WO2014200005A1 - Coated cutting tool - Google Patents

Coated cutting tool Download PDF

Info

Publication number
WO2014200005A1
WO2014200005A1 PCT/JP2014/065415 JP2014065415W WO2014200005A1 WO 2014200005 A1 WO2014200005 A1 WO 2014200005A1 JP 2014065415 W JP2014065415 W JP 2014065415W WO 2014200005 A1 WO2014200005 A1 WO 2014200005A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard layer
layer
particle size
particles
hard
Prior art date
Application number
PCT/JP2014/065415
Other languages
French (fr)
Japanese (ja)
Inventor
正和 菊池
司 城地
Original Assignee
株式会社タンガロイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タンガロイ filed Critical 株式会社タンガロイ
Priority to JP2015522802A priority Critical patent/JP5983878B2/en
Publication of WO2014200005A1 publication Critical patent/WO2014200005A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

In order to provide a coated cutting tool that exhibits long tool-life and superior abrasion resistance and damage resistance, a coated cutting tool is provided in which: a base material and coating layers formed on a surface of the base material are included; at least one layer of the coating layers is a hard layer comprising a compound that is configured by at least one type of element selected from a group comprising of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y, and at least one type of element selected from a group comprising of C, N, B, and O; and, when particle diameters in a cross-sectional structure of a hard-layer plane that is parallel to the surface of the base material is measured, hard-layer particles having a particle diameter of less than 1-300nm account for 10-80% of the surface area of the entire cross-sectional structure of the hard layer, hard-layer particles having a particle diameter of 300-1000nm account for 20-90% of the surface area of the entire cross-sectional structure of the hard layer, and in total these particles account for 100% of the surface area.

