JPH0722586B2 - Dental cutting tool manufacturing method - Google Patents

Dental cutting tool manufacturing method

Info

Publication number
JPH0722586B2
JPH0722586B2 JP2098413A JP9841390A JPH0722586B2 JP H0722586 B2 JPH0722586 B2 JP H0722586B2 JP 2098413 A JP2098413 A JP 2098413A JP 9841390 A JP9841390 A JP 9841390A JP H0722586 B2 JPH0722586 B2 JP H0722586B2
Authority
JP
Japan
Prior art keywords
film
gas
dental
microwave
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2098413A
Other languages
Japanese (ja)
Other versions
JPH03295552A (en
Inventor
俊宏 津森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2098413A priority Critical patent/JPH0722586B2/en
Publication of JPH03295552A publication Critical patent/JPH03295552A/en
Publication of JPH0722586B2 publication Critical patent/JPH0722586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は歯科治療あるいは歯科技工用に用いる歯科用切
削具の製造法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to an improvement in a method for manufacturing a dental cutting tool used for dental treatment or dental technique.

(従来の技術) 従来歯科用切削具としては、鉄系の合金鋼、あるいは超
硬合金、超微粒子超硬合金またはサーメットを素材と
し、切削刃および刃溝をその頭部Aに持つ第1図のよう
な構成の歯科用バーが使用されている。ここで被切削物
である人歯は、エナメル質の場合ヌープ硬さで343前後
と一般のガラス並の高い硬度を有している為、切削にお
ける切削刃の耐久性を乏しく、作業中に急速な切削性能
の劣化を生じるという欠点がある。また、金属基材の表
面にダイヤモンドパウダーをニッケルまたはクロムメッ
キを用いて強固に電着させた切削面を頭部Bにもつ第2
図のような構成の歯科用ダイヤモンドポイントも用いら
れ、このものはエナメル質のように高い硬度を有してい
る被切削物の研削には適するが、ヌープ硬さで68前後と
より軟質の人歯象牙質の研削では歯科用バーと異なり、
切り屑を排出する刃溝を持たない為、目詰まりにより切
削性能が低下するという不利がある。このような切削性
能の劣化した切削具を継続して使用すると、作業性が低
下するばかりでなく、多量の摩擦熱と微振動が生じ、こ
の発熱は患者に不快感や疼痛を与え、また、微振動は二
次カリエスの発生を誘起する可能性がある。さらに最近
においてはエアタービン、エアベアリングを使用した高
速回転型のハンドピースが普及するのに伴い、歯科用切
削具にはより一層の耐久性が求められるようになってき
た。
(Prior Art) A conventional dental cutting tool is made of ferrous alloy steel, cemented carbide, ultrafine grained cemented carbide or cermet, and has a cutting blade and a groove in its head A. A dental bar having the following configuration is used. Here, the human tooth, which is the object to be cut, has a Knoop hardness of around 343 in the case of enamel, which is as high as that of ordinary glass, so the durability of the cutting blade during cutting is poor, and it rapidly increases during work. However, there is a drawback in that the cutting performance is deteriorated. In addition, the head B has a cutting surface on which a diamond powder is strongly electrodeposited by nickel or chrome plating on the surface of the metal base material.
A dental diamond point with the configuration shown in the figure is also used.This is suitable for grinding objects with high hardness such as enamel, but with Knoop hardness of around 68, it is more flexible. Unlike dental bars, in grinding dentin,
Since there is no blade groove for discharging chips, there is a disadvantage that the cutting performance deteriorates due to clogging. If such a cutting tool with deteriorated cutting performance is continuously used, not only the workability is deteriorated, but also a large amount of frictional heat and slight vibration are generated, and this fever causes discomfort and pain to the patient, and Micro-vibration may induce the generation of secondary caries. Furthermore, with the recent widespread use of high-speed rotating handpieces that use air turbines and air bearings, dental cutting tools have been required to have even higher durability.

