JPH0623601A - Diamond covered super hard alloy tool - Google Patents

Diamond covered super hard alloy tool

Info

Publication number
JPH0623601A
JPH0623601A JP17844192A JP17844192A JPH0623601A JP H0623601 A JPH0623601 A JP H0623601A JP 17844192 A JP17844192 A JP 17844192A JP 17844192 A JP17844192 A JP 17844192A JP H0623601 A JPH0623601 A JP H0623601A
Authority
JP
Japan
Prior art keywords
layer
diamond
cemented carbide
carbide
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP17844192A
Other languages
Japanese (ja)
Inventor
Toshiki Sato
俊樹 佐藤
Seiji Kameoka
誠司 亀岡
Tsutomu Ikeda
孜 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17844192A priority Critical patent/JPH0623601A/en
Publication of JPH0623601A publication Critical patent/JPH0623601A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the cutting and anti-wear qualities of a diamond covered super hard alloy tool by forming the ground layer with specific five layers. CONSTITUTION:A required cemented carbide tool is provided by using a cemented carbide as a tool base material and forming a diamond and/or diamondlike carbon covered layer on the ground layer. At this time, the ground layer is formed by laying layers in order from a first layer through a fifth toward a side contacting the base material from the ground surface side. The first layer consists of the carbide of one or more element selected from a group consisting of IVa, Va, VIa elements, B and Si, and a second layer consists of an alloy layer of the elements that form the carbide of the first layer and metal element (Au, Ag or Cu) that constitute a third layer. In addition, a fourth layer consists of an alloy layer of metal elements that constitute the third layer and one or more element selected from the group consisting of IVa, Va, VIa elements, B and Si that form the carbide of the fifth layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、WC系やTiC系の超
硬合金を母材とし、該母材にダイヤモンドおよび/また
はダイヤモンド状カーボン(以下、ダイヤモンドで代表
する)の被覆層を形成したダイヤモンド被覆超硬合金工
具に関するものである。尚本発明で用いる母材として
は、WC−Co系,Ti−Ni−Mo系,TiC−WC
−TaC−Ni−Mo−Co系等様々な超硬合金が挙げ
られるが、以下の説明ではWC−Co系超硬合金を主体
にして説明を進める。
INDUSTRIAL APPLICABILITY The present invention uses a WC-based or TiC-based cemented carbide as a base material, and forms a coating layer of diamond and / or diamond-like carbon (hereinafter represented by diamond) on the base material. The present invention relates to a diamond-coated cemented carbide tool. The base materials used in the present invention include WC-Co type, Ti-Ni-Mo type, TiC-WC type.
Although various cemented carbides such as -TaC-Ni-Mo-Co type can be mentioned, the following description will be made mainly on the WC-Co type cemented carbide.

【0002】[0002]

【従来の技術】超硬合金工具鋼は高速度工具鋼と並ん
で、切削工具や耐摩工具等の素材として幅広く利用され
ており、特にWC−Co系超硬合金が主流を占めてい
る。
2. Description of the Related Art Cemented carbide tool steel is widely used as a material for cutting tools, wear-resistant tools and the like, as well as high speed tool steel, and WC-Co type cemented carbide is the mainstream.

【0003】近年、超硬合金の表面に、耐摩耗性のより
優れた物質を気相蒸着法によって被覆して工具の切削性
を改善した被覆超硬合金工具が急速に普及している。こ
うした被覆物質としてはTiCやTiNが代表的なもの
であり、例えばTiC被覆超硬合金は、WC系超硬合金
工具やTiC系超硬合金工具よりも高温高圧時の強度に
優れたものとなり、被覆の施されていない従来の超硬合
金工具では切削困難であったものがTiC被覆超硬合金
工具を用いることによって切削可能となっている。
In recent years, a coated cemented carbide tool in which the surface of the cemented carbide is coated with a substance having higher wear resistance by a vapor deposition method to improve the machinability of the tool has rapidly spread. TiC and TiN are typical examples of such a coating material. For example, a TiC-coated cemented carbide is superior to a WC-based cemented carbide tool or a TiC-based cemented carbide tool in strength at high temperature and high pressure, What has been difficult to cut with a conventional uncoated cemented carbide tool can be cut by using a TiC coated cemented carbide tool.

