage of 15 kV at an incident angle of 15 degrees is irradiated with an irradiation current of 1 nA on each crystal grain existing in the measurement range of the surface polished surface, and an electron backscatter diffraction image apparatus is used to measure 30 × 50 μm. The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, is measured with respect to the normal line of the surface polished surface at an interval of 0.1 μm / step. Based on the measurement inclination angle obtained as a result, lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains. ) Distribution and the constituent atomic shared lattice When a constituent atom shared lattice point form in which there are N lattice points that do not share constituent atoms in between (N is an even number of 2 or more in the crystal structure of the NaCl type face centered cubic crystal) is expressed as ΣN + 1, each ΣN + 1 Is calculated by calculating the distribution ratio of ΣN + 1 in the whole (however, the upper limit value is N = 28 in relation to frequency).

この結果得られた、切れ刃稜線部のTiCN層におけるΣ3の分布割合と切れ刃稜線部以外の領域(逃げ面)のTiCN層におけるΣ3の分布割合を、表5、表8に示した。   Tables 5 and 8 show the distribution ratio of Σ3 in the TiCN layer of the cutting edge ridge line and the distribution ratio of Σ3 in the TiCN layer in the region (flank) other than the cutting edge ridge line obtained as a result.

表5、表8にそれぞれ示される通り、本発明被覆工具の切れ刃稜線部における改質TiCN層は、いずれもΣ3の占める分布割合が5〜13%の範囲内であり、また、切れ刃稜線部以外の領域におけるTiCN層のΣ3の分布割合は、いずれも50%以上であった。これに対して、比較例被覆工具のTiCN層は、切れ刃稜線部におけるΣ3の分布割合が5〜13%であって、かつ、切れ刃稜線部以外の領域におけるΣ3の分布割合が50%以上となるものはなかった。
なお、図3に、本発明被覆工具の切れ刃稜線部における改質TiCN層について求めた構成原子共有格子点分布グラフの一例を示し、図4に、本発明被覆工具の逃げ面(切れ刃稜線部以外の領域)におけるTiCN層について求めた構成原子共有格子点分布グラフの一例を示す。
As shown in Table 5 and Table 8, respectively, the modified TiCN layer in the cutting edge ridge portion of the coated tool of the present invention has a distribution ratio of Σ3 in the range of 5 to 13%, and the cutting edge ridge line The distribution ratio of Σ3 of the TiCN layer in the region other than the part was 50% or more. In contrast, in the TiCN layer of the comparative coated tool, the distribution ratio of Σ3 in the cutting edge ridge line portion is 5 to 13%, and the distribution ratio of Σ3 in the region other than the cutting edge ridge line portion is 50% or more. There was nothing to become.
FIG. 3 shows an example of a constituent atomic shared lattice point distribution graph obtained for the modified TiCN layer in the cutting edge ridge portion of the coated tool of the present invention, and FIG. 4 shows the flank (cutting edge ridge line of the coated tool of the present invention. An example of the constituent atom shared lattice point distribution graph obtained for the TiCN layer in a region other than the region is shown.

さらに、上記の本発明被覆工具1〜13および比較例被覆工具1〜13について、これの硬質被覆層の構成層を電子線マイクロアナライザー(EPMA)およびオージェ分光分析装置を用いて観察(層の縦断面を観察)したところ、前者および後者とも目標組成と実質的に同じ組成を有するTi化合物層とAl層からなることを確認した。
また、これらの被覆工具の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(同じく縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Further, regarding the above-described coated tools 1 to 13 of the present invention and the coated tools 1 to 13 of the comparative examples, the constituent layers of the hard coating layer were observed using an electron beam microanalyzer (EPMA) and an Auger spectroscopic analyzer (longitudinal layer cutting). When the surface was observed), it was confirmed that both the former and the latter consisted of a Ti compound layer and an Al 2 O 3 layer having substantially the same composition as the target composition.
Moreover, when the thickness of the constituent layer of the hard coating layer of these coated tools was measured using a scanning electron microscope (similarly longitudinal section measurement), the average layer thickness (5 The average value of point measurement) was shown.









つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具1〜13および比較例被覆工具1〜13について、
被削材:JIS・SC450、
切削速度:150m/min、
切り込み:2.5mm、
送り:0.5mm/rev、
加工時間:10分
の条件(切削条件A)での炭素鋼鋳鋼品の乾式端面断続切削試験、
被削材:JIS・SCMnCr2B、
切削速度:110m/min、
切り込み:2.0mm、
送り:0.47mm/rev、
加工時間:10分
の条件(切削条件B)でのマンガンクロム鋼鋳鋼品の乾式端面断続切削試験、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定するとともに、切れ刃のチッピング、欠損の有無を観察した。
この測定結果を表9に示した。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 1 to 13 and the comparative coated tools 1 to 13 are as follows.
Work material: JIS / SC450,
Cutting speed: 150 m / min,
Incision: 2.5mm,
Feed: 0.5mm / rev,
Machining time: Dry end face intermittent cutting test of carbon steel cast steel product under the condition of 10 minutes (cutting condition A),
Work material: JIS / SCMnCr2B,
Cutting speed: 110 m / min,
Cutting depth: 2.0 mm
Feed: 0.47mm / rev,
Processing time: Dry end face intermittent cutting test of manganese chrome steel cast steel product under the condition of 10 minutes (cutting condition B),
In each cutting test, the flank wear width of the cutting edge was measured, and the presence or absence of chipping and chipping of the cutting edge was observed.
The measurement results are shown in Table 9.