(発明が解決しようとする課題) 上述した不利、欠点を解決し、被切削物の硬度を問わず
終始安定した研削性能を維持し、耐久性に優れた歯科用
切削具として金属製歯科用バーの表面にダイヤモンド薄
膜を形成することが考えられたが、鉄系の合金鋼上にダ
イヤモンド膜を形成することは極めて困難である。そこ
で、超硬合金、超微粒子超硬合金あるいはサーメットを
用いてもダイヤモンド膜とは通常その密着性が悪いので
種々の中間膜を介して密着性を改善しようとする技術が
開発されている。例えば特開昭58-126972号公報には、
セラミック系の中間膜を形成した後、ダイヤモンド薄膜
を形成することが記載されている。また、特開昭59-159
981号公報には、金属の中間膜上にダイヤモンド薄膜を
形成してなる工具が記載されている。しかしながらこれ
らのいづれの方法でも、中間膜を形成した後、ダイヤモ
ンド薄膜を形成するという分離独立した工程を組合わせ
ることにより成り立っているため、各層間の密着性が必
ずしも充分でなく、これらの技術により実用的な歯科用
切削具を得ることは難しい。
(Problems to be Solved by the Invention) The above-mentioned disadvantages and drawbacks are solved, a stable metal grinding performance is maintained from beginning to end regardless of the hardness of a work piece, and a metal dental bar as a highly durable dental cutting tool. Although it was considered to form a diamond thin film on the surface of, the formation of a diamond film on iron-based alloy steel is extremely difficult. Therefore, even if a cemented carbide, an ultrafine particle cemented carbide or a cermet is used, its adhesion to a diamond film is usually poor, so a technique has been developed to improve the adhesion through various intermediate films. For example, in JP-A-58-126972,
It is described that a diamond thin film is formed after forming a ceramic-based intermediate film. In addition, JP-A-59-159
Japanese Patent Publication No. 981 describes a tool in which a diamond thin film is formed on a metal intermediate film. However, since any of these methods consists of combining the separate and independent steps of forming the diamond film after forming the intermediate film, the adhesion between the layers is not always sufficient, and these techniques are not applicable. It is difficult to obtain a practical dental cutting tool.

本発明は、被切削物の硬度を問わず、終始安定した切削
性能を有し、かつ耐久性に優れた歯科用切削具を提供し
ようとするものである。
The present invention is intended to provide a dental cutting tool which has stable cutting performance from the beginning to the end regardless of the hardness of the object to be cut and has excellent durability.

(課題を解決するための手段) 本発明者等は、このような課題を解決すべく、切削刃表
面へのダイヤモンド薄膜形成法について種々検討した結
果、超硬合金、超微粒子超硬合金あるいはサーメット基
材の表面に、Wよりなる薄膜を被覆した後、炭素源を含
有するマイクロ波励起プラズマガスにより浸炭させてWC
とし、それと同時に基材表面に焼結密着させてWCよりな
る中間膜とし、引続き同装置内で中間膜上にダイヤモン
ド状炭素多結晶層を付着形成せしめた歯科用切削具によ
れば前記諸課題を解決することを見出し本発明を完成す
るに至った。その要旨は、超硬合金、超微粒子超硬合金
およびサーメットの内から選ばれた1種の材質からなる
歯科用バーを基材とし、その頭部の刃溝を有する切削刃
表面にWを0.01〜1.0μmの厚さに蒸着した後、該蒸着
膜を水素および炭化水素ガスを原料としたマイクロ波励
起プラズマガス中で浸炭させてWCとし、それと同時に基
材表面に焼結密着させてWCよりなる中間膜とし、さらに
該中間膜の表面にダイヤモンド状炭素多結晶膜を成膜す
ることを特徴とする歯科用切削具の製造法、および超硬
合金、超微粒子超硬合金およびサーメットの内から選ば
れた1種の材質からなる切削刃基材表面に、厚さ0.01〜
1.0μmのWよりなる蒸着膜を被覆した後、水素および
炭化水素ガスを原料としたマイクロ波励起プラズマガス
中で浸炭させてWC中間膜とし、それと同時にプラズマガ
スの熱輻射によりWC中間膜と基材表面を1,000〜1,500℃
の範囲に加熱して焼結密着させ、さらにこの中間膜の表
面に水素対炭化水素ガスの体積混合比率が50:1〜200:1
である混合ガスを原料としたマイクロ波励起プラズマに
よる気相沈積法によりダイヤモンド状炭素多結晶膜を成
膜させてなることを特徴とする歯科用切削具の製造法に
ある。
(Means for Solving the Problem) In order to solve such a problem, the inventors of the present invention have variously studied a method for forming a diamond thin film on the surface of a cutting blade, and as a result, a cemented carbide, an ultrafine particle cemented carbide or a cermet After coating a thin film of W on the surface of the base material, it is carburized by a microwave-excited plasma gas containing a carbon source to produce WC.
At the same time, the dental cutting tool in which the diamond-like carbon polycrystal layer is formed by adhering the intermediate film made of WC by sinter-adhering to the surface of the substrate at the same time and subsequently forming the diamond-like carbon polycrystal layer on the intermediate film has the above-mentioned problems. The present invention has been completed and the present invention has been completed. The gist is that a dental bar made of one kind of material selected from cemented carbide, ultrafine particle cemented carbide and cermet is used as a base material, and W is 0.01 on the surface of a cutting blade having a groove on its head. After vapor deposition to a thickness of ~ 1.0 μm, the deposited film is carburized in microwave-excited plasma gas using hydrogen and hydrocarbon gas as raw material to form WC. And a diamond-like carbon polycrystal film is formed on the surface of the intermediate film, and a method for manufacturing a dental cutting tool, and from among cemented carbide, ultrafine particle cemented carbide and cermet Thickness of 0.01 ~ on the surface of the cutting blade substrate made of one selected material
After coating a vapor-deposited film of W of 1.0 μm, it is carburized in a microwave-excited plasma gas using hydrogen and hydrocarbon gas as a raw material to form a WC intermediate film, and at the same time, the WC intermediate film is formed by thermal radiation of the plasma gas. 1,000 to 1,500 ℃ on the material surface
To sinter and adhere to the surface of the interlayer film and the volume ratio of hydrogen to hydrocarbon gas is 50: 1 to 200: 1.
The method for producing a dental cutting tool is characterized in that a diamond-like carbon polycrystal film is formed by a vapor deposition method using microwave-excited plasma using the mixed gas as a raw material.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明の歯科用切削具は、JIS B 4053に規定されている
超硬合金、超微粒子超硬合金あるいはサーメットより選
ばれた材質からなる歯科用バーを基材とするもので、そ
の合金組成は、超硬合金にあっては、金属相としてCoを
含有する硬質相がWCからなる焼結体、超微粒子超硬合金
ではW、Ti、Ta、VおよびCrの各金属カーバイドの内1
種以上を硬質相とし、金属相としてCoを含有する焼結体
である。また、サーメットは、硬質相にTi,TaおよびNb
の各炭化物および/または各窒化物を、金属相にCoまた
はNiを使用した焼結体である。以上3種類の合金組成の
金属相であるCoまはNi含有率は5〜15重量%が好まし
い。
The dental cutting tool of the present invention is based on a dental bar made of a material selected from cemented carbide defined in JIS B 4053, ultrafine particle cemented carbide or cermet, and its alloy composition is In the case of cemented carbide, a hard body containing Co as a metal phase is a sintered body composed of WC, and in the case of ultrafine grained cemented carbide, among the metal carbides of W, Ti, Ta, V and Cr 1
A sintered body containing at least one kind of hard phase and Co as a metal phase. Cermet has a hard phase containing Ti, Ta and Nb.
Is a sintered body in which Co or Ni is used for each metal carbide and / or each nitride in the metal phase. The content of Co or Ni, which is the metal phase of the above three alloy compositions, is preferably 5 to 15% by weight.