【0004】しかしながら上記被覆超硬合金工具は、被
削材が鋼や鋳鉄等の場合には優れた耐摩耗性を示すが、
例えば高Si−Al合金や、非常に硬質のガラス繊維を
内蔵したFRP等を被削材とした場合には耐摩耗性不足
を来たし、工具寿命が短くなって長期使用に耐え得なく
なる。
However, the coated cemented carbide tool exhibits excellent wear resistance when the work material is steel or cast iron, but
For example, when a high Si-Al alloy or FRP containing a very hard glass fiber is used as a work material, the wear resistance becomes insufficient, the tool life becomes short, and the tool cannot withstand long-term use.

【0005】一方硬い材料を加工する為の専用切削工具
としては、超高圧・高温下で焼結して合成されたダイヤ
モンドを用いたダイヤモンド焼結体工具も知られている
が、高価であり、またプリント基板穴明け用極細ミニド
リル等に応用する場合等においては、逆にダイヤモンド
より高硬度のものが無いという理由によって却って加工
が困難であり、形状的にも制約を受けることになる。
On the other hand, as a dedicated cutting tool for processing a hard material, a diamond sintered body tool using diamond synthesized by sintering at ultrahigh pressure and high temperature is known, but it is expensive, In addition, when it is applied to an ultra-fine drill for punching a printed circuit board or the like, conversely, it is difficult to process because it has no higher hardness than diamond, and the shape is also restricted.

【0006】最近ではマイクロ波や熱フィラメント等に
よって生成した炭化水素−水素混合ガスプラズマを利用
した化学気相合成法によって、粒子状や膜状のダイヤモ
ンドを合成することが可能となっており、こうした技術
を応用してダイヤモンド膜を被覆したダイヤモンド被膜
超硬合金工具の開発も進められている。
Recently, it has been possible to synthesize particulate or film-like diamond by a chemical vapor phase synthesis method utilizing a hydrocarbon-hydrogen mixed gas plasma generated by microwaves or hot filaments. Development of diamond-coated cemented carbide tools coated with diamond film by applying technology is also in progress.

【0007】しかしながら母材となる超硬合金は、例え
ばWC−Co系の様に結合剤として5〜20%程度のC
oを含んでおり、この様な超硬合金の表面にダイヤモン
ド膜を形成してもCoの作用によってダイヤモンドがグ
ラファイトに変態してそれが介在されることになり、硬
度および密着性の良好な均一なダイヤモンド膜を形成す
ることはできない。この様な事態は結合剤としてNiを
含んでいる場合にも同様に生じる。
However, the cemented carbide used as the base material is, for example, WC-Co type, and contains about 5 to 20% of C as a binder.
Even if a diamond film is formed on the surface of such a cemented carbide, diamond will be transformed into graphite by the action of Co and will intervene, resulting in uniform hardness and adhesion. It is impossible to form a perfect diamond film. Such a situation similarly occurs when Ni is contained as a binder.

【0008】[0008]

【発明が解決しようとする課題】超硬合金にダイヤモン
ド膜を直接形成するには、上述の様な不都合が生じる
が、こうした不都合を解消する技術も種々提案されてい
る。例えば特開平1−201475号には、WC−Co
系焼結チップ表面層のCoを酸処理によってエッチング
した後に、ダイヤモンド膜を形成する技術が提案されて
いる。しかしながらこの技術は、WC−Co系超硬合金
母材の結合剤であるCoを酸によって溶出するものであ
るので、母材自体の劣化を招くという問題がある。
Although the above-mentioned inconvenience occurs when the diamond film is directly formed on the cemented carbide, various techniques for solving such inconvenience have been proposed. For example, in JP-A-1-201475, WC-Co
There has been proposed a technique of forming a diamond film after etching Co of the surface layer of a sintered sintered chip by acid treatment. However, since this technique elutes Co, which is the binder of the WC-Co based cemented carbide base material, with an acid, there is a problem that the base material itself is deteriorated.