表5、8、9に示される結果から、本発明被覆工具は、いずれも、切れ刃稜線部における改質TiCN層のΣ3の分布割合は5〜13%の範囲内であり、また、切れ刃稜線部以外の領域におけるTiCN層のΣ3の分布割合は50%以上である構成原子共有格子点分布グラフを示し、断続の間隔が長く切れ刃先端に強い衝撃が加わる強断続加工に供した場合であっても、切れ刃先端部にチッピング、欠損の発生はなく、長期の使用にわたってすぐれた耐摩耗性を発揮する。
これに対して、比較例被覆工具は、チッピング発生あるいは逃げ面摩耗幅が寿命判定基準に達することにより、最大切削時間5分程度で工具寿命に至っており、本発明被覆工具に比して切削性能が劣ることは明らかである。
From the results shown in Tables 5, 8, and 9, all of the coated tools of the present invention have a distribution ratio of Σ3 of the modified TiCN layer in the cutting edge ridge line within a range of 5 to 13%. The distribution ratio of Σ3 of the TiCN layer in the region other than the ridge line portion is a constituent atom shared lattice point distribution graph in which the distribution ratio is 50% or more, and when the intermittent interval is long and a strong impact is applied to the edge of the cutting edge. Even when there is no chipping or chipping at the tip of the cutting edge, it exhibits excellent wear resistance over a long period of use.
On the other hand, the coated tool of the comparative example reaches the tool life in about 5 minutes at the maximum cutting time when the occurrence of chipping or the flank wear width reaches the life criterion, and the cutting performance compared with the coated tool of the present invention. Is clearly inferior.

上述のように、この発明の被覆工具は、強断続加工においてすぐれた切削性能を発揮するが、各種鋼や鋳鉄などの通常条件での連続切削や断続切削においても、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。




As described above, the coated tool of the present invention exhibits excellent cutting performance in strong interrupted machining, but excellent cutting over a long period of time in continuous cutting and interrupted cutting under normal conditions such as various steels and cast irons. Since it exhibits the performance, it can sufficiently satisfy the high performance of the cutting device, the labor saving and energy saving of the cutting work, and the cost reduction.




Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
(a)下部層が、いずれも化学蒸着形成された、チタンの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの2層以上からなり、かつ、その内の1層はチタンの炭窒化物層からなり、3〜20μmの合計平均層厚を有するチタン化合物層、
(b)上部層が、化学蒸着形成された、1〜15μmの平均層厚を有する酸化アルミニウム層、
以上(a)および(b)で構成された硬質被覆層を形成してなる表面被覆切削工具において、
上記(a)のチタン化合物層の内のチタンの炭窒化物層について、電界放出型走査電子顕微鏡を用い、縦断面の測定範囲内に存在する結晶粒個々に電子線を照射し、電子後方散乱回折像装置を用いて、所定領域を0.1μm/stepの間隔で、基体表面の法線に対する、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定し、この場合前記結晶粒は、格子点にTi、炭素、および窒素からなる構成原子がそれぞれ存在するNaCl型面心立方晶の結晶構造を有し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出すると共に、前記構成原子共有格子点間に存在する構成原子を共有しない格子点の数N(この場合、NはNaCl型立方晶の結晶構造上2以上の偶数となるが、分布頻度の点からN=28を上限とする)毎に定めたΣN+1で表される構成原子共有格子点形態(単位形態)のそれぞれの分布割合を算出し、Σ3〜Σ29のそれぞれの単位形態の分布割合を、前記Σ3〜Σ29の単位形態全体の合計分布割合に占める割合で示す構成原子共有格子点分布グラフにおいて、切れ刃稜線部では前記Σ3の分布割合が前記単位形態全体の合計分布割合の5〜13%を示し、切れ刃稜線部以外の領域では前記Σ3の分布割合が前記単位形態全体の合計分布割合の50%以上を占める構成原子共有格子点分布グラフを示すチタンの炭窒化物層、
で構成したことを特徴とする強断続加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具。