次に、歯科用切削具の製造法について述べる。先ず、上
記各合金組成に相当する金属粉末、金属炭化物または窒
化物粉末に有機溶剤、パラフィン等を混合し充分混練
し、これを金型とプレスにより例えば第1図のような頭
部に刃溝をもつ切削刃はを有する歯科用切削具に成形す
る。次いで800〜1,000℃の水素気流中で予備焼結し、研
削加工により切削刃および刃溝を施し、最後に1,350〜
1,550℃の温度で本焼結を行ない、歯科用バー基材とし
て仕上げられる。続いてこの歯科用バー基材を真空蒸着
器内に設置し、系内を2×10-5〜1×10-7Torrまで減圧
した状態でW膜を厚さが0.01〜1.0μmとなるよう蒸
着、被覆する。以上の焼結体の製造法および真空蒸着法
はそれぞれ公知の方法として知られているもので良い。
Next, a method for manufacturing a dental cutting tool will be described. First, a metal powder, a metal carbide or a nitride powder corresponding to each of the above alloy compositions is mixed with an organic solvent, paraffin, etc. and sufficiently kneaded. A cutting blade having a is formed into a dental cutting tool having. Then pre-sinter in a hydrogen stream at 800 to 1,000 ℃, give a cutting edge and a groove by grinding, and finally 1,350 to
Main sintering is carried out at a temperature of 1,550 ° C, and finished as a dental bar base material. Then, this dental bar base material was placed in a vacuum vapor deposition device, and the W film had a thickness of 0.01 to 1.0 μm with the system pressure reduced to 2 × 10 −5 to 1 × 10 −7 Torr. Vapor deposition and coating. The above-described method for producing a sintered body and the vacuum vapor deposition method may be known as known methods.