【0009】一方母材表面に下地層を形成し、この下地
層表面にダイヤモンド膜を形成する技術も提案されてい
る。例えば特開昭58−126972号には、超硬合金
母材表面に、IVa,Va,VIa族の炭化物,窒化
物,硼化物,酸化物およびこれらの化合物、混合物並び
にAl23 ,AIN,B4 C,SiC,Si34
SiO2 から選ばれた1種以上からなる下地層を形成
し、この下地層の上へダイヤモンド膜を形成したダイヤ
モンド被覆超硬合金工具が提案されている。また特開昭
59−184792号には、鉄族金属,サーメットある
いはセラミックスからなる母材表面に、WまたはNbか
らなる被膜層(下地層)を形成し、この下地層の表面に
ダイヤモンド被膜を形成する技術が提案されている。
On the other hand, a technique has also been proposed in which a base layer is formed on the surface of a base material and a diamond film is formed on the surface of the base layer. For example, in Japanese Patent Laid-Open No. 58-126972, carbides, nitrides, borides, oxides of IVa, Va and VIa groups and their compounds, mixtures and Al 2 O 3 , AIN, are formed on the surface of a cemented carbide base material. B 4 C, SiC, Si 3 N 4 ,
A diamond-coated cemented carbide tool has been proposed in which an underlayer made of at least one selected from SiO 2 is formed, and a diamond film is formed on this underlayer. Further, in JP-A-59-184792, a coating layer (underlayer) made of W or Nb is formed on the surface of a base material made of iron group metal, cermet or ceramics, and a diamond coating is formed on the surface of this underlayer. The technology to do is proposed.

【0010】しかしながらこれらの技術では、下地層が
硬質であるため、ダイヤモンド合成時の基板温度である
600〜1000℃から常温までに冷却する際に、ダイ
ヤモンドと超硬合金母材との熱膨張係数差から生じる内
部応力を緩和できず、ダイヤモンドと下地層との密着性
が不充分となり、切削中に剥離を生じるという欠点があ
る。
However, in these techniques, since the underlayer is hard, the coefficient of thermal expansion between the diamond and the cemented carbide base material is cooled when cooling from the substrate temperature of 600 to 1000 ° C. during diamond synthesis to room temperature. There is a drawback in that the internal stress caused by the difference cannot be relaxed, the adhesion between the diamond and the underlayer becomes insufficient, and peeling occurs during cutting.

【0011】本発明はこうした事情に着目してなされた
ものであって、その目的は、上記の様な内部応力を緩和
しつつ、超硬合金母材に対して密着性が良いダイヤモン
ド膜を形成でき優れた切削性および耐摩耗性を有するダ
イヤモンド被覆超硬合金工具を提供することにある。
The present invention has been made in view of these circumstances, and an object thereof is to form a diamond film having good adhesion to a cemented carbide base material while alleviating the above internal stress. (EN) Provided is a diamond-coated cemented carbide tool having excellent machinability and wear resistance.

【0012】[0012]

【課題を解決するための手段】上記目的を達成し得た本
発明とは、超硬合金を工具母材とし、下地層上にダイヤ
モンドおよび/またはダイヤモンド状カーボンの被覆層
が形成された超硬合金工具において、前記下地層は、下
地表面側から母材に接する側に向けて下記第1層から第
5層が該記載順序で積層して形成されるものである。 (1) 第1層:IVa,Va,VIa族元素、BおよびSiよ
りなる群から選ばれる1種以上の元素の炭化物からなる
層、または該炭化物が主成分である層。 (2) 第2層:上記第1層の炭化物を形成する元素と下記
第3層を構成する金属元素との合金層、または傾斜組成
合金層。 (3) 第3層:Au,Ag,Cuのいずれかの単独層、ま
たはこれらの金属の少なくとも1種を主成分とする合金
からなる層。 (4) 第4層:上記第3層を構成する金属元素と下記第5
層の炭化物を形成する元素との合金属、または傾斜組成
合金層。 (5) 第5層:IVa,Va,VIa族元素,BおよびSiよ
りなる群から選ばれる1種以上の元素の炭化物からなる
元素、または該炭化物が主成分である層。
Means for Solving the Problems The present invention which has achieved the above object means that a cemented carbide is used as a tool base material and a coating layer of diamond and / or diamond-like carbon is formed on an underlayer. In the alloy tool, the base layer is formed by laminating the following first to fifth layers in the order described from the base surface side to the side in contact with the base material. (1) First layer: a layer made of a carbide of one or more elements selected from the group consisting of IVa, Va, VIa group elements, B and Si, or a layer containing the carbide as a main component. (2) Second layer: An alloy layer of an element forming the carbide of the first layer and a metal element forming the following third layer, or a gradient composition alloy layer. (3) Third layer: a single layer of any one of Au, Ag, and Cu, or a layer made of an alloy containing at least one of these metals as a main component. (4) Fourth layer: the metal element forming the third layer and the following fifth layer
A mixed metal with an element forming a carbide of the layer, or a gradient composition alloy layer. (5) Fifth layer: an element made of a carbide of one or more elements selected from the group consisting of IVa, Va, VIa group elements, B and Si, or a layer containing the carbide as a main component.

