JPH0710443B2 - Cutting tip - Google Patents

Cutting tip

Info

Publication number
JPH0710443B2
JPH0710443B2 JP59279175A JP27917584A JPH0710443B2 JP H0710443 B2 JPH0710443 B2 JP H0710443B2 JP 59279175 A JP59279175 A JP 59279175A JP 27917584 A JP27917584 A JP 27917584A JP H0710443 B2 JPH0710443 B2 JP H0710443B2
Authority
JP
Japan
Prior art keywords
cutting
tip
gas
diamond film
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59279175A
Other languages
Japanese (ja)
Other versions
JPS61159302A (en
Inventor
浩一 山口
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP59279175A priority Critical patent/JPH0710443B2/en
Publication of JPS61159302A publication Critical patent/JPS61159302A/en
Publication of JPH0710443B2 publication Critical patent/JPH0710443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は切削用チップに関し、より詳細には、量産性お
よび切削性能に優れた切削チップに関する。
TECHNICAL FIELD The present invention relates to a cutting tip, and more particularly to a cutting tip excellent in mass productivity and cutting performance.

(発明の背景) 従来から切削用チップとして超硬合金、Al2O3等の酸化
物、SiC,Si3N4等の炭化物、窒化物、あるいは、超硬合
金に炭化物、窒化物を被覆したものが、強度および耐摩
耗性にすぐれていることから、主として使用されてい
る。
(Background of the Invention) Cemented carbides, oxides such as Al 2 O 3 , carbides such as SiC, Si 3 N 4 and nitrides, or cemented carbides coated with carbides and nitrides have been conventionally used as cutting tips. It is mainly used because of its excellent strength and abrasion resistance.

近年、機械材料として、さらに耐摩耗性を有する材料と
してダイヤモンドが注目され、切削用チップへの応用も
研究されつつある。
In recent years, diamond has attracted attention as a mechanical material and as a material having wear resistance, and its application to cutting tips is being studied.

切削用チップへの応用としては、天然ダイヤモンド、ま
たはダイヤモンド粉末と金属粉末との混合粉末を超高
圧、超高温下で焼成して得られるダイヤモンド基焼結体
を切削用チップの刃先に接合したものや、所定の超硬合
金などの基体の表面に熱CVD法、プラズマCVD法、イオン
ビーム法等の気相成長法により、高純度のダイヤモンド
膜を被覆したものが提案されている。
As an application for cutting tips, natural diamond or a diamond-based sintered body obtained by firing a mixed powder of diamond powder and metal powder under ultra high pressure and ultra high temperature is joined to the cutting edge of the cutting tip. Also, there has been proposed a high-purity diamond film coated on the surface of a predetermined base material such as cemented carbide by a vapor phase growth method such as a thermal CVD method, a plasma CVD method, an ion beam method.

(発明が解決しようとする問題点) しかしながら、ダイヤモンド基焼結体を刃先に接合する
方法では、その焼結体を刃先形状に加工する必要があ
り、また焼結体自体の製造も、大型且つ複雑な装置を必
要とし、しかも大量生産が困難なため、製造工程が煩雑
でありコスト的に問題がある。しかも、ダイヤモンド基
焼結体は、一般に金属などの助剤成分を含んでいるため
に、ダイヤモンドの有する優れた特性を十分に発揮でき
ないという問題があった。
(Problems to be Solved by the Invention) However, in the method of joining the diamond-based sintered body to the blade edge, it is necessary to process the sintered body into a blade edge shape, and the production of the sintered body itself is large and Since a complicated device is required and mass production is difficult, the manufacturing process is complicated and there is a cost problem. Moreover, since the diamond-based sintered body generally contains an auxiliary component such as metal, there is a problem that the excellent characteristics of diamond cannot be sufficiently exhibited.

これに対して、気相成長法によりダイヤモンド膜を所定
の基体に被覆する方法によれば、成膜装置系が単純であ
り高純度のダイヤモンド膜を形成できる点では、超高圧
高温装置を用いた前記方法より安価に製造することが可
能である。
On the other hand, according to the method of coating a predetermined substrate with a diamond film by the vapor phase epitaxy method, an ultrahigh-pressure high-temperature device was used in that the film forming system is simple and a high-purity diamond film can be formed. It can be manufactured at a lower cost than the above method.

しかし、気相成長法によるダイヤモンド膜を利用する方
法は、常に基体を必要とし、切削用チップ基体そのもの
を狭い成膜空間に設置する必要があるため、反応空間内
で1度の被覆処理で得られるチップ数が少なく、量産向
でないという問題がある。さらに、従来のダイヤモンド
膜を被覆した切削用チップでは、ダイヤモンド膜のチッ
プ基体との密着性が十分でなく、切削時にダイヤモンド
膜が剥離しやすいという大きな問題を有している。この
密着性不良という問題は、ダイヤモンド膜の切削用チッ
プへの応用を阻害する大きな原因となっているのが現状
である。
However, the method of using a diamond film by vapor phase growth requires a substrate at all times, and the cutting chip substrate itself must be installed in a narrow film forming space. There is a problem that the number of chips that can be obtained is small and it is not suitable for mass production. Further, the conventional cutting tip coated with a diamond film has a large problem that the diamond film is not sufficiently adhered to the tip substrate and the diamond film is easily peeled off during cutting. At present, the problem of poor adhesion is a major cause of impeding the application of diamond films to cutting chips.

(発明の目的) 従って、本発明の目的は、構造的に製造効率を高めるこ
とが可能であり、それにより安価なダイヤモンド膜が被
覆された切削用チップを提供する点である。
(Object of the Invention) Therefore, an object of the present invention is to provide a cutting tip coated with a diamond film, which is capable of structurally increasing manufacturing efficiency, and which is inexpensive.

また、本発明の他の目的は、ダイヤモンド膜の剥離のな
い、長寿命の切削性能に優れた切削用チップを提供する
点にある。
Another object of the present invention is to provide a cutting tip having a long life and excellent cutting performance without peeling of a diamond film.