本発明の最大の特徴は、このW被覆超硬合金、超微粒子
超硬合金またはサーメット製歯科用バー基材の表面を浸
炭、焼結処理を加えてWC中間膜とした後、ダイヤモンド
状多結晶炭素を付着させ、被切削材を選ぶことなく、長
期間の切削耐久性を保ったことである。この浸炭、焼結
処理とは、炭化水素ガスをマイクロ波によりプラズマ化
して活性な炭素分子を作り、これをW蒸着膜と反応させ
てWCとし、同時にプラズマによる加熱でこのWCと基材表
面とを焼結一体化させる方法である。この浸炭、焼結に
より得られたWC相は、該反応時に基材表面のCo成分がWC
相に拡散移動して基材表面と強固に結合する。原料とし
て炭素源にメタン、エタン、プロパン等の炭化水素ガス
と水素ガスとの混合ガスを使用する。この混合ガスの体
積比率は水素:炭化水素=50:1〜600:1が良く、第3図
に示した装置を使用して処理する。この装置の石英ガラ
ス製反応器3の内部にある基材支持台2の上に未加工の
歯科用バーを設置(マイクロ波に対して頭部のみ露出さ
せ、柄部は遮蔽する)した後、器内を1×10-5〜1×10
-3Torrとなるように真空ポンプ5で減圧する。次いでこ
の反応器内に前述した比率の炭化水素ガスおよび水素ガ
スを夫々のボンベ10、11から導入し混合しつつ流通させ
る。反応器内の圧力は、器内のバーの温度およびバーの
表面のW膜への浸炭の度合いに大きな影響を与えるが、
本発明においては2〜50Torrの範囲となるように圧力調
整弁6により調整を行なう。マグネトロン発振器13より
発振され、2.45GHz用方型導波管12中に伝播してきた周
波数2.45GHzのマイクロ波およびマイクロ波反射板4に
より反射された該マイクロ波の反射波が反応器内を流通
する混合ガスに吸収されることによりプラズマ火炎が生
じる。このマイクロ波反射板4は、反応器後方の2.45GH
z用方型導波管中を約7cmの範囲で可動し、バーの廻りに
発生するプラズマ火炎の位置を調整することができる。
また、インピーダンス整合用スタブ7は、マイクロ波の
混合ガスへの効果的な吸収を意図して、2.45GHz用方型
導波管中に挿入されている金属製の棒体であり、その挿
入深度は自動インピーダンス整合器8により可変とされ
る。マイクロ波高周波電力は、バーの表面温度が800〜
1,500℃、好ましくは1,000〜1,500℃の範囲となるよう
に調整される。バーの温度が800℃未満ではプラズマに
より浸炭生成したWCとバー基材との焼結反応が遅く、ま
た1,500℃を越えると基材表面より移動してくるCoが多
くなり過ぎ、このCoが活性な炭素分子と反応することで
表面にグラファイト成分が付着してしまう為、後述のダ
イヤモンド状多結晶炭素膜の生成が難しくなる。W蒸着
膜への充分な浸炭を行なう為にはW蒸着膜の厚さはあま
り厚くては困難で1.0μm未満であることが好ましい。
The greatest feature of the present invention is that the surface of the W-coated cemented carbide, ultrafine grained cemented carbide or cermet dental bar substrate is carburized and sintered to give a WC intermediate film, and then diamond-like polycrystal. It means that carbon is adhered and long-term cutting durability is maintained without selecting the material to be cut. This carburizing and sintering treatment is performed by converting hydrocarbon gas into plasma by microwaves to create active carbon molecules, which are reacted with W vapor deposition film to form WC, and at the same time, by heating with plasma, this WC and substrate surface Is a method of sintering and integrating. In the WC phase obtained by this carburization and sintering, the Co component on the surface of the base material is WC during the reaction.
It diffuses and moves into the phase and firmly bonds to the surface of the substrate. As a raw material, a mixed gas of hydrocarbon gas such as methane, ethane and propane and hydrogen gas is used as a carbon source. The volume ratio of this mixed gas is preferably hydrogen: hydrocarbon = 50: 1 to 600: 1, and is treated using the apparatus shown in FIG. After setting a raw dental bar on the substrate support base 2 inside the quartz glass reactor 3 of this device (only the head is exposed to the microwave and the handle is shielded), 1 × 10 -5 to 1 × 10
The pressure is reduced by the vacuum pump 5 so that the pressure becomes −3 Torr. Then, the hydrocarbon gas and the hydrogen gas in the above-mentioned ratios are introduced into the reactor from the respective cylinders 10 and 11, and are mixed and circulated. The pressure in the reactor has a great influence on the temperature of the bar in the reactor and the degree of carburization of the W film on the surface of the bar,
In the present invention, the pressure is adjusted by the pressure adjusting valve 6 so as to be in the range of 2 to 50 Torr. The microwave of the frequency of 2.45 GHz oscillated by the magnetron oscillator 13 and propagated in the rectangular waveguide 12 for 2.45 GHz and the reflected wave of the microwave reflected by the microwave reflection plate 4 flow in the reactor. A plasma flame is generated by being absorbed by the mixed gas. This microwave reflector 4 is 2.45GH behind the reactor.
The z-shaped waveguide can be moved within a range of about 7 cm, and the position of the plasma flame generated around the bar can be adjusted.
The impedance matching stub 7 is a metal rod inserted in the 2.45 GHz rectangular waveguide for the purpose of effectively absorbing microwaves into the mixed gas. Is made variable by the automatic impedance matching device 8. Microwave high-frequency power has a bar surface temperature of 800-
The temperature is adjusted to 1,500 ° C, preferably 1,000 to 1,500 ° C. If the bar temperature is less than 800 ° C, the sintering reaction between WC carburized by plasma and the bar substrate is slow, and if it exceeds 1,500 ° C, too much Co migrates from the substrate surface and this Co is active. Since a graphite component adheres to the surface by reacting with various carbon molecules, it becomes difficult to form a diamond-like polycrystalline carbon film described later. In order to sufficiently carburize the W vapor-deposited film, it is difficult for the W vapor-deposited film to be too thick, and it is preferably less than 1.0 μm.