Description

被覆切削工具Coated cutting tool
 本発明は、被覆切削工具に関するものである。 The present invention relates to a coated cutting tool.
 鋼、鋳鉄、ステンレス鋼、耐熱合金などの切削加工には、超硬合金、サーメット、cBN焼結体などの基材の表面にTiN層やTiAlN層などを形成させた被覆切削工具が広く用いられている。 For cutting of steel, cast iron, stainless steel, heat-resistant alloys, etc., coated cutting tools in which a TiN layer or TiAlN layer is formed on the surface of a substrate such as cemented carbide, cermet, or cBN sintered body are widely used. ing.
 被覆切削工具の従来技術としては、WC基超硬合金、サーメット、セラミックス、高速度鋼などからなる母材の表面に、IVa、Va、VIa族金属元素およびAl、Siから選んだ2種類以上の元素からなる合金の窒化物、酸化物、炭化物、炭窒化物又はホウ化物を、物理的蒸着法により、50nm以下の粒子径で構成した被膜を持つことを特徴とする表面被覆硬質部材がある(例えば、特許文献1参照。)。 As the conventional technology of coated cutting tools, there are two or more types selected from IVa, Va, VIa group metal elements and Al, Si on the surface of the base material made of WC base cemented carbide, cermet, ceramics, high speed steel, etc. There is a surface-coated hard member characterized by having a coating composed of a nitride, oxide, carbide, carbonitride or boride of an alloy consisting of elements with a particle diameter of 50 nm or less by physical vapor deposition ( For example, see Patent Document 1.)
 また、被覆切削工具の従来技術としては、基体の表面に、平均結晶幅が上層よりも大きい柱状粒子から構成された下層と、平均結晶幅が下層よりも小さい柱状粒子から構成された上層とからなる被覆層を形成することを特徴とする表面被覆切削工具がある(例えば、特許文献2参照)。 Further, as a conventional technique of the coated cutting tool, on the surface of the base, a lower layer composed of columnar particles having an average crystal width larger than that of the upper layer, and an upper layer composed of columnar particles having an average crystal width smaller than that of the lower layer. There is a surface-coated cutting tool characterized by forming a coating layer (see, for example, Patent Document 2).
特許3341328号公報Japanese Patent No. 3341328 国際公開第2010/050374号公報International Publication No. 2010/050374
 高速加工および高能率加工で切削を行う場合には、特許文献1で開示された細かい粒子径で構成した被膜を有する被覆切削工具では、切削加工中に被覆切削工具の刃先と被削材とが擦過し、被膜粒子の脱落による摩耗を生じるため、耐摩耗性に劣るという問題があった。また、被膜の表面に発生したクラックが、被膜粒子の粒界に沿って直線的に基材まで進展するため、耐欠損性に劣るという問題があった。 In the case of cutting by high-speed machining and high-efficiency machining, in the coated cutting tool having a coating composed of a fine particle diameter disclosed in Patent Document 1, the cutting edge of the coated cutting tool and the work material are cut during machining. There is a problem that the abrasion resistance is inferior because the abrasion is caused by the abrasion of the coated particles. Moreover, since the crack which generate | occur | produced on the surface of the film progresses to a base material linearly along the grain boundary of a film particle, there existed a problem that it was inferior to fracture resistance.
 また、特許文献2で開示された大きい柱状粒子で構成された下層と、小さい柱状粒子で構成された上層とを有する被覆切削工具では、下層が大きい柱状粒子のみで構成されているため、粒子の脱落による摩耗の進行は抑制される。しかし、切削加工中に発生したクラックが粒界に沿って進展することにより、大きく被覆層が剥離するため、その被覆層の剥離が起点となって欠損に至るという問題があった。 Further, in the coated cutting tool having a lower layer composed of large columnar particles and an upper layer composed of small columnar particles disclosed in Patent Document 2, the lower layer is composed only of large columnar particles. The progress of wear due to falling off is suppressed. However, since cracks generated during cutting progress along the grain boundaries, the coating layer is largely peeled off, and there is a problem that the peeling of the coating layer is a starting point and leads to defects.
 近年の切削加工では高速化、高能率化が顕著となり、従来よりも被覆切削工具に負荷がかかるため、工具寿命が低下する傾向が見られるようになってきた。本発明は、このような問題を解決するためになされたものであり、優れた耐摩耗性と耐欠損性とを持つ、工具寿命の長い被覆切削工具を提供することを目的とする。 In recent years, high speed and high efficiency have become prominent in cutting, and the load on the coated cutting tool is more than ever, so that the tool life tends to be reduced. The present invention has been made to solve such a problem, and an object of the present invention is to provide a coated cutting tool having excellent wear resistance and fracture resistance and having a long tool life.
 本発明者らは研究を重ねたところ、硬質層が細かい粒子と粗い粒子とを含むと、硬質層粒子の脱落による摩耗や、欠損を生じにくくなり、そのような硬質層を形成した被覆切削工具は、耐摩耗性および耐欠損性が向上し、工具寿命が長くなるという知見が得られた。 As a result of repeated researches, the present inventors have found that when the hard layer contains fine particles and coarse particles, the hard layer particles are less likely to be worn out or chipped, and the coated cutting tool formed with such a hard layer is formed. It was found that wear resistance and fracture resistance were improved and tool life was prolonged.
 すなわち、本発明の要旨は以下の通りである。
(1)基材と該基材の表面に形成した被覆層とを備え、前記被覆層の少なくとも1層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とで構成された化合物からなる硬質層であり、前記硬質層における前記基材の表面に対して平行な面の断面組織から粒径を測定したとき、粒径が1~300nm未満である硬質層粒子が前記硬質層の断面組織全体に対して10~80面積%であり、粒径が300~1000nmである硬質層粒子が前記硬質層の断面組織全体に対して20~90面積%であり、これらの合計は100面積%である被覆切削工具。
(2)粒径が1~300nm未満である硬質層粒子が前記硬質層の断面組織全体に対して20~80面積%であり、粒径が300~1000nmである硬質層粒子が前記硬質層の断面組織全体に対して20~80面積%であり、これらの合計は100面積%である(1)の被覆切削工具。
(3)粒径が1~300nm未満である硬質層粒子が前記硬質層の断面組織全体に対して30~70面積%であり、粒径が300~1000nmである硬質層粒子が前記硬質層の断面組織全体に対して30~70面積%であり、これらの合計は100面積%である(1)または(2)の被覆切削工具。
(4)硬質層粒子の粒径分布は粒径1~300nm未満に少なくとも1つのピークを持ち、硬質層粒子の粒径分布は粒径300~1000nmに少なくとも1つのピークを持つ(1)~(3)のいずれかの被覆切削工具。
(5)前記硬質層の平均層厚は0.2~15μmである(1)~(4)のいずれかの被覆切削工具。
(6)前記硬質層の組成が(Al)X[但し、MはTiおよびCrの1種または2種を表し、LはW、YおよびSiからなる群より選ばれた少なくとも1種の元素を表し、XはCおよびNの1種または2種の元素を表し、aはAl元素とM元素とL元素との合計に対するAl元素の原子比を表し、bはAl元素とM元素とL元素との合計に対するM元素の原子比を表し、cはAl元素とM元素とL元素との合計に対するL元素の原子比を表し、a、b、cは、0.25≦a≦0.75、0.25≦b≦0.75、0≦c≦0.20、a+b+c=1を満足する。]である(1)~(5)のいずれかの被覆切削工具。
(7)前記被覆層の少なくとも1層は、前記基材と前記硬質層との間に形成された下部層であり、前記下部層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とで構成された化合物からなる単層または多層の(1)~(6)のいずれかの被覆切削工具。
(8)前記被覆層の少なくとも1層は、前記硬質層の表面に形成された上部層であり、前記上部層はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とで構成された化合物からなる単層または多層の(1)~(7)のいずれかの被覆切削工具。
That is, the gist of the present invention is as follows.
(1) A substrate and a coating layer formed on the surface of the substrate, wherein at least one of the coating layers is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si And a hard layer made of a compound composed of at least one element selected from the group consisting of Y and at least one element selected from the group consisting of C, N, B and O, When the particle size is measured from a cross-sectional structure of a plane parallel to the surface of the substrate, hard layer particles having a particle size of less than 1 to 300 nm are 10 to 80 area% with respect to the entire cross-sectional structure of the hard layer. A coated cutting tool in which hard layer particles having a particle size of 300 to 1000 nm are 20 to 90 area% with respect to the entire cross-sectional structure of the hard layer, and the total of these is 100 area%.
(2) Hard layer particles having a particle size of 1 to less than 300 nm are 20 to 80 area% with respect to the entire cross-sectional structure of the hard layer, and hard layer particles having a particle size of 300 to 1000 nm are The coated cutting tool according to (1), which is 20 to 80 area% with respect to the entire cross-sectional structure, and the total of these is 100 area%.
(3) Hard layer particles having a particle size of 1 to less than 300 nm are 30 to 70 area% with respect to the entire cross-sectional structure of the hard layer, and hard layer particles having a particle size of 300 to 1000 nm are The coated cutting tool according to (1) or (2), which is 30 to 70 area% with respect to the entire cross-sectional structure, and the total of these is 100 area%.
(4) The particle size distribution of the hard layer particles has at least one peak at a particle size of 1 to less than 300 nm, and the particle size distribution of the hard layer particles has at least one peak at a particle size of 300 to 1000 nm (1) to ( The coated cutting tool according to any one of 3).
(5) The coated cutting tool according to any one of (1) to (4), wherein the hard layer has an average layer thickness of 0.2 to 15 μm.
(6) The composition of the hard layer is (Al a M b L c ) X [where M represents one or two of Ti and Cr, and L is at least selected from the group consisting of W, Y and Si 1 represents one element, X represents one or two elements of C and N, a represents the atomic ratio of Al element to the sum of Al element, M element and L element, and b represents Al element and M represents the atomic ratio of M element to the sum of M element and L element, c represents the atomic ratio of L element to the sum of Al element, M element, and L element, and a, b, and c are 0.25 ≦ a ≦ 0.75, 0.25 ≦ b ≦ 0.75, 0 ≦ c ≦ 0.20, and a + b + c = 1 are satisfied. ] The coated cutting tool according to any one of (1) to (5).
(7) At least one of the coating layers is a lower layer formed between the base material and the hard layer, and the lower layer includes Ti, Zr, Hf, V, Nb, Ta, Cr, A single layer composed of a compound composed of at least one element selected from the group consisting of Mo, W, Al, Si and Y and at least one element selected from the group consisting of C, N, B and O Alternatively, a coated cutting tool according to any one of (1) to (6), which is a multilayer.
(8) At least one of the coating layers is an upper layer formed on the surface of the hard layer, and the upper layer is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, A single layer or multilayer (1) comprising a compound composed of at least one element selected from the group consisting of Si and Y and at least one element selected from the group consisting of C, N, B and O A coated cutting tool according to any one of (7) to (7).
 本発明の被覆切削工具は、基材と基材の表面に形成された被覆層とを備えている。本発明の基材は、被覆切削工具の基材として用いられるものであれば特に限定されない。被覆切削工具の基材として、具体的には、超硬合金、サーメット、セラミックス、立方晶窒化硼素焼結体、ダイヤモンド焼結体、高速度鋼などを挙げることができる。その中でも基材が超硬合金であると、耐摩耗性および耐欠損性に優れるので、さらに好ましい。 The coated cutting tool of the present invention includes a base material and a coating layer formed on the surface of the base material. The base material of the present invention is not particularly limited as long as it is used as a base material for a coated cutting tool. Specific examples of the base material for the coated cutting tool include cemented carbide, cermet, ceramics, cubic boron nitride sintered body, diamond sintered body, and high-speed steel. Among them, it is more preferable that the base material is a cemented carbide because it is excellent in wear resistance and fracture resistance.