On the surface of the tool base composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) the lower layer is composed of two or more of titanium carbide layer, nitride layer, carbonitride layer, carbonate layer, and carbonitride oxide layer, all formed by chemical vapor deposition; and One of them consists of a titanium carbonitride layer, a titanium compound layer having a total average layer thickness of 3 to 20 μm,
(B) an aluminum oxide layer having an average layer thickness of 1 to 15 μm, wherein the upper layer is formed by chemical vapor deposition;
In the surface-coated cutting tool formed with the hard coating layer composed of (a) and (b) above,
For the titanium carbonitride layer in the titanium compound layer of (a) above, using a field emission scanning electron microscope, each crystal grain present within the measurement range of the longitudinal section is irradiated with an electron beam, and electron backscattering is performed. Using a diffraction image apparatus, the inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, with respect to the normal line of the substrate surface at predetermined intervals of 0.1 μm / step In this case, the crystal grains have a NaCl-type face-centered cubic crystal structure in which constituent atoms composed of Ti, carbon, and nitrogen are present at lattice points, respectively. And calculating a distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains, and the constituent Exists between atomic shared lattice points The number of lattice points that do not share the constituent atoms is determined for each N (in this case, N is an even number of 2 or more in the crystal structure of the NaCl type cubic crystal, but N = 28 is the upper limit in terms of distribution frequency). The distribution ratio of each constituent atomic shared lattice point form (unit form) represented by ΣN + 1 is calculated, and the distribution ratio of each unit form of Σ3 to Σ29 is changed to the total distribution ratio of the whole unit form of Σ3 to Σ29. In the constituent atom shared lattice point distribution graph represented by the proportion occupied, the distribution ratio of Σ3 indicates 5 to 13% of the total distribution ratio of the whole unit shape in the cutting edge ridge line portion, and the Σ3 in the region other than the cutting edge ridge line portion. A titanium carbonitride layer showing a constituent atom shared lattice point distribution graph in which the distribution ratio of occupies 50% or more of the total distribution ratio of the whole unit form,
A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in a strong intermittent process characterized by comprising


JP2014059159A 2014-03-20 2014-03-20 Surface coated cutting tool with excellent chipping resistance Active JP6191873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014059159A JP6191873B2 (en) 2014-03-20 2014-03-20 Surface coated cutting tool with excellent chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059159A JP6191873B2 (en) 2014-03-20 2014-03-20 Surface coated cutting tool with excellent chipping resistance

Publications (2)

Publication Number Publication Date
JP2015182154A true JP2015182154A (en) 2015-10-22
JP6191873B2 JP6191873B2 (en) 2017-09-06

Family

ID=54349308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059159A Active JP6191873B2 (en) 2014-03-20 2014-03-20 Surface coated cutting tool with excellent chipping resistance

Country Status (1)

Country Link
JP (1) JP6191873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058202A (en) * 2016-10-04 2018-04-12 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2020037150A (en) * 2018-09-04 2020-03-12 株式会社タンガロイ Coated cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225804A (en) * 1997-02-10 1998-08-25 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
JPH10310878A (en) * 1997-05-12 1998-11-24 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2010023151A (en) * 2008-07-17 2010-02-04 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance in high speed heavy cutting work
JP4518258B2 (en) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2012076155A (en) * 2010-09-30 2012-04-19 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer demonstrates superior chipping resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10225804A (en) * 1997-02-10 1998-08-25 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
JPH10310878A (en) * 1997-05-12 1998-11-24 Mitsubishi Materials Corp Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP4518258B2 (en) * 2004-08-11 2010-08-04 三菱マテリアル株式会社 A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2010023151A (en) * 2008-07-17 2010-02-04 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance in high speed heavy cutting work
JP2012076155A (en) * 2010-09-30 2012-04-19 Mitsubishi Materials Corp Surface-coated cutting tool in which hard coating layer demonstrates superior chipping resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058202A (en) * 2016-10-04 2018-04-12 三菱マテリアル株式会社 Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance
JP2020037150A (en) * 2018-09-04 2020-03-12 株式会社タンガロイ Coated cutting tool
US11007579B2 (en) 2018-09-04 2021-05-18 Tungaloy Corporation Coated cutting tool

Also Published As

Publication number Publication date
JP6191873B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP7063206B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6578935B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP6344040B2 (en) Surface-coated cutting tool with excellent chipping resistance
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2006198735A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4518259B2 (en) A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2017030076A (en) Surface-coated cutting tool with hard coated layer exhibiting superior chipping resistance
JP2016165789A (en) Surface-coated cutting tool allowing hard coated layer to exhibit superior chipping resistance and wear resistance
JP2018144224A (en) Surface-coated cutting tool
JP2018164960A (en) Coated cemented carbide tool with superior chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2018164961A (en) Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6191873B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP2019010707A (en) Surface-coated cutting tool of which hard coating layer exhibits excellent abrasion resistance and chipping resistance
JP7205709B2 (en) surface coated cutting tools
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP2020131424A (en) Surface-coated cutting tool
JP2008178943A (en) Surface covered cutting tool with hard covered layer displaying excellent abrasion resistance in intermittent high feeding cutting work
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4811787B2 (en) Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170726

R150 Certificate of patent or registration of utility model

Ref document number: 6191873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150