【0013】[0013]

【作用】本発明者らは、超硬合金母材にダイヤモンド被
覆層を形成する為の下地層として最適な形態について、
様々な角度から検討した。その結果、上記の様な5層構
造からなる下地層が最適であることを見出した。即ち、
上記の様な下地層であれば、超硬合金母材とダイヤモン
ドとの熱膨張係数差から生じる内部応力を緩和しつつ、
密着性の良好なダイヤモンド膜が形成できたのである。
The present inventors have found that the optimum form of the underlayer for forming the diamond coating layer on the cemented carbide base material is
Considered from various angles. As a result, they have found that an underlayer having a five-layer structure as described above is optimal. That is,
If the underlayer as described above, while relaxing the internal stress caused by the difference in thermal expansion coefficient between the cemented carbide base material and diamond,
A diamond film with good adhesion could be formed.

【0014】本発明における下地層の各層の作用効果は
下記の通りである。まず第1層および第2層は、後述す
る第3層とダイヤモンド被覆層との密着性を確保する為
に形成される。即ち、後述する第3層はダイヤモンド被
覆層との密着性が良いとはいえず、両者を直接積層する
と剥離するので、これを防止する為にダイヤモンド被覆
層側に第1層を形成し、第1層と第3層の密着性を更に
向上させる為に、両者に密着性の良い第2層を形成した
のである。尚第1層および第2層の厚みは、合計で0.
01〜10μmとするのが良い。即ち、第1層および第
2層の合計厚みが0.01μm未満では第2層と第3層
との密着性が確保されず、第2層と第3層の界面付近で
切削中に剥離を生じる。また該厚みが10μmを超える
と、第3層の塑性変形による応力緩和(後述する)が不
充分となり、切削中にダイヤモンド被覆層の剥離を生じ
る。
The effects of each layer of the underlayer in the present invention are as follows. First, the first layer and the second layer are formed in order to secure the adhesiveness between the third layer described below and the diamond coating layer. That is, the third layer described later does not have good adhesion to the diamond coating layer and peels off when both layers are directly laminated. Therefore, in order to prevent this, the first layer is formed on the diamond coating layer side. In order to further improve the adhesiveness between the first layer and the third layer, the second layer having good adhesiveness was formed on both layers. The total thickness of the first layer and the second layer was 0.
It is preferable that the thickness is from 01 to 10 μm. That is, when the total thickness of the first layer and the second layer is less than 0.01 μm, the adhesiveness between the second layer and the third layer is not secured, and peeling occurs during cutting near the interface between the second layer and the third layer. Occurs. When the thickness exceeds 10 μm, stress relaxation (described later) due to plastic deformation of the third layer becomes insufficient and the diamond coating layer peels off during cutting.

【0015】次に、第3層はダイヤモンド被服層の熱膨
張係数に起因する内部応力を緩和する為に形成される。
即ち、Au,Ag,Cu等は軟質金属であり、応力が加
わると容易に塑性変形して応力を緩和する。尚第3層の
厚みは0.1〜100μmとするのが良い。即ち第3層
の厚みが0.1μm未満では上記の様な応力緩和効果が
充分に発揮されず、100μmを超えると切削時に加わ
る外力によって第3層が塑性変形してしまい、かえって
ダイヤモンド被服層に亀裂や剥離を生じ易くなる。
Next, the third layer is formed to relieve the internal stress caused by the coefficient of thermal expansion of the diamond coating layer.
That is, Au, Ag, Cu, etc. are soft metals, and when stress is applied, they are easily plastically deformed to relax the stress. The thickness of the third layer is preferably 0.1-100 μm. That is, when the thickness of the third layer is less than 0.1 μm, the stress relaxation effect as described above is not sufficiently exerted, and when it exceeds 100 μm, the third layer is plastically deformed by the external force applied during cutting, rather, the diamond coating layer is not formed. Cracks and peeling are likely to occur.