 本発明の被覆層は、被覆切削工具の被覆層として用いられるものであれば特に限定されない。例えば、(AlTi)NやMoSなどの金属化合物層、金属Tiなどの金属層、DLC(ダイヤモンドライクカーボン)やダイヤモンドなどの硬質炭素層などを挙げることができる。その中でも、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とから構成される化合物の単層または多層であると、耐摩耗性に優れるので、さらに好ましい。 The coating layer of this invention will not be specifically limited if it is used as a coating layer of a coated cutting tool. For example, a metal compound layer such as (AlTi) N or Mo 2 S, a metal layer such as metal Ti, or a hard carbon layer such as DLC (diamond-like carbon) or diamond can be used. Among these, at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and Y, and a group consisting of C, N, B and O A single layer or a multilayer of a compound composed of at least one selected element is more preferable because it is excellent in wear resistance.
 本発明の被覆層は、本発明の硬質層だけで構成されてもよいが、基材と硬質層との間に下部層を含んでもよい。下部層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とから構成される化合物の単層または多層であると、耐摩耗性に優れるので、さらに好ましい。 The coating layer of the present invention may be composed of only the hard layer of the present invention, but may include a lower layer between the substrate and the hard layer. The lower layer is made of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and Y, and a group consisting of C, N, B and O A single layer or a multilayer of a compound composed of at least one element selected from the above is more preferable because it is excellent in wear resistance.
 本発明の被覆層は、本発明の硬質層だけで構成されてもよいが、硬質層の表面に上部層を形成してもよい。上部層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とから構成される化合物の単層または多層であると、耐摩耗性に優れるので、さらに好ましい。上部層の表面にさらに硬質層を形成させても好ましく、上部層と硬質層とを交互にそれぞれ2層以上積層させた交互積層構造も好ましい。 The coating layer of the present invention may be composed of only the hard layer of the present invention, but an upper layer may be formed on the surface of the hard layer. The upper layer is made of at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and Y, and a group consisting of C, N, B and O A single layer or a multilayer of a compound composed of at least one element selected from the above is more preferable because it is excellent in wear resistance. It is also preferable to further form a hard layer on the surface of the upper layer, and an alternate laminated structure in which two or more upper layers and hard layers are alternately laminated is also preferred.
 本発明の被覆層全体の平均層厚は、0.2μm未満であると耐摩耗性が低下する傾向が見られ、15μmを超えて厚くなると耐欠損性が低下する傾向が見られる。そのため、被覆層全体の平均層厚は0.2~15μmであると、さらに好ましい。 When the average layer thickness of the entire coating layer of the present invention is less than 0.2 μm, the wear resistance tends to decrease, and when it exceeds 15 μm, the fracture resistance tends to decrease. For this reason, the average thickness of the entire coating layer is more preferably 0.2 to 15 μm.
 本発明において、各層の層厚は、被覆切削工具の断面組織から光学顕微鏡、走査電子顕微鏡(SEM)、電界放射型走査電子顕微鏡(FE-SEM)、透過電子顕微鏡(TEM)などを用いて測定することができる。なお、被覆切削工具の各層の層厚は、金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置の近傍において、各層の層厚を3箇所以上測定し、その平均値を算出し、各層の平均層厚とした。また、各層の組成は、エネルギー分散型X線分光器(EDS)や波長分散型X線分光器(WDS)などを用いて測定することができる。 In the present invention, the thickness of each layer is measured from the cross-sectional structure of the coated cutting tool using an optical microscope, a scanning electron microscope (SEM), a field emission scanning electron microscope (FE-SEM), a transmission electron microscope (TEM), or the like. can do. The layer thickness of each layer of the coated cutting tool was measured at three or more points in the vicinity of the position of 50 μm from the blade edge of the surface facing the metal evaporation source toward the center of the surface, and the average The value was calculated and taken as the average layer thickness of each layer. The composition of each layer can be measured using an energy dispersive X-ray spectrometer (EDS), a wavelength dispersive X-ray spectrometer (WDS), or the like.
 本発明の硬質層は、粒径が1~300nm未満である硬質層粒子と、粒径が300~1000nmである硬質層粒子とからなる。従来よりも被覆切削工具に負荷がかかる切削加工の条件において、微細な粒子で構成される被覆層では、切削加工中に被覆切削工具の刃先と被削材が擦過し、粒子の脱落による摩耗が生じるため耐摩耗性が劣る。さらに、被覆層の表面に発生したクラックが粒子の粒界に沿って直線的に基材まで進展するため、耐欠損性も十分ではない。一方、粗大な粒子で構成される被覆層では、粒子の脱落による摩耗は少ないが、クラックが粒界に沿って進展することにより、大きく被覆層が剥離する。このため、その被覆層の剥離を起点とした欠損が生じるので、耐欠損性が劣る。一方、本発明の硬質層は、微細な粒子と粗大な粒子との両方を含むため、微細な粒子の脱落が抑制されるので耐摩耗性が優れ、被覆層の剥離を最小限に抑えることで耐欠損性も優れる。 The hard layer of the present invention comprises hard layer particles having a particle size of 1 to less than 300 nm and hard layer particles having a particle size of 300 to 1000 nm. Under cutting conditions where the coated cutting tool is more heavily loaded than before, the coating layer made up of fine particles rubs between the cutting edge of the coated cutting tool and the work material during cutting, and wear due to falling off of the particles occurs. Resulting in poor wear resistance. Furthermore, since cracks generated on the surface of the coating layer linearly propagate to the base material along the grain boundaries of the particles, the fracture resistance is not sufficient. On the other hand, in the coating layer composed of coarse particles, there is little abrasion due to the falling off of the particles, but the coating layer is largely peeled off as the cracks propagate along the grain boundaries. For this reason, since the defect | deletion starting from peeling of the coating layer arises, defect resistance is inferior. On the other hand, since the hard layer of the present invention includes both fine particles and coarse particles, the fine particles are prevented from falling off, so the wear resistance is excellent and the peeling of the coating layer is minimized. Excellent fracture resistance.
 本発明の硬質層の断面組織から粒径を測定したとき、粒径が1~300nm未満である硬質層粒子が硬質層の断面組織全体に対して10~80面積%で、粒径が300~1000nmである硬質層粒子が硬質層の断面組織全体に対して20~90面積%で、これらの合計は100面積%である。粒径が1~300nm未満である硬質層粒子が10面積%未満になり、粒径が300~1000nmである硬質層粒子が90面積%を超えると、耐欠損性が低下し、粒径が1~300nm未満である硬質層粒子が80面積%を超えて、粒径が300~1000nmである硬質層粒子が20面積%未満になると、耐摩耗性および耐欠損性が低下することから、この範囲に定めた。その中でも、粒径が1~300nm未満である硬質層粒子が硬質層の断面組織全体に対して20~80面積%であり、粒径が300~1000nmである硬質層粒子が硬質層の断面組織全体に対して20~80面積%であると、さらに好ましい。その中でも、粒径が1~300nm未満である硬質層粒子が硬質層の断面組織全体に対して30~70面積%であり、粒径が300~1000nmである硬質層粒子が硬質層の断面組織全体に対して30~70面積%であると、さらに好ましい。本発明の硬質層は、本発明の被覆層に1層または2層以上含まれる。 When the particle size is measured from the cross-sectional structure of the hard layer of the present invention, the hard layer particles having a particle size of less than 1 to 300 nm are 10 to 80% by area with respect to the entire cross-sectional structure of the hard layer, and the particle size is 300 to 300%. The hard layer particles of 1000 nm are 20 to 90 area% with respect to the entire cross-sectional structure of the hard layer, and the total of these is 100 area%. When the hard layer particles having a particle size of less than 1 to 300 nm are less than 10% by area and the hard layer particles having a particle size of from 300 to 1000 nm are more than 90% by area, the chipping resistance is lowered and the particle size is reduced to 1 If the hard layer particles having a particle size of less than ˜300 nm exceed 80 area% and the hard layer particles having a particle size of 300 to 1000 nm are less than 20 area%, the wear resistance and fracture resistance are lowered. Determined. Among them, the hard layer particles having a particle size of less than 1 to 300 nm are 20 to 80% by area with respect to the entire cross-sectional structure of the hard layer, and the hard layer particles having a particle size of 300 to 1000 nm are the cross-sectional structure of the hard layer. More preferably, it is 20 to 80 area% with respect to the whole. Among them, the hard layer particles having a particle size of less than 1 to 300 nm are 30 to 70 area% with respect to the entire cross-sectional structure of the hard layer, and the hard layer particles having a particle size of 300 to 1000 nm are the cross-sectional structure of the hard layer. More preferably, it is 30 to 70 area% with respect to the whole. The hard layer of the present invention is contained in one or more layers in the coating layer of the present invention.
 本発明において、硬質層の粒径は硬質層の断面組織を観察して求められる。具体的には、基材の表面に対して平行な面の硬質層の表面、または上部層と硬質層との界面から内部に向かって、硬質層の凹凸が無くなるまで鏡面研磨し、得られた鏡面研磨面を断面組織とする。硬質層の粒径は、硬質層の表面近傍の断面組織を観察してもよく、硬質層の内部の断面組織を観察してもよい。硬質層を鏡面研磨する方法としては、ダイヤモンドペーストまたはコロイダルシリカを用いて研磨する方法や、イオンミリングなどを挙げることができる。直径100nm以上のドロップレットを除いた断面組織を、FE-SEM、TEM、電子線後方散乱回折装置(EBSD)などを用いて観察して、硬質層粒子の面積と等しい面積の円の直径をその粒子の粒径とする。硬質層の断面組織から粒径を求めるときに、画像解析ソフトを用いてもよい。なお、硬質層の断面組織において、直径100nm以上のドロップレットとドロップレット以外の断面組織とは容易に区別できる。断面組織の鏡面研磨面を観察すると、ドロップレットは円形であり、ドロップレットの周りには厚さ数nm~数十nmの空隙ができている。また、ドロップレットは鏡面研磨中に硬質層から抜け落ちることがあり、その場合には硬質層に円形の孔が生じる。そのため、硬質層において、直径100nm以上のドロップレットとドロップレット以外の断面組織とは容易に区別することができる。 In the present invention, the particle size of the hard layer is determined by observing the cross-sectional structure of the hard layer. Specifically, the surface of the hard layer parallel to the surface of the substrate, or from the interface between the upper layer and the hard layer toward the inside was mirror-polished until the irregularities of the hard layer disappeared. The mirror polished surface is a cross-sectional structure. Regarding the particle size of the hard layer, the cross-sectional structure near the surface of the hard layer may be observed, or the cross-sectional structure inside the hard layer may be observed. Examples of the method of mirror polishing the hard layer include a method of polishing using diamond paste or colloidal silica, ion milling, and the like. The cross-sectional structure excluding droplets with a diameter of 100 nm or more is observed using an FE-SEM, TEM, electron beam backscattering diffractometer (EBSD), etc., and the diameter of a circle having an area equal to the area of the hard layer particles is measured. The particle size is taken as the particle size. When obtaining the particle size from the cross-sectional structure of the hard layer, image analysis software may be used. In the cross-sectional structure of the hard layer, a droplet having a diameter of 100 nm or more can be easily distinguished from a cross-sectional structure other than the droplet. When the mirror-polished surface of the cross-sectional structure is observed, the droplet is circular, and a void having a thickness of several nanometers to several tens of nanometers is formed around the droplet. In addition, the droplet may fall off from the hard layer during mirror polishing, and in this case, a circular hole is formed in the hard layer. Therefore, in the hard layer, a droplet having a diameter of 100 nm or more and a cross-sectional structure other than the droplet can be easily distinguished.
 本発明における粒径分布は、1nm以上100nm未満、100nm以上200nm未満、200nm以上300nm未満のように、粒径を100nm間隔に区分けして、その区分けに含まれる粒子の面積率で、粒径の分布を示したものである。粒径分布の測定装置としては、粒子の粒界が明瞭に観察できるEBSDが好ましい。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定が好ましい。 In the present invention, the particle size distribution is divided into 100 nm intervals such as 1 nm or more and less than 100 nm, 100 nm or more and less than 200 nm, and 200 nm or more and less than 300 nm. The distribution is shown. As an apparatus for measuring the particle size distribution, EBSD that can clearly observe the grain boundaries of the particles is preferable. The EBSD is preferably set so that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more is regarded as a grain boundary.