(問題点を解決するための手段) 本発明者は、ダイヤモンド膜の密着性が低下する原因に
ついて検討した結果、気相成長法では、基体の表面性状
などの影響を受けやすく膜全体にわたり均一な膜が得ら
れ難く、また気相成長法による成膜面積が大きいほど均
質な膜が得られ難く、切削時などの外部応力により不均
一な箇所から容易に剥離しやすくなる傾向にあるという
知見を得た。この知見に基づき、ダイヤモンド膜が被覆
された切削用チップの量産性をも含め検討した結果、切
削用チップをチップ刃先部材と、このチップ刃先部材を
接合支持するチップ母材との分割構造とし、前記チップ
刃先部材の少なくとも刃部に直接あるいは中間層を介し
て気相成長法により0.1〜100μmの厚みでダイヤモンド
膜を被覆することにより、ダイヤモンド膜の成膜面積を
小さくできることから膜の均一性が図られ、剥離のな
い、切削性能に優れるとともに量産性に優れた切削用チ
ップが得られることを見いだしたものである。
(Means for Solving Problems) The present inventor has examined the cause of the decrease in the adhesion of the diamond film, and as a result, the vapor phase growth method is easily affected by the surface properties of the substrate and the like and is uniform over the entire film. It is difficult to obtain a film, and it is difficult to obtain a uniform film as the deposition area by the vapor phase growth method is large, and it is easy to peel from a non-uniform portion due to external stress during cutting. Obtained. Based on this knowledge, as a result of examination including mass productivity of the cutting tip coated with a diamond film, the cutting tip has a tip edge member and a divided structure of a tip base material for joining and supporting the tip edge member, By coating the diamond film with a thickness of 0.1 to 100 μm by a vapor phase growth method directly on at least the blade portion of the tip blade member or through an intermediate layer, the film forming area of the diamond film can be reduced, and thus the film uniformity can be improved. It has been found that a cutting tip which is free from peeling and has excellent cutting performance and mass productivity can be obtained.

以下、図面に基づき、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の切削用チップを示す分解斜視図であ
る。切削用チップ1はチップ刃先部材2とチップ母材3
とから構成され、チップ刃先部材2は切削用刃部4をそ
の一部に有している。またチップ刃先部材2は刃先用基
体5と、その表面に気相成長法によりダイヤモンド膜6
を形成して成る。さらに、チップ母材3には、チップ刃
先部材2を支持するための台座7が設けられており、こ
の台座7にチップ刃先部材2を接合等の手段により、支
持することによって、切削用チップ1が形成される。
FIG. 1 is an exploded perspective view showing a cutting tip of the present invention. The cutting tip 1 includes a tip blade member 2 and a tip base material 3
The tip blade member 2 has a cutting blade portion 4 in a part thereof. Further, the tip member 2 is a substrate 5 for a blade, and a diamond film 6 is formed on the surface of the substrate 5 by vapor phase growth.
Is formed. Further, the chip base material 3 is provided with a pedestal 7 for supporting the chip edge member 2, and by supporting the chip edge member 2 on the pedestal 7 by means such as joining, the cutting chip 1 Is formed.

本発明によれば、上記のような分割構造とすることによ
り、ダイヤモンド膜の形成をチップ全体を行う必要がな
く、刃部4を含むチップ刃先部材2のみに行うことがで
き、且つダイヤモンド膜の成膜面積を小さくできるため
にダイヤモンド膜の成膜の均一化を図ることができるこ
とから、切削時のダイヤモンド膜の剥離等の問題を解消
するすることができる。それにより、後述する実施例か
らも明らかなように、ダイヤモンド膜を切削用チップ全
面に形成した場合に比較してダイヤモンド膜の密着性を
高めることができるとともに、切削用チップとしての切
削寿命を向上することができる。また、チップ刃先部材
のみにダイヤモンド膜を被覆することができるために、
切削用チップ自体が大型であっても、成膜装置などを改
造することなく容易にダイヤモンド膜を被覆した切削用
チップを作製することができる。
According to the present invention, with the above-described divided structure, it is not necessary to form the diamond film on the entire tip, and only the tip blade member 2 including the blade portion 4 can be formed. Since the film formation area can be reduced, the film formation of the diamond film can be made uniform, so that the problem of peeling of the diamond film during cutting can be solved. As a result, as is clear from the examples described below, the adhesion of the diamond film can be increased and the cutting life as a cutting tip is improved as compared with the case where the diamond film is formed on the entire surface of the cutting tip. can do. Further, since the diamond film can be coated only on the tip blade member,
Even if the cutting tip itself is large, the cutting tip coated with the diamond film can be easily manufactured without modifying the film forming apparatus or the like.

本発明におけるチップ刃先部材2のダイヤモンド膜を被
覆するための基体5としては、切削用チップとして、強
度、靭性等機械的強度に優れた材質で、例えばSi,MO,石
英,ステンレス,Al2O3,超硬合金,サーメット,SiC,Si3N
4,ジルコニア等公知の材料が選択される。特に、ダイヤ
モンド膜との密着性を考慮すればSiC,Si3N4を主成分と
するのが好ましい。
The substrate 5 for coating the diamond film of the tip blade member 2 of the present invention is a material having excellent mechanical strength such as strength and toughness as a cutting tip, for example, Si, MO, quartz, stainless steel, Al 2 O. 3 , cemented carbide, cermet, SiC, Si 3 N
4 , a known material such as zirconia is selected. In particular, considering the adhesiveness to the diamond film, it is preferable that the main component is SiC or Si 3 N 4 .

さらに、本発明によれば、ダイヤモンド膜6の密着性を
向上させることを目的として、基体5の成分及び炭素成
分を有する中間層を設けることができる。この中間層は
剥離の一要因となる熱膨張係数の差による内部応力を緩
和することができる。
Further, according to the present invention, an intermediate layer having the component of the base 5 and the carbon component can be provided for the purpose of improving the adhesion of the diamond film 6. This intermediate layer can relieve the internal stress due to the difference in the coefficient of thermal expansion, which is one of the causes of peeling.