続いて前述の浸炭、焼結により形成されたWC中間膜上
に、ダイヤモンド状多結晶炭素膜を形成させる。このダ
イヤモンド状炭素膜は公知の方法であるマイクロ波励起
プラズマによる気相沈積法によれば良いが、本発明に適
した成膜条件としては、炭素源をメタン、エタン、プロ
パン等の炭化水素ガスとし、水素ガスとの混合ガスを使
用する。この混合ガスの体積比率は炭化水素ガス:水素
=1:50〜1:200がよい。この炭化水素ガス/水素の比率
が1/200未満であると、沈積するダイヤモンド状炭素膜
を構成する結晶粒塊の粗大化が生じ、形成されたダイヤ
モンド状炭素膜の剥離強度が低下してしまい、逆に1/50
を超えると、形成されたダイヤモンド膜中にグラファイ
ト成分の混入が目立つようになり、切削時の耐久性を向
上させるに足る膜硬度が得られなくなる。このマイクロ
波励起プラズマ沈積法はWC中間膜の形成と同様、第3図
に示した装置を使用して実施する。前述の浸炭焼結処理
に引続き、反応器内に前述した比率の炭化水素ガスおよ
び水素ガスを夫々のボンベ10、11から導入、混合しつつ
流通させる。反応器内の圧力は反応器中のバーの温度お
よび形成されるダイヤモンド状炭素膜を構成する結晶の
形状と組成に大きく影響を与えるが、本発明においては
15〜10Torrの範囲となるように圧力調整弁6によって調
整する。このバーの表面温度は800〜1,100℃となるよう
にマイクロ波高周波電力を調整する。バーの温度が800
℃未満ではダイヤモンド状炭素膜の形成が遅く、概ね1,
100℃以上の温度では形成されたダイヤモンド膜中にグ
ラファイト成分の混入が目立つようになるので、反応中
のバーの温度は800℃〜1,100℃の範囲とするのが好まし
い。このような反応条件下では、炭化水素ガスが水素を
主体としたプラズマにより熱分解され、WC中間膜上に均
一なダイヤモンド状多結晶炭素膜として形成される。
Subsequently, a diamond-like polycrystalline carbon film is formed on the WC intermediate film formed by the above carburization and sintering. This diamond-like carbon film may be formed by a vapor deposition method using microwave-excited plasma, which is a known method, and the film forming conditions suitable for the present invention are that the carbon source is a hydrocarbon gas such as methane, ethane or propane. And a mixed gas with hydrogen gas is used. The volume ratio of this mixed gas is preferably hydrocarbon gas: hydrogen = 1: 50 to 1: 200. If this hydrocarbon gas / hydrogen ratio is less than 1/200, the crystal grain agglomerates forming the diamond-like carbon film to be deposited become coarse, and the peel strength of the formed diamond-like carbon film decreases. , 1/50 on the contrary
If it exceeds, the mixture of the graphite component becomes conspicuous in the formed diamond film, and it becomes impossible to obtain a film hardness sufficient to improve durability during cutting. This microwave-excited plasma deposition method is carried out using the apparatus shown in FIG. 3, as in the formation of the WC intermediate film. Subsequent to the above carburizing and sintering treatment, the hydrocarbon gas and the hydrogen gas in the above-described ratios are introduced into the reactors 10 and 11 from the respective cylinders 10, and are mixed and circulated. Although the pressure in the reactor has a great influence on the temperature of the bar in the reactor and the shape and composition of the crystals forming the diamond-like carbon film formed, in the present invention,
The pressure is adjusted by the pressure adjusting valve 6 so as to be in the range of 15 to 10 Torr. The microwave high frequency power is adjusted so that the surface temperature of this bar is 800-1,100 ℃. Bar temperature is 800
Below ℃, the diamond-like carbon film formation is slow,
Since the graphite component becomes conspicuous in the formed diamond film at a temperature of 100 ° C. or higher, the temperature of the bar during the reaction is preferably in the range of 800 ° C. to 1,100 ° C. Under such reaction conditions, the hydrocarbon gas is thermally decomposed by the plasma containing hydrogen as a main component, and is formed as a uniform diamond-like polycrystalline carbon film on the WC intermediate film.