 本発明における硬質層粒子の粒径分布は、粒径が1~300nm未満のところに少なくとも1つのピークがあり、粒径が300~1000nmのところに少なくとも1つのピークがあると、耐摩耗性および耐欠損性が向上するので、さらに好ましい。なお、ピークを有するとは、例えば、1nm以上100nm未満、100nm以上200nm未満、200nm以上300nm未満のように、粒径を100nm間隔に区分けして、200nm以上300nm未満の面積率が、1nm以上100nm未満や200nm以上300nm未満の面積率よりも高い面積率であることを挙げることができる。 The particle size distribution of the hard layer particles in the present invention has at least one peak when the particle size is less than 1 to 300 nm, and at least one peak when the particle size is 300 to 1000 nm. It is further preferable because the fracture resistance is improved. Note that having a peak means, for example, that the particle size is divided into 100 nm intervals such as 1 nm or more and less than 100 nm, 100 nm or more and less than 200 nm, and the area ratio of 200 nm or more and less than 300 nm is 1 nm or more and less than 100 nm. Or an area ratio higher than an area ratio of 200 nm or more and less than 300 nm.
 本発明の硬質層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とからなる化合物で構成される。本発明の硬質層の粒径に及ぼす組成の影響としては、(AlTi)Nまたは(AlCr)NのAl含有量を高くすると粒径が微細になりやすい。また、(AlTi)Nまたは(AlCr)Nに、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、Si、BおよびYからなる群より選ばれる少なくとも1種の元素を添加すると粒径が微細になりやすい。その中でも、硬質層が(Al)X[但し、MはTiおよびCrの1種または2種を表し、LはW、YおよびSiからなる群より選ばれた少なくとも1種の元素を表し、XはCおよびNの1種または2種の元素を表し、aはAl元素とM元素とL元素との合計に対するAl元素の原子比を表し、bはAl元素とM元素とL元素との合計に対するM元素の原子比を表し、cはAl元素とM元素とL元素との合計に対するL元素の原子比を表し、a、b、cは、0.25≦a≦0.75、0.25≦b≦0.75、0≦c≦0.20、a+b+c=1を満足する。]と表される組成であると耐摩耗性に優れるので、さらに好ましい。 The hard layer of the present invention comprises at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and Y, and C, N, B and O. It is comprised with the compound which consists of at least 1 sort (s) of elements chosen from the group which consists of. As the influence of the composition on the particle size of the hard layer of the present invention, if the Al content of (AlTi) N or (AlCr) N is increased, the particle size tends to be fine. Further, at least one element selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, B and Y is added to (AlTi) N or (AlCr) N. When added, the particle size tends to be fine. Among them, the hard layer is (Al a M b L c ) X [wherein M represents one or two of Ti and Cr, and L represents at least one selected from the group consisting of W, Y and Si. X represents one or two elements of C and N, a represents the atomic ratio of Al element to the sum of Al element, M element and L element, and b represents Al element and M element. M represents the atomic ratio of the M element to the total of the L element, c represents the atomic ratio of the L element to the total of the Al element, the M element, and the L element, and a, b, and c are 0.25 ≦ a ≦ 0. .75, 0.25 ≦ b ≦ 0.75, 0 ≦ c ≦ 0.20, and a + b + c = 1. ] Is more preferable because it is excellent in wear resistance.
 本発明の硬質層の平均層厚は、0.2μm未満であると耐摩耗性が低下する傾向を示し、15μmを超えて厚くなると耐欠損性が低下する傾向を示すので、0.2~15μmであると、さらに好ましい。 When the average layer thickness of the hard layer of the present invention is less than 0.2 μm, the wear resistance tends to decrease, and when it exceeds 15 μm, the fracture resistance tends to decrease. Is more preferable.
 本発明の硬質層を、物理蒸着法によって形成することができる。物理蒸着法として、例えば、アークイオンプレーティング法、イオンプレーティング法、スパッタ法、イオンミキシング法などを挙げることができる。その中でも、アークイオンプレーティング法は、基材と被覆層との密着性が優れるので、さらに好ましい。 The hard layer of the present invention can be formed by physical vapor deposition. Examples of the physical vapor deposition method include an arc ion plating method, an ion plating method, a sputtering method, and an ion mixing method. Among these, the arc ion plating method is more preferable because the adhesion between the base material and the coating layer is excellent.
 本発明者らが、硬質層の粒径に及ぼす形成条件の影響について研究したところ、基材の温度を高く、基材バイアス電圧を高く、硬質層の成長速度を大にすると、硬質層の粒径は細かくなることが分かった。この知見を利用すると、本発明の硬質層を得ることができる。例えば、硬質層を形成している間に硬質層の成長速度を大きく変化させると、微細な粒子と粗大な粒子の両方を含む硬質層を得ることができる。硬質層の成長速度を大きく変化させる方法としては、金属蒸発源の蒸発と停止を繰り返す方法が挙げられる。なお、金属蒸発源を蒸発させる時間と蒸発を停止する時間とを調節することで、硬質層粒子の粒径分布を調節することができる。 The present inventors have studied the influence of the forming conditions on the particle size of the hard layer. When the substrate temperature is increased, the substrate bias voltage is increased, and the growth rate of the hard layer is increased, the particles of the hard layer are increased. It was found that the diameter became fine. By utilizing this knowledge, the hard layer of the present invention can be obtained. For example, if the growth rate of the hard layer is greatly changed while the hard layer is formed, a hard layer including both fine particles and coarse particles can be obtained. As a method for greatly changing the growth rate of the hard layer, there is a method of repeatedly evaporating and stopping the metal evaporation source. The particle size distribution of the hard layer particles can be adjusted by adjusting the time for evaporating the metal evaporation source and the time for stopping the evaporation.
 本発明の硬質層を製造する方法として、以下の方法を挙げることができる。例えば、アークイオンプレーティング装置の反応容器内に基材を入れ、アークイオンプレーティング装置の反応容器内のヒーターで基材の温度が200~800℃になるまで加熱した後、反応容器内を圧力0.5Pa~5.0Paの反応ガス雰囲気とし、基材バイアス電圧を-10V~-150Vとし、硬質層の金属成分に応じた金属蒸発源に対するアーク放電について、0.5~3分間のアーク放電と、0.5~3分間のアーク放電の停止とを交互に繰り返すと、微細な粒子と粗大な粒子との両方を含む本発明の硬質層を形成することができる。なお、アーク放電の時間またはアーク放電の停止の時間のいずれかが、0.5分間よりも短いと硬質相の成長速度の変化が小さいため、微細な粒子と粗大な粒子とを含む硬質層が得られない。一方、アーク放電の時間またはアーク放電の停止の時間のいずれかが、3分間よりも長いと形成時間が長いため、有益でない。 The following method can be mentioned as a method for producing the hard layer of the present invention. For example, a substrate is placed in a reaction vessel of an arc ion plating apparatus, heated with a heater in the reaction vessel of the arc ion plating apparatus until the temperature of the substrate reaches 200 to 800 ° C., and then the pressure in the reaction container is increased. The reaction gas atmosphere is 0.5 Pa to 5.0 Pa, the substrate bias voltage is −10 V to −150 V, and the arc discharge to the metal evaporation source corresponding to the metal component of the hard layer is 0.5 to 3 minutes. When the arc discharge for 0.5 to 3 minutes is alternately repeated, the hard layer of the present invention including both fine particles and coarse particles can be formed. Note that if either the arc discharge time or the arc discharge stop time is shorter than 0.5 minutes, the change in the growth rate of the hard phase is small, so that the hard layer containing fine particles and coarse particles is formed. I can't get it. On the other hand, if either the arc discharge time or the arc discharge stop time is longer than 3 minutes, the formation time is longer, which is not useful.
 本発明の被覆切削工具として、具体的には、インサート、ドリル、エンドミル、リーマなどを挙げることができる。 Specific examples of the coated cutting tool of the present invention include an insert, a drill, an end mill, and a reamer.
 本発明の被覆切削工具は、耐摩耗性および耐欠損性に優れ、従来よりも工具寿命が長くなるという効果を奏する。 The coated cutting tool of the present invention is excellent in wear resistance and fracture resistance, and has an effect that the tool life is longer than that in the past.
本発明の粗大な粒子と微細な粒子の両方を含む硬質層の断面組織の概念図の一例An example of a conceptual diagram of a cross-sectional structure of a hard layer containing both coarse particles and fine particles of the present invention 比較の微粒な粒子からなる被覆層の断面組織の概念図の一例An example of a conceptual diagram of the cross-sectional structure of a coating layer composed of comparatively fine particles 比較の粗大な粒子からなる被覆層の断面組織の概念図の一例An example of a conceptual diagram of the cross-sectional structure of a coating layer composed of coarse particles for comparison 本発明の試料番号3の粒径分布を示す図The figure which shows the particle size distribution of the sample number 3 of this invention
 基材として、ISO規格SEKN1203AGTNインサート形状のP20相当の超硬合金を用意した。アークイオンプレーティング装置の反応容器内に、表2に示す硬質層組成となる金属成分の金属蒸発源を配置した。用意した基材を、反応容器内の回転テーブルの固定金具に固定した。その後、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。真空引き後、反応容器内のヒーターで、基材の温度が500℃になるまで加熱した。加熱後、反応容器内の圧力が5.0PaになるようにArガスを導入した。圧力5.0PaのArガス雰囲気にて、基材に-1000Vの基材バイアス電圧を印加して、反応容器内のタングステンフィラメントに10Aの電流を流して、基材の表面に対してArガスによるイオンボンバードメント処理を30分間行った。イオンボンバードメント処理後、試料番号1~10、12~14については、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、窒素ガスを反応容器内に導入し、反応容器内を圧力3.0Paの窒素ガス雰囲気にした。ヒーターで、表1に示す温度まで基材を加熱した。基材に表1に示す基材バイアス電圧を印加して、金属蒸発源に対して、表1に示すアーク放電と放電停止とを交互に繰り返す間欠放電を行って、所定の層厚になるまで硬質層を形成した。間欠放電のアーク電流と、放電時間と、停止時間とを表1に示した。硬質層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。 As a base material, an ISO standard SEKN1203AGTN insert-shaped cemented carbide equivalent to P20 was prepared. A metal evaporation source of a metal component having a hard layer composition shown in Table 2 was placed in the reaction vessel of the arc ion plating apparatus. The prepared base material was fixed to the fixture of the turntable in the reaction vessel. Thereafter, vacuuming was performed until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. After evacuation, the substrate was heated with a heater in the reaction vessel until the temperature of the substrate reached 500 ° C. After heating, Ar gas was introduced so that the pressure in the reaction vessel was 5.0 Pa. In a Ar gas atmosphere at a pressure of 5.0 Pa, a substrate bias voltage of −1000 V is applied to the substrate, a current of 10 A is passed through the tungsten filament in the reaction vessel, and Ar gas is applied to the surface of the substrate. Ion bombardment treatment was performed for 30 minutes. After the ion bombardment treatment, the sample numbers 1 to 10 and 12 to 14 were evacuated until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. Next, nitrogen gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen gas atmosphere at a pressure of 3.0 Pa. The substrate was heated to the temperature shown in Table 1 with a heater. The substrate bias voltage shown in Table 1 is applied to the substrate, and intermittent discharge that alternately repeats arc discharge and discharge stop shown in Table 1 is performed on the metal evaporation source until a predetermined layer thickness is reached. A hard layer was formed. Table 1 shows the arc current of intermittent discharge, discharge time, and stop time. After the hard layer was formed, the heater was turned off, and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.