チップ母材3としては、公知の工具材料が使用できる
が、特にAl2O3,Al2O3−TiC,Al2O3−ZrO2,Si3N4,超硬合
金,サーメット,部分安定化ジルコニア(PSZ)等が好
ましく、これらの中でも靭性の比較的大きい、Si3N4,超
硬合金,サーメット,PSZ,等が好ましい。
As the chip base material 3, known tool materials can be used, but especially Al 2 O 3 , Al 2 O 3 -TiC, Al 2 O 3 -ZrO 2 , Si 3 N 4 , cemented carbide, cermet, partially stable Zirconia oxide (PSZ) and the like are preferable, and among these, Si 3 N 4 , cemented carbide, cermet, PSZ, and the like, which have relatively high toughness, are preferable.

なお、本発明の切削用チップの全体的形状および、チッ
プ刃先部材の形状は、第1図の形状に限定されるもので
なく、あらゆる形状に対応が可能である。例えば、チッ
プ刃先部材2に凸部、チップ母材に凹部を形成し、両者
を嵌合するようになすこともできる。
The overall shape of the cutting tip of the present invention and the shape of the tip blade member are not limited to the shapes shown in FIG. 1, and any shape is applicable. For example, a convex portion may be formed on the tip blade member 2 and a concave portion may be formed on the chip base material so that the two are fitted together.

また、切削用チップ1において刃部4を複数有する場合
においても、各刃部を同様にして、ダイヤモンド被覆処
理を行なうことができる。
Further, even when the cutting tip 1 has a plurality of blade portions 4, the diamond coating treatment can be performed in the same manner for each blade portion.

なおチップ刃先部材2の形状を決定する場合、チップ自
体がホルダー等の支持部材により支持される部位を含ま
ない事が重要である。これは、ホルダー等による支持の
際、その応力によってダイヤモンド膜が剥離するのを防
止するためである。
When determining the shape of the tip blade member 2, it is important that the tip itself does not include a portion supported by a supporting member such as a holder. This is to prevent the diamond film from peeling off due to the stress when it is supported by the holder or the like.

よって、第1図における態様では、支持開口8を除いた
部位で、チップ刃先部材2の形状が決定されている。
Therefore, in the embodiment shown in FIG. 1, the shape of the tip blade member 2 is determined in the region excluding the support opening 8.

本発明の切削用チップを製造する際には、まず、刃先用
基体、チップ母材の形状の焼結体を製造した後、次に刃
先基体に対して、熱CVD法、プラズマCVD法、イオンビー
ム法等の気相成長法により、ダイヤモンド膜を形成させ
る。この気相成長法によれば、被覆される基体の特にコ
ーナー部分にダイヤモンドが生成されやすいことから、
工具等の被覆には特に有効である。これら、気相成長法
のうち、例えばプラズマCVD法を例にとると、反応室内
に前述の所望の材質から成る基体4を配置し、反応室内
に所定の割合の炭化水素(CH4)、および水素(H2)の
混合ガスを導入し、高周波またはマイクロ波をかけて、
プラズマを誘発させ、この状態を数時間維持させると基
体上にダイヤモンド膜が生成される。この時刃先用基体
5を小さくするほど、被覆面積が小さくなり被覆処理毎
の処理個数を増加させることができ、量産化ができると
ともに、最終的に得られるチップの切削性能のバラツキ
を低減することができ、製品としての安定性を高めるこ
とができる。また、反応槽内に設置する際、基体5が例
えば、第1図に示すような三角柱である場合、反応室内
での配置を第2図に示すように、後にチップ母材3に接
合する際の接合面の1つ(第1図中5a)同志を背中合わ
せで配置すると、ダイヤモンド膜の不必要な面への生成
を抑えるとともに、基体5の刃部4へのダイヤモンドの
生成を助長することができる。
When manufacturing the cutting tip of the present invention, first, after manufacturing a cutting edge substrate, a sintered body of the shape of the chip base material, then for the cutting edge substrate, thermal CVD method, plasma CVD method, ions A diamond film is formed by a vapor phase growth method such as a beam method. According to this vapor phase growth method, since diamond is likely to be generated particularly in the corners of the substrate to be coated,
It is particularly effective for coating tools and the like. Among these vapor phase growth methods, for example, in the case of the plasma CVD method, the substrate 4 made of the above-mentioned desired material is placed in the reaction chamber, and a predetermined proportion of hydrocarbon (CH 4 ) Introduce a mixed gas of hydrogen (H 2 ), apply high frequency or microwave,
When a plasma is induced and this state is maintained for several hours, a diamond film is formed on the substrate. At this time, the smaller the blade tip substrate 5 is, the smaller the coating area is, the more the number of coating treatments can be processed, the more mass production can be performed, and the variation in the cutting performance of the finally obtained chips can be reduced. The stability as a product can be improved. In addition, when the substrate 5 is, for example, a triangular prism as shown in FIG. 1 when it is installed in the reaction tank, when it is later bonded to the chip base material 3 as shown in FIG. If one of the bonding surfaces (5a in FIG. 1) is placed back to back, it is possible to suppress the generation of the diamond film on the unnecessary surface and promote the generation of diamond on the blade portion 4 of the substrate 5. it can.

しかも、ダイヤモンド膜の形成面積が小さくなることに
より、各々のダイヤモンド膜が均一に形成され、剥離を
低減することができる。
Moreover, by reducing the formation area of the diamond film, each diamond film is uniformly formed, and peeling can be reduced.

刃先用基体上に設けるダイヤモンド膜の膜厚は切削用チ
ップとしての性能的見地から0.1乃至100μmにすること
が望ましい。
The film thickness of the diamond film provided on the cutting edge substrate is preferably 0.1 to 100 μm from the viewpoint of performance as a cutting tip.