【0016】次に第4層および第5層は、前記第3層と
超硬合金母材との密着性を確保する為に形成される。即
ち、前記第3層は超硬合金母材との密着性が良くないの
で、第3層を直接超硬合金母材表面にコーティングする
と、第3層と超硬合金母材表面間で剥離を生じ易いが、
超硬合金母材と密着性の良好な第5層、および該第5層
と第3層の密着性を向上させる為の第4層を介在させる
ことによって、第3層と超硬合金母材との密着性が確保
できるのである。尚第4層および第5層の厚みは、合計
で0.01〜10μmとするのが良い。即ち、第4層お
よび第5層の合計厚みが0.01μm未満では第3層と
第4層との密着性が確保されず、第3層と第4層の界面
付近で切削中に剥離を生じる。また該厚みが10μmを
超えると、前記第3層と超硬合金母材における熱膨張係
数の差によって密着不良となり、切削中に剥離が生じ
る。
Next, the fourth layer and the fifth layer are formed to ensure the adhesion between the third layer and the cemented carbide base material. That is, since the third layer does not have good adhesion with the cemented carbide base material, when the third layer is directly coated on the surface of the cemented carbide base material, peeling occurs between the third layer and the cemented carbide base material surface. It is easy to occur,
By interposing a fifth layer having good adhesion to the cemented carbide base material and a fourth layer for improving the adhesion between the fifth layer and the third layer, the third layer and the cemented carbide base material It is possible to secure close contact with. The total thickness of the fourth layer and the fifth layer is preferably 0.01 to 10 μm. That is, when the total thickness of the fourth layer and the fifth layer is less than 0.01 μm, the adhesiveness between the third layer and the fourth layer is not secured, and peeling occurs during cutting near the interface between the third layer and the fourth layer. Occurs. On the other hand, if the thickness exceeds 10 μm, the adhesion will be poor due to the difference in thermal expansion coefficient between the third layer and the cemented carbide base material, resulting in peeling during cutting.

【0017】尚本発明において、超硬合金母材上に下地
層を形成する手段については特に限定されるものではな
く、イオンプレーティング,スパッタリング,真空蒸着
およびめっき処理等、様々な方法を採用することができ
る。
In the present invention, the means for forming the underlayer on the cemented carbide base material is not particularly limited, and various methods such as ion plating, sputtering, vacuum deposition and plating treatment are adopted. be able to.

【0018】以下本発明を実施例によって更に詳細に説
明するが、本発明は下記実施例によって限定されるもの
ではなく、前・後記の趣向に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。例
えば、下記実施例では母材としてWC−Co系超硬合金
を用いる場合について示したが、本発明はこの様な場合
に限らず、TiC−Ni−Mo系やTiC−WC−Ta
C−Ni−Mo−Co系等の超硬合金を母材として用い
る場合もその技術的範囲とするものである。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to the following examples, and any modification of the design can be made according to the idea described above and the following. It is included in the target range. For example, in the following examples, the case where a WC-Co type cemented carbide is used as a base material is shown, but the present invention is not limited to such a case, and TiC-Ni-Mo type or TiC-WC-Ta type is used.
The use of cemented carbide such as C-Ni-Mo-Co system as the base material is also within the technical range.

【0019】[0019]