 発明品の試料番号11については、イオンボンバードメント処理までを試料番号1~10、12~14と同様に行った。イオンボンバードメント処理後、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、NガスとCHガスの分圧比がN:CH=1:1となるように混合した混合ガスを反応容器内に導入して、反応容器内を圧力3.0Paの混合ガス雰囲気にした。ヒーターで、表1に示す温度まで基材を加熱した後、基材に表1に示す基材バイアス電圧を印加して、金属蒸発源に対して、表1に示すアーク放電と停止とを交互に繰り返す間欠放電を行って、所定の層厚になるまで硬質層を形成した。間欠放電のアーク電流と、放電時間と、停止時間とを表1に示した。硬質層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。 With respect to Sample No. 11 of the invention, the processes up to the ion bombardment treatment were performed in the same manner as Sample Nos. 1 to 10 and 12 to 14. After the ion bombardment treatment, evacuation was performed until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. Next, a mixed gas mixed so that the partial pressure ratio of N 2 gas and CH 4 gas is N 2 : CH 4 = 1: 1 is introduced into the reaction vessel, and the reaction vessel is mixed at a pressure of 3.0 Pa. Gas atmosphere. After heating the substrate to the temperature shown in Table 1 with a heater, the substrate bias voltage shown in Table 1 is applied to the substrate, and the arc discharge and stop shown in Table 1 are alternately applied to the metal evaporation source. A hard layer was formed until a predetermined layer thickness was obtained by performing intermittent discharge repeatedly. Table 1 shows the arc current of intermittent discharge, discharge time, and stop time. After the hard layer was formed, the heater was turned off, and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.
 比較品の試料番号15~18については、イオンボンバードメント処理までを試料番号1~10、12~14と同様に行った。イオンボンバードメント処理後、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、窒素ガスを反応容器内に導入し、反応容器内を圧力3.0Paの窒素ガス雰囲気にした。ヒーターで、表1に示す温度まで基材を加熱した後、基材に表1に示す基材バイアス電圧を印加して、金属蒸発源に対して、表1に示すアーク電流を流すアーク放電を連続的に行って、所定の層厚になるまで硬質層を形成した。硬質層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。 For the comparative sample numbers 15 to 18, the ion bombardment process was performed in the same manner as the sample numbers 1 to 10 and 12 to 14. After the ion bombardment treatment, evacuation was performed until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. Next, nitrogen gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen gas atmosphere at a pressure of 3.0 Pa. After heating the base material to the temperature shown in Table 1 with a heater, the base material bias voltage shown in Table 1 is applied to the base material, and arc discharge that causes the arc current shown in Table 1 to flow to the metal evaporation source is performed. Continuously, a hard layer was formed until a predetermined layer thickness was obtained. After the hard layer was formed, the heater was turned off, and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた試料の層厚について、被覆切削工具の金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置の近傍における断面を、SEMを用いて3箇所測定し、その平均値を算出して求めた。得られた試料の硬質層の組成を、被覆切削工具の金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置の近傍における断面を、EDSを用いて測定した。それらの結果を、表2に示した。なお、表2の硬質層の金属成分の組成比は、金属元素全体に対する各金属元素の原子比を示している。 About the layer thickness of the obtained sample, the cross section in the vicinity of the position of 50 μm from the cutting edge of the surface facing the metal evaporation source of the coated cutting tool toward the center of the surface is measured at three locations using SEM, The average value was calculated. With respect to the composition of the hard layer of the obtained sample, a cross section in the vicinity of a position of 50 μm from the cutting edge of the surface facing the metal evaporation source of the coated cutting tool toward the center of the surface was measured using EDS. The results are shown in Table 2. In addition, the composition ratio of the metal component of the hard layer in Table 2 indicates the atomic ratio of each metal element with respect to the entire metal element.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた試料について、ダイヤモンドペーストとコロイダルシリカとを用いて、硬質層の凹凸がなくなるまで鏡面研磨した。鏡面研磨して得られた硬質層の断面組織から直径100nm以上のドロップレットを除いた組織を、EBSDを用いて観察して、硬質層粒子の面積と等しい面積の円の直径をその粒子の粒径とした。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。硬質層の断面組織の粒径分布を、表3に示した。なお、表3の粒径分布は、硬質層粒子の粒径を1nm以上100nm未満、100nm以上200nm未満、200nm以上300nm未満のように100nm間隔で区分けし、その区分だけに含まれる硬質層粒子の面積率を示したものである。また、表3には、粒径が1以上300nm未満の面積率と粒径が300nm以上の面積率も併記した。 The obtained sample was mirror-polished using diamond paste and colloidal silica until the hard layer had no irregularities. A structure obtained by removing droplets having a diameter of 100 nm or more from the cross-sectional structure of the hard layer obtained by mirror polishing is observed using EBSD, and the diameter of a circle having an area equal to the area of the hard layer particle is determined by the grain size of the particle. The diameter. The EBSD was set such that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more was regarded as a grain boundary. Table 3 shows the particle size distribution of the cross-sectional structure of the hard layer. The particle size distribution shown in Table 3 is divided into 100 nm intervals such as 1 nm or more and less than 100 nm, 100 nm or more and less than 200 nm, and 200 nm or more and less than 300 nm. The area ratio is shown. Table 3 also shows the area ratio of the particle size of 1 to less than 300 nm and the area ratio of the particle size of 300 nm or more.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図4に試料番号3の粒径分布を図示した。図4から、試料番号3の粒径分布は2つのピークを持つことが分かる。発明品の粒径分布について、粒径1~300nm未満と粒径300nm以上とにそれぞれにピークがあるかどうか調べたところ、発明品の試料番号1の粒径分布では、粒径200nm以上300nm未満に1つのピークと、粒径400nm以上500nm未満にもう1つのピークとを持つ。発明品の試料番号2~4、7~9の粒径分布では、粒径100nm以上200nm未満に1つのピークと、粒径500nm以上600nm未満にもう1つのピークとを持つ。発明品の試料番号5、6の粒径分布では、粒径200nm以上300nm未満に1つのピークと、粒径500nm以上600nm未満にもう1つのピークとを持つ。 FIG. 4 shows the particle size distribution of Sample No. 3. FIG. 4 shows that the particle size distribution of sample number 3 has two peaks. Regarding the particle size distribution of the inventive product, whether or not there is a peak in each of the particle size of 1 to less than 300 nm and the particle size of 300 nm or more was examined. One peak and another peak at a particle size of 400 nm or more and less than 500 nm. In the particle size distribution of Sample Nos. 2 to 4 and 7 to 9 of the invention product, there is one peak at a particle size of 100 nm or more and less than 200 nm, and another peak at a particle size of 500 nm or more and less than 600 nm. In the particle size distribution of Sample Nos. 5 and 6 of the invention product, there is one peak at a particle size of 200 nm or more and less than 300 nm, and another peak at a particle size of 500 nm or more and less than 600 nm.
 得られた試料を用いて、以下の試験条件1、2で正面フライス加工を行い、耐摩耗性と耐欠損性とを評価した。 Using the obtained sample, face milling was performed under the following test conditions 1 and 2, and the wear resistance and fracture resistance were evaluated.
[試験条件1]
被削材:S45C、
被削材形状:50mm×200mm×150mmの直方体(但し、105mm×200mmの面に正面フライス加工を行う。)、
切削速度:250m/min、
送り:0.1mm/tooth、
切り込み:2.0mm、
切削幅:50mm、
クーラント:不使用(ドライ加工)、
カッター有効径:φ100mm、
評価項目:試料の最大逃げ面摩耗幅が0.2mmに至ったときを工具寿命とし、工具寿命までの加工長を測定した。
[Test condition 1]
Work material: S45C,
Work material shape: a rectangular parallelepiped of 50 mm × 200 mm × 150 mm (however, face milling is performed on a surface of 105 mm × 200 mm),
Cutting speed: 250 m / min,
Feed: 0.1 mm / tooth,
Cutting depth: 2.0 mm
Cutting width: 50 mm
Coolant: Not used (dry processing)
Effective cutter diameter: φ100mm,
Evaluation item: When the maximum flank wear width of the sample reached 0.2 mm, the tool life was determined, and the machining length until the tool life was measured.
[試験条件2]
被削材:S45C、
被削材形状:105mm×200mm×60mmの直方体(但し、正面フライス加工を行う直方体の105mm×200mmの面に直径φ30mmの穴が6箇所明けられている。)、
切削速度:250m/min、
送り:0.4mm/tooth、
切り込み:2.0mm、
切削幅:105mm、
クーラント:不使用(ドライ加工)、
カッター有効径:φ125mm、
評価項目:試料が欠損したときを工具寿命とし、工具寿命までの加工長を測定した。
[Test condition 2]
Work material: S45C,
Workpiece shape: 105 mm × 200 mm × 60 mm rectangular parallelepiped (however, six holes with a diameter of 30 mm are drilled in the 105 mm × 200 mm surface of the rectangular parallelepiped to be face milled).
Cutting speed: 250 m / min,
Feed: 0.4mm / tooth,
Cutting depth: 2.0 mm
Cutting width: 105 mm
Coolant: Not used (dry processing)
Effective cutter diameter: φ125mm,
Evaluation item: The tool life was measured when the sample was broken, and the machining length up to the tool life was measured.
 試験条件1、2における工具寿命までの加工長を表4に示した。なお、試験条件1、2において、加工長が0.0m以上5.0m未満をC、5.0m以上10.0m未満をB、10.0m以上をAとして評価した。さらに、試験条件1、2の評価において、AとAの場合はAA、AとBの場合はAB、BとBの場合はBB、BとCの場合はBC、CとCの場合はCCとする総合評価を行った。この総合評価では、(優)AA>AB>BB>BC>CC(劣)という順位になる。 Table 4 shows the machining lengths up to the tool life under test conditions 1 and 2. In the test conditions 1 and 2, the machining length was evaluated as C when the processing length was 0.0 m or more and less than 5.0 m, B as 5.0 m or more and less than 10.0 m, and A as 10.0 m or more. Further, in the evaluation of test conditions 1 and 2, A and A are AA, A and B are AB, B and B are BB, B and C are BC, and C and C are CC. A comprehensive evaluation was performed. In this comprehensive evaluation, the order is (excellent) AA> AB> BB> BC> CC (inferior).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、発明品の試料番号1~14は、主に耐摩耗性を評価する試験条件1でB以上であり、主に耐欠損性を評価する試験条件2でB以上であった。発明品の試料番号1~14の総合評価はBB以上であり、比較品の試料番号15~18と比較して、耐摩耗性および耐欠損性の両方が優れることが分かる。 As shown in Table 4, samples Nos. 1 to 14 of the invention are B or higher mainly under test condition 1 for evaluating wear resistance, and B or higher mainly under test condition 2 for evaluating fracture resistance. there were. The overall evaluation of samples Nos. 1 to 14 of the invention is BB or higher, and it can be seen that both wear resistance and fracture resistance are superior to those of samples Nos. 15 to 18 of comparative products.
基材として、ISO規格SEKN1203AGTNインサート形状のP20相当の超硬合金を用意した。アークイオンプレーティング装置の反応容器内に、表6に示す各層の組成となる金属成分の金属蒸発源を配置した。用意した基材を、反応容器内の回転テーブルの固定金具に固定した。その後、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。真空引き後、反応容器内のヒーターで、基材の温度が500℃になるまで加熱した。加熱後、反応容器内の圧力が5.0PaになるようにArガスを導入した。圧力5.0PaのArガス雰囲気にて、基材に-1000Vの基材バイアス電圧を印加し、反応容器内のタングステンフィラメントに10Aの電流を流して、基材の表面に対してArガスによるイオンボンバードメント処理を30分間行った。 As a base material, an ISO standard SEKN1203AGTN insert-shaped cemented carbide equivalent to P20 was prepared. A metal evaporation source of a metal component having the composition of each layer shown in Table 6 was placed in the reaction vessel of the arc ion plating apparatus. The prepared base material was fixed to the fixture of the turntable in the reaction vessel. Thereafter, vacuuming was performed until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. After evacuation, the substrate was heated with a heater in the reaction vessel until the temperature of the substrate reached 500 ° C. After heating, Ar gas was introduced so that the pressure in the reaction vessel was 5.0 Pa. In a Ar gas atmosphere at a pressure of 5.0 Pa, a base material bias voltage of −1000 V is applied to the base material, a current of 10 A is applied to the tungsten filament in the reaction vessel, and ions of Ar gas are applied to the surface of the base material. Bombardment treatment was performed for 30 minutes.