本発明では、前述した通り、ダイヤモンド膜の密着性を
向上させることを目的として基体成分及び炭素成分を有
する中間層を設けることができる。中間層の形成にあた
っては、ダイヤモンド膜の形成前に例えば、基体として
Si3N4を使用する場合はSiH4,NH3,CH4を所定の割合で混
合した混合ガスを導入し、プラズマを誘発させることに
より、ダイヤモンド及びSi3N4から成る中間層を設ける
ことができる。その後、同じ反応系で先と同様の操作を
行なうことで基体表面に中間層、ダイヤモンド膜を連続
的に設けることができる。ここで中間層は、前述した通
り基体成分及び炭素成分を有する他に密着性を向上させ
る目的で第3成分、第4成分……を加え、多層構造にす
ることもできる。中間層の厚みは0.01μm乃至1mmの範
囲に設定するのが望ましく、この厚みは基体の材料、中
間層の炭素含有量や他成分含有量、及び層構成とも関連
するが、本発明者等がこれまでに繰り返し行った実験に
よれば前記の範囲内に設定することにより一段と顕著は
密着性が得られた。
In the present invention, as described above, an intermediate layer having a base component and a carbon component can be provided for the purpose of improving the adhesion of the diamond film. When forming the intermediate layer, for example, as a base before forming the diamond film,
When Si 3 N 4 is used, an intermediate layer consisting of diamond and Si 3 N 4 is provided by introducing a mixed gas in which SiH 4 , NH 3 and CH 4 are mixed in a predetermined ratio and inducing plasma. You can After that, by performing the same operation as above in the same reaction system, the intermediate layer and the diamond film can be continuously provided on the surface of the substrate. Here, the intermediate layer may have a multi-layer structure by adding the third component, the fourth component, ... For the purpose of improving the adhesion in addition to having the base component and the carbon component as described above. The thickness of the intermediate layer is preferably set in the range of 0.01 μm to 1 mm, and this thickness is related to the material of the substrate, the carbon content of the intermediate layer, the content of other components, and the layer structure. According to the experiments repeated so far, the adhesiveness was more remarkably obtained by setting it within the above range.

更に、ダイヤモンド膜の厚みを中間層の厚み以下に設定
するのが望ましい。即ち、本発明者等が種々の実験を繰
り返し行った結果、基体材料、中間層の層構成や組成材
料にも関係するが、ダイヤモンド膜の厚みが中間層の厚
みを越えていると内部に応力が発生し易くなる傾向にあ
ることを確かめた。
Furthermore, it is desirable to set the thickness of the diamond film to be equal to or less than the thickness of the intermediate layer. That is, as a result of repeated experiments by the present inventors, although it is related to the base material, the layer structure of the intermediate layer and the composition material, when the thickness of the diamond film exceeds the thickness of the intermediate layer, internal stress It has been confirmed that there is a tendency that is likely to occur.

ダイヤモンド膜を表面に形成したチップ刃先部材2は、
次にチップ母材4の台座7に接合される。接合方法とし
ては、高融点金属法、酸化銅法、硫化銅法等公知の技術
が使用できるが、接合の際のダイヤモンド膜の黒鉛化を
防ぐために800℃以下の接合温度で行なうことが必要で
ある。
The tip blade member 2 having a diamond film formed on its surface is
Next, it is joined to the pedestal 7 of the chip base material 4. As a bonding method, a known technique such as a refractory metal method, a copper oxide method, or a copper sulfide method can be used, but it is necessary to carry out at a bonding temperature of 800 ° C. or lower in order to prevent graphitization of a diamond film at the time of bonding. is there.

本発明を次の例で説明する。The invention is illustrated by the following example.

実施例1 第1図の切削用チップ形状(TPGN322)となるようにチ
ップ刃先部材の基体としてSi3N4焼結体を使用し、あら
かじめ、第1図の5aおよび5bの面に高融点金属法を用い
Mo−Mn−Tiによるメタライズ化を行なった。
Example 1 A Si 3 N 4 sintered body was used as the base of the tip member of the tip so as to have the shape of the cutting tip (TPGN322) shown in FIG. 1, and the refractory metal was previously formed on the surfaces 5a and 5b of FIG. Using the method
Metallization with Mo-Mn-Ti was performed.

次に、反応室内にメタライズ化された基体を配置させ、
マイクロ波プラズマCVD法で、下記条件下で膜厚7μm
の多結晶質のダイヤモンド膜を形成した。
Next, place the metallized substrate in the reaction chamber,
Microwave plasma CVD method, film thickness 7μm under the following conditions
A polycrystalline diamond film was formed.

得られた刃先部材を超硬合金(P10相当)から成るチッ
プ母材4の台座7に接合温度600℃で、銀によりロウ付
けを行ない、切削用チップを得た。
The obtained cutting edge member was brazed with silver at a joining temperature of 600 ° C. to a pedestal 7 of a chip base material 4 made of cemented carbide (P10 equivalent) to obtain a cutting chip.

得られた切削用チップについて、性能テストとして切削
テスト及び被覆面のダイヤモンド圧子を用いた引掻き法
による密着強度の測定を行なった。密着強度は圧子荷重
を徐々に高め、膜の剥離が生じた時の荷重を測定した。
The cutting chips thus obtained were subjected to a cutting test as a performance test and an adhesion strength was measured by a scratching method using a diamond indenter on the coated surface. The adhesion strength was measured by gradually increasing the indenter load and measuring the load when peeling of the film occurred.