以下、本発明の実施態様を実施例を挙げて具体的に説明
するが、本発明はこれらに限定されるものではない。
Hereinafter, the embodiments of the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.

(実施例1〜9、比較例1〜5) Coを10重量%、Tiを20重量%含有し、他がWCよりなる超
硬合金を用いてJIS T 5201のストレートハンドピース用
6枚刃の形状を有する歯科用バー(第1図)を作成し
た。次にこのバーをアセトンにより洗浄後真空蒸着器内
に設置し、系内を3×10-6Torrまで減圧した後、赤外線
ランプによりバー表面が200℃となるよう加熱した。次
に電子ビームによりWを溶融、蒸発させ、バー刃面での
W蒸着膜の膜厚が、第1表に記載の所定の膜厚となるよ
うに20分から60分蒸着した。次にこのバーを反応器内に
設置し、反応器内を0.01Torrまで減圧した後、水素およ
びメタンガスの比率が200:1の割合となるよう調整した
混合ガスを100cc/minの流量で系内に導入流通させつ
つ、系内圧力を8Torrに維持した。この雰囲気下でマグ
ネトロンから発振した周波数2.45GHzのマイクロ波を該
反応器内に導いてバー周辺にプラズマ火炎を発生させ、
バーが1020℃となるようマグネトロンの発振出力を調整
し、3時間にわたり浸炭、焼結処理を行なった。この
後、プラズマ火炎を維持した状態で、水素およびメタン
ガスの比率を第1表に記載の所定の割合となるように調
整し、また系内圧力を30Torrにし、バーの温度が850℃
となるようマグネトロン発振出力を調整し、15時間にわ
たり反応を行なわせ、ダイヤモンド状炭素膜を形成し
た。このようにして得られた歯科用切削具について、JI
S T 5201の側刃切削試験に準じて、連続した二度にわた
る切削試験を行ない、切削に要した時間および切削後の
刃面の状態を調べ耐久試験とした。
(Examples 1 to 9 and Comparative Examples 1 to 5) Using a cemented carbide containing 10% by weight of Co and 20% by weight of Ti, the other of which is WC A dental bar having a shape (Fig. 1) was prepared. Next, this bar was washed with acetone, placed in a vacuum evaporator, the pressure in the system was reduced to 3 × 10 −6 Torr, and the bar surface was heated to 200 ° C. by an infrared lamp. Next, W was melted and evaporated by an electron beam, and W was vapor-deposited for 20 to 60 minutes so that the film thickness of the W vapor-deposited film on the bar blade surface became the predetermined film thickness shown in Table 1. Next, this bar was installed in the reactor, the pressure inside the reactor was reduced to 0.01 Torr, and a mixed gas adjusted so that the ratio of hydrogen and methane gas was 200: 1 was introduced in the system at a flow rate of 100 cc / min. The system pressure was maintained at 8 Torr while being introduced and distributed in. In this atmosphere, a microwave of frequency 2.45 GHz oscillated from a magnetron was introduced into the reactor to generate a plasma flame around the bar,
The oscillation output of the magnetron was adjusted so that the bar temperature was 1020 ° C., and carburization and sintering were performed for 3 hours. After that, while maintaining the plasma flame, the ratio of hydrogen and methane gas was adjusted to the predetermined ratio shown in Table 1, the system pressure was set to 30 Torr, and the bar temperature was 850 ° C.
The magnetron oscillation output was adjusted so that the reaction was carried out for 15 hours to form a diamond-like carbon film. Regarding the dental cutting tool obtained in this way, JI
In accordance with the side edge cutting test of ST 5201, two consecutive cutting tests were performed, and the time required for cutting and the state of the blade surface after cutting were examined and used as a durability test.

[切削試験条件] 被切削材:アクリル板(板厚1mm)、切削回転数:2,000r
pm、側刃切削距離:第1、第2回切削とも各10mm、切削
荷重:0.5kgf。
[Cutting test conditions] Material to be cut: Acrylic plate (plate thickness 1mm), Cutting speed: 2,000r
pm, side edge cutting distance: 10 mm each for the first and second cutting, cutting load: 0.5 kgf.