 イオンボンバードメント処理後、試料番号19、21、23、25、26、27、30、32、34については、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、窒素ガスを反応容器内に導入し、反応容器内を圧力3.0Paの窒素ガス雰囲気にした。ヒーターで700℃まで基材を加熱した後、基材に-50Vの基材バイアス電圧を印加し、金属蒸発源に対してアーク電流150Aのアーク放電を行って、所定の層厚になるまで下部層を形成した。 After the ion bombardment treatment, the sample numbers 19, 21, 23, 25, 26, 27, 30, 32, and 34 are evacuated until the pressure in the reaction vessel becomes a vacuum of 5.0 × 10 −3 Pa or less. did. Next, nitrogen gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen gas atmosphere at a pressure of 3.0 Pa. After heating the substrate to 700 ° C with a heater, a substrate bias voltage of -50V is applied to the substrate, and arc discharge with an arc current of 150A is performed on the metal evaporation source, and the lower part until a predetermined layer thickness is reached. A layer was formed.
 試料番号19、21、23、25については、下部層を形成した後、試料番号20、22、24については、基材の表面をイオンボンバードメント処理した後、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、窒素ガスを反応容器内に導入し、反応容器内を圧力3.0Paの窒素ガス雰囲気にした。ヒーターで、表1に示す温度まで基材を加熱した。基材に表5に示す基材バイアス電圧を印加して、金属蒸発源に対して、表5に示すアーク放電と停止とを交互に繰り返す間欠放電を行って、所定の層厚になるまで硬質層を形成した。間欠放電のアーク電流と放電時間と停止時間を表5に示した。 For sample numbers 19, 21, 23, and 25, after forming the lower layer, for sample numbers 20, 22, and 24, the surface of the substrate was subjected to ion bombardment treatment, and then the pressure in the reaction vessel was 5.0. Vacuum was drawn until a vacuum of × 10 −3 Pa or less was reached. Next, nitrogen gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen gas atmosphere with a pressure of 3.0 Pa. The substrate was heated to the temperature shown in Table 1 with a heater. A base material bias voltage shown in Table 5 is applied to the base material, and the metal evaporation source is subjected to intermittent discharge that alternately repeats arc discharge and stop shown in Table 5 until it reaches a predetermined layer thickness. A layer was formed. Table 5 shows the arc current, discharge time, and stop time of intermittent discharge.
 比較品の試料番号26、27、30、32、34については、下部層を形成した後、比較品の試料番号28、29、31、33については、基材の表面をイオンボンバードメント処理した後、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、窒素ガスを反応容器内に導入し、反応容器内を圧力3.0Paの窒素ガス雰囲気にした。ヒーターで表5に示す温度まで基材を加熱した後、基材に表5に示す基材バイアス電圧を印加し、金属蒸発源に対して、表5に示すアーク電流を流すアーク放電を連続的に行って、所定の層厚になるまで硬質層を形成した。 For comparative sample numbers 26, 27, 30, 32, and 34, after forming the lower layer, for comparative sample numbers 28, 29, 31, and 33, the surface of the substrate was subjected to ion bombardment treatment. Then, evacuation was performed until the pressure in the reaction vessel became a vacuum of 5.0 × 10 −3 Pa or less. Next, nitrogen gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen gas atmosphere at a pressure of 3.0 Pa. After heating the base material to the temperature shown in Table 5 with a heater, the base material bias voltage shown in Table 5 is applied to the base material, and the arc discharge that causes the arc current shown in Table 5 to flow is continuously applied to the metal evaporation source. Then, a hard layer was formed until a predetermined layer thickness was obtained.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試料番号20、22、24,25、28、29、31、33、34については、硬質層を形成した後、反応容器内の圧力が5.0×10-3Pa以下の真空になるまで真空引きした。次に、窒素ガスを反応容器内に導入し、反応容器内を圧力3.0Paの窒素ガス雰囲気にした。ヒーターで700℃まで基材を加熱した後、基材に-50Vの基材バイアス電圧を印加して、金属蒸発源に対して、アーク電流150Aのアーク放電を行って、所定の層厚になるまで上部層を形成した。被覆層の各層を形成した後に、ヒーターの電源を切り、試料温度が100℃以下になった後で、反応容器内から試料を取り出した。 For sample numbers 20, 22, 24, 25, 28, 29, 31, 33, and 34, after forming a hard layer, vacuum until the pressure in the reaction vessel reaches 5.0 × 10 −3 Pa or less. Pulled. Next, nitrogen gas was introduced into the reaction vessel, and the inside of the reaction vessel was brought to a nitrogen gas atmosphere at a pressure of 3.0 Pa. After heating the substrate to 700 ° C. with a heater, a substrate bias voltage of −50 V is applied to the substrate, and arc discharge with an arc current of 150 A is performed on the metal evaporation source, resulting in a predetermined layer thickness Up to the top layer was formed. After each layer of the coating layer was formed, the heater was turned off and the sample was taken out from the reaction vessel after the sample temperature became 100 ° C. or lower.
 得られた試料の各層の層厚について、被覆切削工具の金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置の近傍における断面を、SEMを用いて3箇所測定し、その平均値を算出して求めた。得られた試料の各層の組成を、被覆切削工具の金属蒸発源に対向する面の刃先から当該面の中心部に向かって50μmの位置の近傍における断面を、EDSを用いて測定した。それらの結果を、表6に示した。なお、表6の各層の金属成分の組成比は、金属元素全体に対する各金属元素の原子比を示している。 About the layer thickness of each layer of the obtained sample, the cross section in the vicinity of the position of 50 μm from the cutting edge of the surface facing the metal evaporation source of the coated cutting tool toward the center of the surface is measured at three locations using SEM. The average value was calculated. The composition of each layer of the obtained sample was measured using an EDS for a cross section in the vicinity of a position of 50 μm from the cutting edge of the surface facing the metal evaporation source of the coated cutting tool toward the center of the surface. The results are shown in Table 6. In addition, the composition ratio of the metal component of each layer in Table 6 indicates the atomic ratio of each metal element to the entire metal element.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 得られた試料について、ダイヤモンドペーストとコロイダルシリカとを用いて、硬質層の表面、または上部層と硬質層との界面から内部に向かって、硬質相の凹凸がなくなるまで鏡面研磨した。鏡面研磨して得られた硬質層の断面組織から直径100nm以上のドロップレットを除いた組織を、EBSDを用いて観察して、硬質層粒子の面積と等しい面積の円の直径をその粒子の粒径とした。EBSDの設定としては、ステップサイズが0.01μm、測定範囲が2μm×2μm、方位差が5°以上の境界を粒界とみなすという設定にした。硬質層の断面組織の粒径分布を、表7に示した。また、表7には、粒径が1以上300nm未満の面積率と粒径が300nm以上の面積率も併記した。 The obtained sample was mirror-polished using diamond paste and colloidal silica until the hard phase irregularities disappeared from the surface of the hard layer or from the interface between the upper layer and the hard layer to the inside. A structure obtained by removing droplets having a diameter of 100 nm or more from the cross-sectional structure of the hard layer obtained by mirror polishing is observed using EBSD, and the diameter of a circle having an area equal to the area of the hard layer particle is determined by the grain size of the particle. The diameter. The EBSD was set such that a boundary having a step size of 0.01 μm, a measurement range of 2 μm × 2 μm, and an orientation difference of 5 ° or more was regarded as a grain boundary. Table 7 shows the particle size distribution of the cross-sectional structure of the hard layer. Table 7 also shows the area ratio of the particle size of 1 to less than 300 nm and the area ratio of the particle size of 300 nm or more.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 発明品の粒径分布について、粒径1~300nm未満と粒径300nm以上とにそれぞれにピークがあるかどうか調べたところ、発明品の試料番号19~22、24、25の粒径分布は、粒径100nm以上200nm未満に1つのピークと、粒径500nm以上600nm未満にもう1つのピークとを持つ。発明品の試料番号23の粒径分布は、粒径100nm以上200nm未満に1つのピークと、粒径400nm以上500nm未満にもう1つのピークとを持つ。 Regarding the particle size distribution of the inventive product, whether or not there is a peak in each of the particle size of 1 to less than 300 nm and the particle size of 300 nm or more, the particle size distribution of the sample numbers 19 to 22, 24, and 25 of the invention product is There is one peak at a particle size of 100 nm or more and less than 200 nm, and another peak at a particle size of 500 nm or more and less than 600 nm. The particle size distribution of Sample No. 23 of the invention product has one peak at a particle size of 100 nm or more and less than 200 nm, and another peak at a particle size of 400 nm or more and less than 500 nm.
 得られた試料を用いて、以下の試験条件3、4で正面フライス加工を行い、耐摩耗性と耐欠損性とを評価した。 Using the obtained sample, face milling was performed under the following test conditions 3 and 4 to evaluate wear resistance and fracture resistance.
[試験条件3]
被削材:SCM440、
被削材形状:50mm×200mm×150mmの直方体(但し、105mm×200mmの面に正面フライス加工を行う。)、
切削速度:250m/min、
送り:0.1mm/tooth、
切り込み:2.0mm、
切削幅:50mm、
クーラント:不使用(ドライ加工)、
カッター有効径:φ100mm、
評価項目:試料の最大逃げ面摩耗幅が0.2mmに至ったときを工具寿命とし、工具寿命までの加工長を測定した。
[Test condition 3]
Work material: SCM440,
Work material shape: a rectangular parallelepiped of 50 mm × 200 mm × 150 mm (however, face milling is performed on a surface of 105 mm × 200 mm),
Cutting speed: 250 m / min,
Feed: 0.1 mm / tooth,
Cutting depth: 2.0 mm
Cutting width: 50 mm
Coolant: Not used (dry processing)
Effective cutter diameter: φ100mm,
Evaluation item: When the maximum flank wear width of the sample reached 0.2 mm, the tool life was determined, and the machining length until the tool life was measured.
[試験条件4]
被削材:SCM440、
被削材形状:105mm×200mm×60mmの直方体(但し、正面フライス加工を行う直方体の105mm×200mmの面に直径φ30mmの穴が6箇所明けられている。)、
切削速度:250m/min、
送り:0.4mm/tooth、
切り込み:2.0mm、
切削幅:105mm、
クーラント:不使用(ドライ加工)、
カッター有効径:φ125mm、
評価項目:試料が欠損したときを工具寿命とし、工具寿命までの加工長を測定した。
[Test condition 4]
Work material: SCM440,
Workpiece shape: 105 mm × 200 mm × 60 mm rectangular parallelepiped (however, six holes with a diameter of 30 mm are drilled in the 105 mm × 200 mm surface of the rectangular parallelepiped to be face milled).
Cutting speed: 250 m / min,
Feed: 0.4mm / tooth,
Cutting depth: 2.0 mm
Cutting width: 105 mm
Coolant: Not used (dry processing)
Effective cutter diameter: φ125mm,
Evaluation item: The tool life was measured when the sample was broken, and the machining length up to the tool life was measured.
 試験条件3、4における工具寿命までの加工長を、表8に示した。なお、試験条件3、4において、加工長が0.0m以上5.0m未満をC、5.0m以上10.0m未満をB、10.0m以上をAとして評価した。さらに、試験条件3、4の評価において、AとAの場合はAA、AとBの場合はAB、BとBの場合はBB、BとCの場合はBC、CとCの場合はCCとする総合評価を行った。この総合評価では、(優)AA>AB>BB>BC>CC(劣)という順位になる。 Table 8 shows the machining lengths up to the tool life under test conditions 3 and 4. In test conditions 3 and 4, the machining length was evaluated as C when the processing length was 0.0 m or more and less than 5.0 m, B as 5.0 m or more and less than 10.0 m, and A as 10.0 m or more. Further, in the evaluation of test conditions 3 and 4, A and A are AA, A and B are AB, B and B are BB, B and C are BC, and C and C are CC. A comprehensive evaluation was performed. In this comprehensive evaluation, the order is (excellent) AA> AB> BB> BC> CC (inferior).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示されるように、発明品の試料番号19~25は、主に耐摩耗性を評価する試験条件3でA以上であり、主に耐欠損性を評価する試験条件4でA以上であった。発明品の試料番号19~25の総合評価はAA以上であり、比較品の試料番号26~34と比較して、耐摩耗性および耐欠損性の両方が優れることが分かる。 As shown in Table 8, samples Nos. 19 to 25 of the invention products are A or more mainly under test condition 3 for evaluating wear resistance, and A or more under test condition 4 for mainly evaluating fracture resistance. there were. The overall evaluation of the inventive sample numbers 19 to 25 is AA or higher, and it can be seen that both the wear resistance and the fracture resistance are superior to the comparative sample numbers 26 to 34.