【実施例】 実施例1 下記に示す手順に従って、ダイヤモンド被覆超硬合金チ
ップを作製した。超硬合金母材として、WC−10%C
oのISO規格SPGN422型のチップを準備した。
このチップ上に、イオンプレーティング法によって、T
iC層(第5層),Ti・Cu混合層(第4層),Cu
層(第3層),Ti・Cu混合層(第2層),TiC層
(第1層)の順に積層して下地層を形成した。尚このと
きの(第1層+第2層)および(第4層+第5層)の厚
みは夫々2μmとし、第3層の厚みは30μmとした。
この様にして下地層を形成したチップを、マイクロ波プ
ラズマCVD装置に装入し、CH4 :2cc/min,
2 :100cc/min,圧力40Torr,マイク
ロ波出力1KW,母材温度850℃の条件にて、反応ガ
スを供給しながら4時間の気相合成を行ない、下地層上
に4μmのダイヤモンド膜を形成した。
Example 1 A diamond-coated cemented carbide chip was produced according to the procedure shown below. As a cemented carbide base material, WC-10% C
An ISO standard SPGN422 type chip of o was prepared.
On this chip, the T
iC layer (fifth layer), Ti / Cu mixed layer (fourth layer), Cu
A layer (third layer), a Ti / Cu mixed layer (second layer), and a TiC layer (first layer) were laminated in this order to form a base layer. The thicknesses of the (first layer + second layer) and the (fourth layer + fifth layer) at this time were 2 μm, and the thickness of the third layer was 30 μm.
The tip forming the undercoat layer in this manner, were charged to a microwave plasma CVD apparatus, CH 4: 2cc / min,
H 2 : 100 cc / min, pressure 40 Torr, microwave output 1 kW, base material temperature 850 ° C., 4 hours of vapor phase synthesis while supplying reaction gas to form 4 μm diamond film on underlayer. did.

【0020】得られたダイヤモンド被覆超硬合金チップ
について、下記の切削条件で連続切削試験を行ない、試
験後のチップにおける逃げ面摩耗幅を測定した。 (切削条件) 被削材 :Al−20%Si合金 送り :0.2mm/rev 切込み :0.25mm 切削速度:500m/min 切削時間:60分
The diamond-coated cemented carbide chip thus obtained was subjected to a continuous cutting test under the following cutting conditions, and the flank wear width of the chip after the test was measured. (Cutting conditions) Work material: Al-20% Si alloy Feed: 0.2 mm / rev Cutting depth: 0.25 mm Cutting speed: 500 m / min Cutting time: 60 minutes

【0021】その結果を、表1に示す。尚表1には、比
較例としてWC−10%Co系超硬合金母材にTiC膜
をコーティング(2mm)した後ダイヤモンド膜を形成
したチップを用いた場合(比較例I)、WC−10%C
o系超硬合金母材を酸処理してチップ表面のCoを抽出
した後下地処理せずにダイヤモンド膜を形成したチップ
を用いた場合(比較例II)等についての結果も示した。
The results are shown in Table 1. In Table 1, as a comparative example, a chip having a diamond film formed after coating a TiC film (2 mm) on a WC-10% Co cemented carbide base material (Comparative Example I), WC-10% C
The results are also shown for the case (Comparative Example II) in which a chip formed with a diamond film without acid treatment of an o-type cemented carbide base material to extract Co on the surface of the chip and then without undercoating was used.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかな様に、本発明に係るダイ
ヤモンド被覆超硬合金チップは、比較例I,IIに比べ密
着性が良好で、優れた切削性および耐摩耗性を示してい
ることがよくわかる。
As is clear from Table 1, the diamond-coated cemented carbide chips according to the present invention have better adhesion than Comparative Examples I and II and exhibit excellent machinability and wear resistance. I understand.

【0024】実施例2 下記に示す手順に従って、ダイヤモンド被覆超硬合金ド
リルを作製した。超硬合金母材として、WC−13%C
oの小径ドリル(ドリル径:6mm)を準備し、これに
イオンプレーティング法によって各種下地層を形成した
後、実施例1と同様にしてダイヤモンド被覆層を形成し
た。得られたダイヤモンド被覆超硬合金ドリルについ
て、下記の穴あけ条件で穴あけ試験を行ない、ダイヤモ
ンド被覆層の剥離の有無を調べた。
Example 2 A diamond-coated cemented carbide drill was prepared according to the following procedure. As cemented carbide base material, WC-13% C
A small-diameter drill (drill diameter: 6 mm) of o was prepared, various underlayers were formed on the drill by an ion plating method, and then a diamond coating layer was formed in the same manner as in Example 1. The obtained diamond-coated cemented carbide drill was subjected to a drilling test under the following drilling conditions to check whether the diamond coating layer was peeled off.