薄膜法によるX線回折を用いて調べた浸炭、焼結により
形成されたWC中間膜の組成を、この耐久試験の結果と合
わせて第1表に併記した。この組成は浸炭、焼結により
得られたWC相に、該反応時に基材表面のCo成分がWC相に
拡散移動して基材表面と強固に結合していることを示し
ている。これより本発明による歯科用切削具が二度にわ
たる切削試験のいずれにおいても20秒以内で切削を完了
することが判かる。また、本発明による歯科用切削具が
従来の歯科用切削具である比較例1および5に対しより
安定した切削力と耐久性を有すること が明らかである。
The composition of the WC intermediate film formed by carburizing and sintering, which was examined by X-ray diffraction by the thin film method, is also shown in Table 1 together with the results of this durability test. This composition shows that the Co component on the surface of the base material diffuses and migrates to the WC phase during the reaction in the WC phase obtained by carburization and sintering, and is firmly bonded to the surface of the base material. From this, it can be seen that the dental cutting tool according to the present invention completes cutting within 20 seconds in both cutting tests. Further, the dental cutting tool according to the present invention has more stable cutting force and durability as compared with the conventional dental cutting tools of Comparative Examples 1 and 5. Is clear.

(発明の効果) 本発明によれば従来のものと比較してより安定した切削
力と、優れた耐久性を有する歯科用切削具を操作するこ
とができ、歯科医療の上でその利用価値は極めて高い。
(Effects of the Invention) According to the present invention, it is possible to operate a dental cutting tool having more stable cutting force and excellent durability as compared with the conventional one, and its utility value in dental care is high. Extremely high.

【図面の簡単な説明】[Brief description of drawings]

第1図は切削刃および刃溝を有する歯科用バーの側面
図、第2図はダイヤモンドポイントの側面図である。第
3図はマイクロ波プラズマ気相沈積法反応装置の概念図
である。主な記号は次の通りである。 A……歯科用バー頭部(切削刃および刃溝) B……歯科用ダイヤモンドポイント頭部(研削面) 1……歯科用バー、2……基材支持台 3……反応管、4……反射板 5……真空ポンプ、6……圧力調整弁 7……インピーダンス整合用スタブ 8……自動インピーダンス整合器 9……流量調節弁 10……炭化水素ガスボンベ 11……水素ガスボンベ 12……2.45GHz用方型導波管 13……マグネトロン発振器
FIG. 1 is a side view of a dental bar having a cutting blade and a groove, and FIG. 2 is a side view of a diamond point. FIG. 3 is a conceptual diagram of a microwave plasma vapor deposition method reactor. The main symbols are as follows. A: Dental bar head (cutting blade and groove) B ... Dental diamond point head (grinding surface) 1 ... Dental bar, 2 ... Substrate support 3 ... Reaction tube, 4 ... … Reflector 5 …… Vacuum pump, 6 …… Pressure control valve 7 …… Impedance matching stub 8 …… Automatic impedance matching device 9 …… Flow control valve 10 …… Hydrocarbon gas cylinder 11 …… Hydrogen gas cylinder 12 …… 2.45 Rectangular waveguide for GHz 13 ... Magnetron oscillator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】超硬合金、超微粒子超硬合金およびサーメ
ットの内から選ばれた1種の材質からなる歯科用バーを
基材とし、その頭部の刃溝を有する切削刃表面にタング
ステン(W)を0.01〜1.0μmの厚さに蒸着した後、該
蒸着膜を水素および炭化水素ガスを原料としたマイクロ
波励起プラズマガス中で浸炭させてタングステンカーバ
イド(WC)とし、それと同時に基材表面に焼結密着させ
てWCよりなる中間膜とし、さらに該中間膜の表面にダイ
ヤモンド状炭素多結晶膜を成膜することを特徴とする歯
科用切削具の製造法。
1. A dental bar made of one kind of material selected from cemented carbide, ultrafine particle cemented carbide and cermet as a base material, and a tungsten ( W) is vapor-deposited to a thickness of 0.01 to 1.0 μm, and the vapor-deposited film is carburized in a microwave-excited plasma gas using hydrogen and a hydrocarbon gas as raw materials to form tungsten carbide (WC). 1. A method for manufacturing a dental cutting tool, comprising: forming an intermediate film of WC by sinter-adhering to and forming a diamond-like carbon polycrystalline film on the surface of the intermediate film.
【請求項2】請求項1に記載のWC中間膜が、W蒸着膜を
水素対炭化水素ガスの体積混合比率を50:1〜600:1とし
たマイクロ波励起プラズマガス中で浸炭されてなる歯科
用切削具の製造法。
2. The WC intermediate film according to claim 1, wherein the W vapor-deposited film is carburized in a microwave-excited plasma gas in which the volume mixing ratio of hydrogen to hydrocarbon gas is 50: 1 to 600: 1. Manufacturing method of dental cutting tools.
【請求項3】請求項1に記載のダイヤモンド状炭素多結
晶膜が、水素対炭化水素ガスの体積混合比率を50:1〜20
0:1としたマイクロ波励起プラズマによる気相沈積法に
より成膜されてなる請求項1または2に記載の歯科用切
削具の製造法。
3. The diamond-like carbon polycrystalline film according to claim 1, wherein the volume mixing ratio of hydrogen to hydrocarbon gas is 50: 1 to 20.
The method for manufacturing a dental cutting tool according to claim 1 or 2, wherein the film is formed by a vapor deposition method using microwave excited plasma of 0: 1.
【請求項4】超硬合金、超微粒子超硬合金およびサーメ
ットの内から選ばれた1種の材質からなる切削刃基材表
面に、厚さ0.01〜1.0μmのWよりなる蒸着膜を被覆し
た後、水素および炭化水素ガスを原料としたマイクロ波
励起プラズマガス中で浸炭させてWC中間膜とし、それと
同時にプラズマガスの熱輻射により該WC中間膜と基材表
面を1,000〜1,500℃の範囲に加熱して焼結密着させ、さ
らにこの中間膜の表面に水素対炭化水素ガスの体積混合
比率が50:1〜200:1である混合ガスを原料としたマイク
ロ波励起プラズマによる気相沈積法によりダイヤモンド
状炭素多結晶膜を成膜することを特徴とする歯科用切削
具の製造法。
4. A surface of a cutting blade substrate made of one kind of material selected from cemented carbide, ultrafine grained cemented carbide and cermet is coated with an evaporated film of W having a thickness of 0.01 to 1.0 μm. After that, the WC intermediate film is carburized in a microwave-excited plasma gas using hydrogen and a hydrocarbon gas as raw materials, and at the same time, the WC intermediate film and the substrate surface are brought to a range of 1,000 to 1,500 ° C by thermal radiation of the plasma gas. It is heated and sinter-bonded, and further, on the surface of this interlayer film, by a gas phase deposition method using microwave-excited plasma with a mixed gas having a volume mixing ratio of hydrogen to hydrocarbon gas of 50: 1 to 200: 1. A method for manufacturing a dental cutting tool, which comprises forming a diamond-like carbon polycrystalline film.
JP2098413A 1990-04-13 1990-04-13 Dental cutting tool manufacturing method Expired - Lifetime JPH0722586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2098413A JPH0722586B2 (en) 1990-04-13 1990-04-13 Dental cutting tool manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2098413A JPH0722586B2 (en) 1990-04-13 1990-04-13 Dental cutting tool manufacturing method