Claims (8)

  1.  基材と該基材の表面に形成した被覆層とを備え、前記被覆層の少なくとも1層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とで構成された化合物からなる硬質層であり、前記硬質層における前記基材の表面に対して平行な面の断面組織の粒径を測定したとき、粒径が1~300nm未満である硬質層粒子が前記硬質層の断面組織全体に対して10~80面積%であり、粒径が300~1000nmである硬質層粒子が前記硬質層の断面組織全体に対して20~90面積%であり、これらの合計は100面積%である被覆切削工具。 A substrate and a coating layer formed on the surface of the substrate, wherein at least one of the coating layers is made of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si and Y A hard layer comprising a compound composed of at least one element selected from the group consisting of and at least one element selected from the group consisting of C, N, B and O, and the base material in the hard layer When the particle size of the cross-sectional structure of the plane parallel to the surface of the hard layer particles is 10 to 80 area% of the hard layer particles having a particle size of less than 1 to 300 nm with respect to the entire cross-sectional structure of the hard layer, A coated cutting tool in which hard layer particles having a particle size of 300 to 1000 nm are 20 to 90 area% with respect to the entire cross-sectional structure of the hard layer, and the total of these is 100 area%.
  2.  粒径が1~300nm未満である硬質層粒子が前記硬質層の断面組織全体に対して20~80面積%であり、粒径が300~1000nmである硬質層粒子が前記硬質層の断面組織全体に対して20~80面積%であり、これらの合計は100面積%である請求項1に記載の被覆切削工具。 Hard layer particles having a particle size of less than 1 to 300 nm are 20 to 80% by area based on the entire cross-sectional structure of the hard layer, and hard layer particles having a particle size of 300 to 1000 nm are the entire cross-sectional structure of the hard layer. The coated cutting tool according to claim 1, wherein the amount is 20 to 80 area%, and the total of these is 100 area%.
  3.  粒径が1~300nm未満である硬質層粒子が前記硬質層の断面組織全体に対して30~70面積%であり、粒径が300~1000nmである硬質層粒子が前記硬質層の断面組織全体に対して30~70面積%であり、これらの合計は100面積%である請求項1または2に記載の被覆切削工具。 Hard layer particles having a particle size of less than 1 to 300 nm are 30 to 70% by area based on the entire cross-sectional structure of the hard layer, and hard layer particles having a particle size of 300 to 1000 nm are the entire cross-sectional structure of the hard layer. The coated cutting tool according to claim 1 or 2, wherein 30 to 70 area% of the total is 100 area%.
  4.  硬質層粒子の粒径分布は粒径1~300nm未満に少なくとも1つのピークを持ち、硬質層粒子の粒径分布は粒径300~1000nmに少なくとも1つのピークを持つ請求項1~3のいずれか1項に記載の被覆切削工具。 4. The particle size distribution of the hard layer particles has at least one peak at a particle size of less than 1 to 300 nm, and the particle size distribution of the hard layer particles has at least one peak at a particle size of from 300 to 1000 nm. The coated cutting tool according to Item 1.
  5.  前記硬質層の平均層厚は0.2~15μmである請求項1~4のいずれか1項に記載の被覆切削工具。 The coated cutting tool according to any one of claims 1 to 4, wherein an average layer thickness of the hard layer is 0.2 to 15 µm.
  6.  前記硬質層が(Al)X[但し、MはTiおよびCrの1種または2種を表し、LはW、YおよびSiからなる群より選ばれた少なくとも1種の元素を表し、XはCおよびNの1種または2種の元素を表し、aはAl元素とM元素とL元素との合計に対するAl元素の原子比を表し、bはAl元素とM元素とL元素との合計に対するM元素の原子比を表し、cはAl元素とM元素とL元素との合計に対するL元素の原子比を表し、a、b、cは、0.25≦a≦0.75、0.25≦b≦0.75、0≦c≦0.20、a+b+c=1を満足する。]と表される組成である請求項1~5のいずれか1項に記載の被覆切削工具。 The hard layer is (Al a M b L c ) X [wherein M represents one or two of Ti and Cr, and L represents at least one element selected from the group consisting of W, Y and Si. X represents one or two elements of C and N, a represents the atomic ratio of Al element to the sum of Al element, M element and L element, and b represents Al element, M element and L element Represents the atomic ratio of the M element to the sum of the elements, c represents the atomic ratio of the L element to the sum of the Al element, the M element, and the L element, and a, b, and c are 0.25 ≦ a ≦ 0.75. 0.25 ≦ b ≦ 0.75, 0 ≦ c ≦ 0.20, and a + b + c = 1. The coated cutting tool according to any one of claims 1 to 5, which has a composition represented by the formula:
  7.  前記被覆層の少なくとも1層は、前記基材と前記硬質層との間に形成された下部層であり、前記下部層は、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とで構成された化合物からなる単層または多層の請求項1~6のいずれか1項に記載の被覆切削工具。 At least one of the coating layers is a lower layer formed between the base material and the hard layer, and the lower layer includes Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W A single layer or a multilayer composed of a compound composed of at least one element selected from the group consisting of Al, Si and Y and at least one element selected from the group consisting of C, N, B and O The coated cutting tool according to any one of claims 1 to 6.
  8.  前記被覆層の少なくとも1層は、前記硬質層の表面に形成された上部層であり、前記上部層はTi、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Al、SiおよびYからなる群より選ばれる少なくとも1種の元素と、C、N、BおよびOからなる群より選ばれる少なくとも1種の元素とで構成された化合物からなる単層または多層の請求項1~7のいずれか1項に記載の被覆切削工具。 At least one of the coating layers is an upper layer formed on the surface of the hard layer, and the upper layer is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Al, Si, and Y. The single-layer or multilayer-layer comprising a compound composed of at least one element selected from the group consisting of and at least one element selected from the group consisting of C, N, B and O. The coated cutting tool of any one of Claims.
PCT/JP2014/065415 2013-06-11 2014-06-11 Coated cutting tool WO2014200005A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015522802A JP5983878B2 (en) 2013-06-11 2014-06-11 Coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013122322 2013-06-11
JP2013-122322 2013-06-11