〔切削テスト〕[Cutting test]

A. フランク摩耗の測定 被削材;タフピッチ銅 速度V;500m/min 送りf;0.1mm/rev 切り込みd;0.2mm 時間t;100min(最高) B. 寿命方程式の算出 被削材としてタフピッチ銅のかわりにAl−Si(18%)合
金を使用し、送りf=0.10mm/rev,切り込みd=0.20mm
で速度Vを変化させ、VT曲線の方程式を求める。なお、
VT曲線は、一般式(1) VTx=C(constant) ……(1) で示され、x値およびC値で寿命が決定され、x値が小
さい程、C値が大きい程、寿命の優れたものである。
A. Measurement of flank wear Work material: Tough pitch copper Speed V; 500m / min Feed f; 0.1mm / rev Depth of cut d; 0.2mm Time t; 100min (maximum) B. Calculation of life equation Tough pitch copper Instead, use Al-Si (18%) alloy, feed f = 0.10mm / rev, cut d = 0.20mm
The velocity V is changed by and the equation of the VT curve is obtained. In addition,
The VT curve is represented by the general formula (1) VTx = C (constant) (1), and the life is determined by the x value and the C value. The smaller the x value and the larger the C value, the better the life. It is a thing.

上記の測定結果を第1表に示した。またTi−6Al−4V合
金の切削でも焼結ダイヤモンドと同等の特性が得られ
た。
The above measurement results are shown in Table 1. Also, the same characteristics as sintered diamond were obtained when cutting Ti-6Al-4V alloy.

実施例2 刃先部材の基体としてSiC焼結体を使用する他は、実施
例1とまったく同様にして、切削用チップを得、実施例
1と同様に性能テストを行なったところ良好な切削性能
を示した。
Example 2 A cutting tip was obtained in the same manner as in Example 1 except that a SiC sintered body was used as the base of the blade member, and a performance test was conducted in the same manner as in Example 1 to find that good cutting performance was obtained. Indicated.

結果は第1表に示した。The results are shown in Table 1.

実施例3 刃先部材の基体としてSiCを用い、あらかじめ接合面にM
o−Mn−Tiをメタライズした後、次の処理を行なった。
Example 3 SiC was used as the base of the blade member, and M was previously attached to the joint surface.
After metallizing o-Mn-Ti, the following process was performed.

反応室としての石英管の外側に高周波電流用コイルを4
回巻に形成し、その内部には900℃の温度に設定してあ
るSiC基体を設置した。高周波プラズマCVD法に基いて該
コイルに13.56MHzの高周波電流を流すと共に石英管内部
にH2ガス、CH4ガス及びSiH4ガスをそれぞれ200cc/min、
2cc/min及び0.5cc/minの流量で導入して全圧ガスを10To
rrに設定し、プラズマを発生させた。これを3時間続け
たところ黒色の中間層が12μmの厚みで形成することが
できた。この中間層を微小X線回折により測定したとこ
ろ、β−SiCが約60容量%、ダイヤモンドが約40容量%
の組成であることを確認した。
A coil for high frequency current is installed outside the quartz tube as the reaction chamber.
A SiC substrate, which was formed into a winding and whose temperature was set to 900 ° C., was placed inside the wound substrate. A high-frequency current of 13.56 MHz is applied to the coil based on the high-frequency plasma CVD method, and H 2 gas, CH 4 gas, and SiH 4 gas are each supplied at 200 cc / min inside the quartz tube,
Introduced at a flow rate of 2 cc / min and 0.5 cc / min to bring the total pressure gas to 10 To
It was set to rr and plasma was generated. When this was continued for 3 hours, a black intermediate layer could be formed with a thickness of 12 μm. When this intermediate layer was measured by micro X-ray diffraction, β-SiC was about 60% by volume and diamond was about 40% by volume.
It was confirmed that the composition was

次いでH2ガス及びCH4ガスをそれぞれ200cc/min及び2cc/
minの流量にして全圧ガスを20Torrに設定し、他の設定
条件は何ら変更しないでプラズマを発生させた。これを
3時間続けたところ5μmのダイヤモンド膜の形成され
たダイヤモンド被膜の刃先部材を得た。尚、このダイヤ
モンド膜はX線回折及びX線励起光電子分析法、オージ
ェ電子分光のいずれによっても多結晶質ダイヤモンドが
生成していることを確認した。
Next, H 2 gas and CH 4 gas were added at 200 cc / min and 2 cc / min, respectively.
The total pressure gas was set to 20 Torr at a flow rate of min, and plasma was generated without changing other setting conditions. When this was continued for 3 hours, a blade member having a diamond film with a diamond film of 5 μm formed was obtained. It was confirmed that polycrystalline diamond was produced in this diamond film by any of X-ray diffraction, X-ray excited photoelectron analysis and Auger electron spectroscopy.

この刃先部材を接合温度650℃で超硬合金(P10相当)の
チップ母材に銀ロウ付けにより、接合し、切削用チップ
を得た。性能テストをおこなったところ良好な切削性能
であった。
The cutting edge member was joined at a joining temperature of 650 ° C. to a tip base material of cemented carbide (P10 equivalent) by silver brazing to obtain a cutting tip. A performance test showed good cutting performance.

性能テスト結果は第1表に示す。The performance test results are shown in Table 1.

実施例4 チップ刃先部材の基体としてSi3N4焼結体を用い接合面
にMo−Mn−Tiによりメタライズした後次の操作を行なっ
た。H2ガス、SiH4ガス、NH4ガス及びCH4ガスをそれぞれ
100cc/min、10cc/min、10cc/min及び5cc/minの流量にて
反応系に導入して2.45GHzのマイクロ波を用いて30分間
プラズマ発生させ、前記Si3N4膜上に2μmの厚みでSiC
及びSi3N4から成る第1中間層を形成した。次いでH2
ス、CH4ガス及びSiH4ガスをそれぞれ100cc/min、2cc/mi
n及び1cc/minの流量にて導入して1時間プラズマ発生さ
せ、前記第1中間層上に2μmの厚みでダイヤモンド及
びSiCから成る第2中間層を形成した。然る後、H2ガス
及びCH4ガスのそれぞれの流量を100cc/min及び0.5cc/mi
nに設定して5μmの厚みの多結晶ダイヤモンド膜を形
成した。尚、いずれの膜も成膜中基体温度を900℃に設
定した。
Example 4 A Si 3 N 4 sintered body was used as the base body of the chip edge member, and the following operation was performed after metallizing the joint surface with Mo—Mn—Ti. H 2 gas, SiH 4 gas, NH 4 gas and CH 4 gas respectively
It was introduced into the reaction system at a flow rate of 100 cc / min, 10 cc / min, 10 cc / min and 5 cc / min, and plasma was generated for 30 minutes using a microwave of 2.45 GHz, and a thickness of 2 μm was formed on the Si 3 N 4 film. In SiC
And a first intermediate layer of Si 3 N 4 was formed. Next, H 2 gas, CH 4 gas and SiH 4 gas were added at 100 cc / min and 2 cc / mi, respectively.
It was introduced at a flow rate of n and 1 cc / min and plasma was generated for 1 hour to form a second intermediate layer of diamond and SiC with a thickness of 2 μm on the first intermediate layer. After that, the flow rates of H 2 gas and CH 4 gas were changed to 100 cc / min and 0.5 cc / mi, respectively.
A polycrystalline diamond film having a thickness of 5 μm was formed by setting n. The substrate temperature during film formation was set to 900 ° C. for each film.