【0025】(穴あけ条件) 被削材 :Al−16%Si合金(厚さ:20mm) 切削速度 :100m/min 送り :0.2mm/rev 穴あけ個数:5000個の貫通穴あけ(Drilling conditions) Work material: Al-16% Si alloy (thickness: 20 mm) Cutting speed: 100 m / min Feed: 0.2 mm / rev Number of drilled holes: 5000 through holes

【0026】その結果を、ダイヤモンド被覆超硬合金ド
リルの構成と共に、表2に示す。尚表2には、超硬合金
母材ドリルで酸処理して表面のCoを抽出処理した後下
地処理をせずにダイヤモンド被覆層と形成したもの(N
o.14)、および超硬合金母材ドリルにSiC膜とコー
ティング(2μm)した後ダイヤモンド膜を形成したも
の(No.15)等による結果についても示した。
The results are shown in Table 2 together with the constitution of the diamond-coated cemented carbide drill. Table 2 shows that a diamond coating layer was formed without acid treatment by acid treatment with a cemented carbide base metal drill and then Co treatment on the surface (N
14), and a result obtained by coating a cemented carbide base material drill with a SiC film (2 μm) and then forming a diamond film (No. 15).

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかな様に、本発明に係るダイ
ヤモンド被覆超硬合金ドリルは、いずれも優れた密着性
を示し、従来材に比べて優れた性能を発揮していること
が明らかである。また下地層の各層厚さを適切な値に設
定することが効果的であることがわかる。
As is clear from Table 2, it is clear that the diamond-coated cemented carbide drills according to the present invention all exhibit excellent adhesion and exhibit superior performance to conventional materials. . It is also effective to set the thickness of each underlayer to an appropriate value.

【0029】[0029]

【発明の効果】本発明は以上の様に構成されており、超
硬合金母材に対して密着性の良いダイヤモンド膜を形成
でき、優れた切削性および耐摩耗性を示すダイヤモンド
被覆超硬合金工具が実現できた。
EFFECTS OF THE INVENTION The present invention is configured as described above, and a diamond-coated cemented carbide that can form a diamond film having good adhesion to a cemented carbide base material and that exhibits excellent machinability and wear resistance. The tool was realized.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超硬合金を工具母材とし、下地層上にダ
イヤモンドおよび/またはダイヤモンド状カーボンの被
覆層が形成された超硬合金工具において、前記下地層
は、下地表面側から母材に接する側に向けて下記第1層
から第5層が該記載順序で積層して形成されたものであ
ることを特徴とするダイヤモンド被覆超硬合金工具。 (1) 第1層:IVa,Va,VIa族元素,BおよびSiよ
りなる群から選ばれる1種以上の元素の炭化物からなる
層、または該炭化物が主成分である層。 (2) 第2層:上記第1層の炭化物を形成する元素と下記
第3層を構成する金属元素との合金層、または傾斜組成
合金層。 (3) 第3層:Au,Ag,Cuのいずれかの単独層、ま
たはこれらの金属の少なくとも1種を主成分とする合金
からなる層。 (4) 第4層:上記第3層を構成する金属元素と下記第5
層の炭化物を形成する元素との合金属、または傾斜組成
合金層。 (5) 第5層:IVa,Va,VIa族元素,BおよびSiよ
りなる群から選ばれる1種以上の元素の炭化物からなる
元素、または該炭化物が主成分である層。
1. A cemented carbide tool in which a cemented carbide is used as a tool base material and a coating layer of diamond and / or diamond-like carbon is formed on the base layer, wherein the base layer is formed from the base surface side to the base material. A diamond-coated cemented carbide tool, characterized in that the following first to fifth layers are laminated in the stated order toward the contact side. (1) First layer: a layer made of a carbide of at least one element selected from the group consisting of IVa, Va, VIa group elements, B and Si, or a layer containing the carbide as a main component. (2) Second layer: An alloy layer of an element forming the carbide of the first layer and a metal element forming the following third layer, or a gradient composition alloy layer. (3) Third layer: a single layer of any one of Au, Ag, and Cu, or a layer made of an alloy containing at least one of these metals as a main component. (4) Fourth layer: the metal element forming the third layer and the following fifth layer
A mixed metal with an element forming a carbide of the layer, or a gradient composition alloy layer. (5) Fifth layer: an element made of a carbide of one or more elements selected from the group consisting of IVa, Va, VIa group elements, B and Si, or a layer containing the carbide as a main component.
【請求項2】 第1層と第2層の合計厚み、および第4
層と第5層の合計厚みが夫々0.01〜10μmであ
り、且つ第3層の厚みが0.1〜100μmである請求
項1に記載のダイヤモンド超硬合金工具。
2. A total thickness of the first layer and the second layer, and a fourth thickness.
The diamond cemented carbide tool according to claim 1, wherein the total thickness of the layer and the fifth layer is 0.01 to 10 µm, and the thickness of the third layer is 0.1 to 100 µm.
JP17844192A 1992-07-06 1992-07-06 Diamond covered super hard alloy tool Withdrawn JPH0623601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17844192A JPH0623601A (en) 1992-07-06 1992-07-06 Diamond covered super hard alloy tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17844192A JPH0623601A (en) 1992-07-06 1992-07-06 Diamond covered super hard alloy tool