Publications (1)

Publication Number Publication Date
WO2014200005A1 true WO2014200005A1 (en) 2014-12-18

Family

ID=52022296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065415 WO2014200005A1 (en) 2013-06-11 2014-06-11 Coated cutting tool

Country Status (2)

Country Link
JP (1) JP5983878B2 (en)
WO (1) WO2014200005A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004366B1 (en) * 2015-04-27 2016-10-05 株式会社タンガロイ Coated cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102571B2 (en) * 2013-06-28 2017-03-29 三菱マテリアル株式会社 Surface coated cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218541A (en) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2011224767A (en) * 2010-03-29 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
JP2011224716A (en) * 2010-04-20 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer for exhibiting excellent abrasion resistance
JP2012020381A (en) * 2010-07-16 2012-02-02 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2012166295A (en) * 2011-02-14 2012-09-06 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance, and chip discharging characteristic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5499771B2 (en) * 2010-02-26 2014-05-21 三菱マテリアル株式会社 Diamond coated cutting tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218541A (en) * 2010-03-23 2011-11-04 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting superior chipping resistance
JP2011224767A (en) * 2010-03-29 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer showing excellent chipping resistance
JP2011224716A (en) * 2010-04-20 2011-11-10 Mitsubishi Materials Corp Surface-coated cutting tool with hard coating layer for exhibiting excellent abrasion resistance
JP2012020381A (en) * 2010-07-16 2012-02-02 Mitsubishi Materials Corp Diamond-coated cutting tool
JP2012166295A (en) * 2011-02-14 2012-09-06 Mitsubishi Materials Corp Surface coated drill excellent in wear resistance, and chip discharging characteristic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004366B1 (en) * 2015-04-27 2016-10-05 株式会社タンガロイ Coated cutting tool
WO2016175166A1 (en) * 2015-04-27 2016-11-03 株式会社タンガロイ Coated cutting tool
CN107530786A (en) * 2015-04-27 2018-01-02 株式会社泰珂洛 Coated cutting tool
CN107530786B (en) * 2015-04-27 2020-05-05 株式会社泰珂洛 Coated cutting tool

Also Published As

Publication number Publication date
JP5983878B2 (en) 2016-09-06
JPWO2014200005A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
CN110883345B (en) Coated cutting tool
JP6406592B2 (en) Coated cutting tool
JP6226077B2 (en) Coated cutting tool
JP6390706B2 (en) Coated cutting tool
JPWO2014025057A1 (en) Coated tool
US9725811B2 (en) Coated cutting tool
JP6071100B1 (en) Coated cutting tool
JP2008100320A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP2009056540A (en) Surface-coated cutting tool, of which hard coating layer achieves excellent chipping resistance
JP6602672B2 (en) Coated tool
JP2016155221A (en) Coated cutting tool
CN109513972B (en) Coated drill bit
JP5983878B2 (en) Coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
US10751805B2 (en) Coated cutting tool
JP6635347B2 (en) Coated cutting tool
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2012076156A (en) Cemented carbide, and method of manufacturing the same
JP6759536B2 (en) Cover cutting tool
CN114054852B (en) Coated cutting tool
JP2009061514A (en) Surface-coated cutting tool with hard coating layer exercising superior chipping resistance
JP2022080501A (en) Coated cutting tool
JP2010201579A (en) Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance
JP2010131690A (en) Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14811395

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015522802

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14811395

Country of ref document: EP

Kind code of ref document: A1