得られた刃先部材を接合温度650℃で超硬合金(P10相
当)製のチップ母材に銀ロウ付けにより接合し、切削用
チップを得た。性能テストを行なったところ良好な結果
が得られた。
The obtained cutting edge member was joined at a joining temperature of 650 ° C. to a tip base material made of a cemented carbide (P10 equivalent) by silver brazing to obtain a tip for cutting. When the performance test was conducted, good results were obtained.

性能テスト結果は第1表に示した。The performance test results are shown in Table 1.

実施例5 チップ刃先部材の基体としてTiC基サーメット基体を用
いて初めにH2ガス、TiCl4ガス及びC2H4ガスをそれぞれ1
00cc/min、2cc/min及び2cc/minの流量で導入して2.45GH
zのマイクロ波によりプラズマを発生させ、TiC基サーメ
ット基体表面に1μmの厚みでTiCとダイヤモンドから
成る層を形成した。次いで15分毎にTiCl4ガス流量を順
次1.5cc/min、1cc/min、0.5cc/minにまで減らし他のガ
ス流量はそのままにしながら段階的にダイヤモンド含有
比率を大きくした層をそれぞれ2μm,2μm,1μmの厚み
で形成して中間層とした。然る後、TiCl4ガス流量を零
として最上層に6μmの多結晶ダイヤモンド膜を形成し
た。
Example 5 Using a TiC-based cermet substrate as the substrate for the tip member of the tip, H 2 gas, TiCl 4 gas and C 2 H 4 gas were each added to 1
2.45GH by introducing at the flow rate of 00cc / min, 2cc / min and 2cc / min
Plasma was generated by the microwave of z to form a layer of TiC and diamond with a thickness of 1 μm on the surface of the TiC-based cermet substrate. Then, every 15 minutes, the TiCl 4 gas flow rate was sequentially reduced to 1.5 cc / min, 1 cc / min, and 0.5 cc / min, while the other gas flow rates were kept unchanged and the layers with the diamond content increased stepwise were 2 μm and 2 μm respectively The intermediate layer was formed with a thickness of 1 μm. After that, a TiCl 4 gas flow rate was set to zero and a 6 μm polycrystalline diamond film was formed on the uppermost layer.

得られた刃先部材を実施例1と同様にして接合し、切削
用チップを得た。性能テスト結果は第1表に示した。
The obtained cutting edge member was joined in the same manner as in Example 1 to obtain a cutting tip. The performance test results are shown in Table 1.

実施例6 刃先部材の基体として超硬合金を用いて次の操作を行な
った。
Example 6 The following operation was performed using a cemented carbide as the base of the blade member.

高周波電源によりWCをターゲットとしてスパッタリング
を行うべく、H2ガス及びArガスをそれぞれ80cc/min,20c
c/minに設定して導入した。次いでこのスパッタリング
によってWCが超硬合金基体上に蒸着し始めるとArガスの
流量を10cc/hourの速さで減らすと共にCH4ガスを1cc/ho
urの速さで増やしながら導入することによりWCとダイヤ
モンド膜から成る中間層を形成した。次に高周波プラズ
マCVD法に基いて高周波電源よりコイルに13.56MHzの高
周波電流を流すと共にH2ガス及びCH4ガスをそれぞれ100
cc/min及び2cc/minの流量にて導入すると該中間層上に
6μmの多結晶ダイヤモンド膜が形成できた。
80 cc / min and 20 c of H 2 gas and Ar gas, respectively, to perform sputtering targeting WC with a high frequency power source.
It was introduced after setting to c / min. Next, when WC begins to deposit on the cemented carbide substrate by this sputtering, the flow rate of Ar gas is reduced at a rate of 10 cc / hour and CH 4 gas is reduced to 1 cc / ho.
An intermediate layer consisting of WC and diamond film was formed by introducing while increasing at the speed of ur. Next, based on the high-frequency plasma CVD method, a high-frequency current of 13.56 MHz was applied to the coil from a high-frequency power source, and H 2 gas and CH 4 gas were each supplied at
When introduced at a flow rate of cc / min and 2 cc / min, a 6 μm polycrystalline diamond film could be formed on the intermediate layer.

得られた刃先部材を実施例1と同様にして接合し切削用
チップを得た。性能テストを行なったところ良好な結果
が得られた。結果は第1表に示した。
The obtained cutting edge member was joined in the same manner as in Example 1 to obtain a cutting tip. When the performance test was conducted, good results were obtained. The results are shown in Table 1.