Publications (1)

Publication Number Publication Date
JPH0623601A true JPH0623601A (en) 1994-02-01

Family

ID=16048580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17844192A Withdrawn JPH0623601A (en) 1992-07-06 1992-07-06 Diamond covered super hard alloy tool

Country Status (1)

Country Link
JP (1) JPH0623601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513087A (en) * 1998-04-29 2002-05-08 ユナキス・トレーディング・アクチェンゲゼルシャフト Tools or mechanical parts and methods for increasing the wear resistance of such parts
WO2013153614A1 (en) * 2012-04-09 2013-10-17 オーエスジー株式会社 Hard coating for cutting tool, and cutting tool coated with hard coating
CN104203466A (en) * 2012-04-02 2014-12-10 Osg株式会社 Hard coating film for cutting tool and cutting tool coated with hard coating film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513087A (en) * 1998-04-29 2002-05-08 ユナキス・トレーディング・アクチェンゲゼルシャフト Tools or mechanical parts and methods for increasing the wear resistance of such parts
CN104203466A (en) * 2012-04-02 2014-12-10 Osg株式会社 Hard coating film for cutting tool and cutting tool coated with hard coating film
WO2013153614A1 (en) * 2012-04-09 2013-10-17 オーエスジー株式会社 Hard coating for cutting tool, and cutting tool coated with hard coating
CN104203467A (en) * 2012-04-09 2014-12-10 Osg株式会社 Hard coating for cutting tool, and cutting tool coated with hard coating
JPWO2013153614A1 (en) * 2012-04-09 2015-12-17 オーエスジー株式会社 Hard coating for cutting tool and hard coating coated cutting tool
US9409238B2 (en) 2012-04-09 2016-08-09 Osg Corporation Hard coating for cutting tool, and cutting tool coated with hard coating
CN104203467B (en) * 2012-04-09 2016-08-24 Osg株式会社 Hard film for cutting tool and hard film coated cutting tool

Similar Documents

Publication Publication Date Title
US6358428B1 (en) Method of etching
EP0707665B1 (en) Diamond coated body
CA2061944C (en) A diamond and/or diamond-like carbon-coated hard material
WO2006046498A1 (en) Surface-coated cutting tool
JPWO2008026700A1 (en) Cutting tool, manufacturing method thereof and cutting method
JP3671623B2 (en) Coated cemented carbide
JPH04275812A (en) Diamond coated micro drill
JPH06509844A (en) Tools with wear-resistant diamond blades, their manufacturing method and their use
JPH0623601A (en) Diamond covered super hard alloy tool
JPS6141768A (en) Composite hard film coated tool
JP2004291162A (en) Surface coated cutting tool
JP3260986B2 (en) Member with diamond composite film
JPH0860366A (en) Method of adhering composite diamond coating film to hard support
JP4936742B2 (en) Surface coating tools and cutting tools
JPH04168276A (en) Diamond-coated cemented carbide tool
JPH04280974A (en) Boron nitride coated hard material
JP2974285B2 (en) Manufacturing method of coated carbide tool
JPH0525638A (en) Diamond-coated sintered hard alloy tool
JPH0623431B2 (en) Hard coating coated cutting tool parts
KR20010051441A (en) Coating of ultra-hard materials
JPS6257802A (en) Parts coated with hard carbon
JPH01225774A (en) High-hardness polycrystalline diamond tool
JP4230572B2 (en) Cemented carbide with a plate-like tungsten carbide-containing layer formed on the surface, a method for producing the same, and a cemented carbide coated with diamond on the surface
JPH0890311A (en) Composite head layer surface coat cutting tool
JP2974284B2 (en) Manufacturing method of coated carbide tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005