実施例7 チップ刃先部材の基体としてMoを用いて、次の操作を行
なった。初めにH2ガス、MoCl5ガス及びCH4ガスをそれぞ
れ250cc/min、10cc/min及び1cc/minの流量で導入して2.
45GHzのマイクロ波によりプラズマを発生させ、次いで1
0分毎にMoCl5ガスを1.5cc/minずつ減少させるとともにC
H4ガスを約0.15cc/minずつ増加して最終的に1時間後Mo
Cl5ガス及びCH4ガスのそれぞれの流量を1cc/min及び2cc
/minにして中間層を形成した。然る後、H2ガス及びCH4
ガスのそれぞれの流量を100cc/min及び2cc/minに設定し
て6μmの多結晶ダイヤモンド膜を形成した。
Example 7 The following operation was performed using Mo as the base material of the tip member of the tip. First, H 2 gas, MoCl 5 gas and CH 4 gas were introduced at a flow rate of 250 cc / min, 10 cc / min and 1 cc / min, respectively 2.
Plasma is generated by 45 GHz microwave, then 1
MoCl 5 gas is decreased by 1.5cc / min every 0 minutes and C
H 4 gas is increased by about 0.15 cc / min and finally after 1 hour Mo
Cl 5 gas and CH 4 gas flow rate of 1cc / min and 2cc respectively
/ min to form an intermediate layer. After that, H 2 gas and CH 4
The flow rate of each gas was set to 100 cc / min and 2 cc / min to form a 6 μm polycrystalline diamond film.

得られた刃先部材を接合温度650℃で、超硬製の工具基
材に銀ロウ付けにより接合し、切削用チップを得た。
The obtained cutting edge member was joined at a joining temperature of 650 ° C. to a tool base made of carbide by silver brazing to obtain a cutting tip.

性能テストを行なったところ良好な性能を示した。A performance test showed good performance.

実施例8 チップ刃先部材の基体としてステンレスを用い次の操作
を行なった。
Example 8 The following operation was performed using stainless steel as the substrate of the tip member of the tip.

実施例6において、ターゲットをFeとし、そして実施例
6と同じ操作方法を行いながらH2ガス及びArガスをそれ
ぞれ80cc/min、20cc/minにして導入しスパッタリングを
行った。次いでこのスパッタリングによってFeがステン
レス基体上に蒸着し始めるとArガスの流量を10cc/hour
の速さで減らすと共にCH4ガスを1cc/hourの速さで増や
しながら導入することによりFe,FeCx及びダイヤモンド
から成る中間層を形成した。その後、高周波プラズマCV
D法に基いて高周波電源よりコイルに13.56MHzの高周波
電流を流すと共にガス導入口よりH2ガス及びCH4ガスを
それぞれ100cc/min及び2cc/minの流量にて導入すると該
中間層上に6μmの多結晶ダイヤモンド膜が形成でき
た。
In Example 6, the target was Fe, and H 2 gas and Ar gas were introduced at 80 cc / min and 20 cc / min, respectively, while performing the same operation method as in Example 6, and sputtering was performed. Then, when Fe starts to be deposited on the stainless steel substrate by this sputtering, the flow rate of Ar gas is changed to 10 cc / hour.
An intermediate layer consisting of Fe, FeCx and diamond was formed by introducing CH 4 gas while increasing the rate of 1 cc / hour while reducing the rate at the same rate. After that, high frequency plasma CV
When a high frequency current of 13.56MHz is applied to the coil from a high frequency power source based on the D method and H 2 gas and CH 4 gas are introduced at a flow rate of 100cc / min and 2cc / min, respectively, from the gas inlet, 6μm on the intermediate layer The polycrystalline diamond film of was able to be formed.

得られた刃先部材を接合温度650℃で超硬合金製のチッ
プ母材に銀ロウ付けにより接合し、切削用チップを得
た。性能テストを行なったところ良好な結果であった。
The obtained cutting edge member was joined at a joining temperature of 650 ° C. to a tip base material made of cemented carbide by silver brazing to obtain a tip for cutting. A performance test was conducted and it was a good result.

結果は第1表に示す。The results are shown in Table 1.

実施例9 実施例1の方法で刃先部材を製造する際反応室内に基体
を第2図のように複数個配置させ、実施例1と同一条件
下で複数の基体に同時に7μmのダイヤモンド膜の形成
を行ない刃先部材を得た。
Example 9 When manufacturing a cutting edge member by the method of Example 1, a plurality of substrates are arranged in a reaction chamber as shown in FIG. 2, and a 7 μm diamond film is simultaneously formed on a plurality of substrates under the same conditions as in Example 1. The cutting edge member was obtained.

得られた刃先部材を実施例1と同一の材質から成る複数
の切削用チップを得た。
A plurality of cutting tips made of the same material as in Example 1 was obtained from the obtained cutting edge member.

この複数の切削用チップの切削テストを行なったとこ
ろ、すべてが第1表に示す結果と変らず、性能が均一で
あることが確認された。
When a cutting test was performed on the plurality of cutting chips, it was confirmed that the results were all the same as shown in Table 1 and that the performance was uniform.

比較例1 実施例1と同じ形状のSi3N4焼結体であって、刃先部
材、チップ母材に分割されない通常の工具に実施例1と
同じ条件下で5μmの多結晶ダイヤモンド被覆を行な
い、切削用チップを得た。
Comparative Example 1 A Si 3 N 4 sintered body having the same shape as that of Example 1 and a normal tool which is not divided into a blade member and a chip base material is coated with 5 μm of polycrystalline diamond under the same conditions as in Example 1. , A cutting tip was obtained.

この切削用チップを実施例1と同様の性能テストを行な
ったところ、実施例1と比較して、特に寿命の点で劣っ
ていた。
When this cutting tip was subjected to the same performance test as in Example 1, it was found to be inferior to Example 1 particularly in terms of life.

結果は第1表に示した。The results are shown in Table 1.

比較例2 超硬合金(WC94%、Co6%)からなる実施例1と同形状
の切削用チップを用いて、同様の性能テストを行なった
ところ、本発明よりも劣った性能を示した。結果は第1
表に示す。
Comparative Example 2 The same performance test was conducted using a cutting tip made of cemented carbide (WC94%, Co6%) and having the same shape as that of Example 1, and showed a performance inferior to that of the present invention. The result is first
Shown in the table.

参考例 実施例1の工具と同形状のSi3N4焼結体から成り、切削
用刃部に超高圧,超高温下で焼結されたダイヤモンド焼
結体を接合してなる切削用チップを用いて、同様の切削
テストを行なったところ良好な結果が得られた。
Reference Example A cutting tip made of a Si 3 N 4 sintered body having the same shape as that of the tool of Example 1, and a diamond sintered body that is sintered under ultrahigh pressure and ultrahigh temperature is joined to the cutting blade. When the same cutting test was performed using the same, good results were obtained.

結果は第1表に示す。The results are shown in Table 1.

(発明の効果) 本発明は、上述したように切削用チップとして刃先部材
とチップ母材とが分割される構造のものを用い、刃先部
材のみに対し、ダイヤモンド膜を形成させた構造となす
ことにより、従来のダイヤモンド被覆工具に比較して
も、性能にすぐれ、しかも量産性に優れたチップを得る
ことができる。
(Effect of the Invention) The present invention uses a cutting tip having a structure in which a blade member and a chip base material are divided as described above, and has a structure in which a diamond film is formed only on the blade member. As a result, it is possible to obtain a chip having excellent performance and mass productivity even when compared with a conventional diamond-coated tool.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の切削チップの分解斜視図であり、第
2図は膜形成時の基体の配置を示す図である。 1は切削用チップ、2は刃先部材、3はチップ母材、4
は刃部、5は刃先用基体、6はダイヤモンド膜をそれぞ
れ示す。
FIG. 1 is an exploded perspective view of the cutting tip of the present invention, and FIG. 2 is a view showing the arrangement of the base during film formation. 1 is a cutting tip, 2 is a cutting edge member, 3 is a chip base material, 4
Indicates a blade portion, 5 indicates a blade tip substrate, and 6 indicates a diamond film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】チップ刃先部材と、該チップ刃先部材を接
合支持するチップ母材とにより構成され、前記チップ刃
先部材の少なくとも刃部に直接あるいは中間層を介して
気相成長法により厚み0.1〜100μmのダイヤモンド膜が
形成されていることを特徴とする切削用チップ。
1. A chip edge member and a chip base material for joining and supporting the chip edge member, wherein the chip edge member has a thickness of 0.1 to at least directly on the blade portion or through an intermediate layer by a vapor phase growth method. A cutting tip having a 100 μm diamond film formed.
【請求項2】前記チップ刃先部材が、炭化珪素、窒化珪
素のいずれかを主体とする焼結体から成ることを特徴と
する特許請求の範囲第1項記載の切削用チップ。
2. The cutting tip according to claim 1, wherein the tip blade member is made of a sintered body containing silicon carbide or silicon nitride as a main component.
JP59279175A 1984-12-28 1984-12-28 Cutting tip Expired - Lifetime JPH0710443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279175A JPH0710443B2 (en) 1984-12-28 1984-12-28 Cutting tip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279175A JPH0710443B2 (en) 1984-12-28 1984-12-28 Cutting tip

Publications (2)

Publication Number Publication Date
JPS61159302A JPS61159302A (en) 1986-07-19
JPH0710443B2 true JPH0710443B2 (en) 1995-02-08

Family

ID=17607488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279175A Expired - Lifetime JPH0710443B2 (en) 1984-12-28 1984-12-28 Cutting tip

Country Status (1)

Country Link
JP (1) JPH0710443B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6392345A (en) * 1986-10-07 1988-04-22 信越化学工業株式会社 Medical incision and pressure insert instrument and production thereof
JPH0766930B2 (en) * 1989-02-27 1995-07-19 住友電気工業株式会社 Bonding tools
KR0145062B1 (en) * 1989-06-15 1998-07-15 스즈끼 테이이찌 Diamond-coated member
JPH082522B2 (en) * 1989-08-07 1996-01-17 株式会社不二越 Diamond-coated wood processing cutter blade
EP0504424B1 (en) * 1990-10-05 1999-12-15 Sumitomo Electric Industries, Ltd. Hard material clad with diamond, throwaway chip, and method of making said material and chip
US5855974A (en) * 1993-10-25 1999-01-05 Ford Global Technologies, Inc. Method of producing CVD diamond coated scribing wheels

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669305A (en) * 1979-11-07 1981-06-10 Mitsubishi Metal Corp Composite sintered part piece for cutting edge of cutting tip
JPS59170262A (en) * 1983-03-14 1984-09-26 Mitsubishi Metal Corp Surface-coated tool member with superior wear resistance

Also Published As

Publication number Publication date
JPS61159302A (en) 1986-07-19

Similar Documents

Publication Publication Date Title
EP0503822B2 (en) A diamond- and/or diamond-like carbon-coated hard material
JPH01153228A (en) Vapor phase composite method for producing diamond tool
JPH0535221B2 (en)
JPH0971498A (en) Diamond-coated article and its production
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
JPH03197677A (en) Diamond-coated tool and its production
US5858480A (en) Ceramic-based substrate for coating diamond and method for preparing substrate for coating
JP4142955B2 (en) Surface coated cutting tool
JPH0710443B2 (en) Cutting tip
JP3353239B2 (en) Method for producing diamond-coated member
JP3260986B2 (en) Member with diamond composite film
US5567522A (en) Diamond cutting tool and method of manufacturing the same
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JP2794111B2 (en) Diamond coated cutting tool
JPS62107068A (en) Diamond coated cutting tool
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
JPH0623431B2 (en) Hard coating coated cutting tool parts
JPH02223437A (en) Polycrystalline diamond material and manufacture thereof
JP3189372B2 (en) Bonding tool and manufacturing method thereof
JPH04261703A (en) Polycrystal diamond cutting tool
JPH05214532A (en) Coated sintered body
JPS62107067A (en) Diamond coated cutting tool
JP3314119B2 (en) Diamond composite member and method of manufacturing the same
JPH0774449B2 (en) Method for producing diamond-coated hydrogen-brittle metal
JPH0722586B2 (en) Dental cutting tool manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term