Publications (2)

Publication Number Publication Date
JPH03295552A JPH03295552A (en) 1991-12-26
JPH0722586B2 true JPH0722586B2 (en) 1995-03-15

Family

ID=14219140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2098413A Expired - Lifetime JPH0722586B2 (en) 1990-04-13 1990-04-13 Dental cutting tool manufacturing method

Country Status (1)

Country Link
JP (1) JPH0722586B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6172799B2 (en) * 2012-06-29 2017-08-02 株式会社神戸製鋼所 DLC film molded body
KR101421651B1 (en) * 2013-01-31 2014-07-22 일진다이아몬드(주) Polycrystalline diamond imporved impact-resistance/thermal-stability and the manufacturing method thereof
CN108262482A (en) * 2016-12-31 2018-07-10 上海精韧激光科技有限公司 Hard material green body and its manufacturing method and purposes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434821Y2 (en) * 1987-02-27 1992-08-19

Also Published As

Publication number Publication date
JPH03295552A (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US6083570A (en) Synthetic diamond coatings with intermediate amorphous metal bonding layers and methods of applying such coatings
JP3448884B2 (en) Artificial diamond coating
JPH0722586B2 (en) Dental cutting tool manufacturing method
EP0440384B1 (en) Method of bonding a diamond film to a substrate
JPH0196073A (en) Method for brazing diamond
JPH0710443B2 (en) Cutting tip
JP3260157B2 (en) Method for producing diamond-coated member
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
JPS6286161A (en) Formation of artificial diamond film at high deposition forming rate
JPH01317112A (en) Polycrystalline diamond having high strength and production thereof
Hassan et al. Modification of an electroplated nickel interlayer surface by annealing heat treatment for diamond deposition on tungsten carbide
US5492770A (en) Method and apparatus for vapor deposition of diamond film
JPH02223437A (en) Polycrystalline diamond material and manufacture thereof
JP4257425B2 (en) Novel inorganic compound, superhard material using the same, and method for producing the same
JP3346654B2 (en) Member with diamond-tungsten composite film
JPS6335495A (en) Diamond vapor phase synthesizer of high-efficiency
JPS6340800A (en) Method for synthesizing high-hardness boron nitride
JPH05239646A (en) Manufacture of diamond coated member
JPS6257802A (en) Parts coated with hard carbon
JPS6369973A (en) Production of cubic boron nitride film
JPS61174378A (en) Production of rigid material coated with boron nitride
JPH03231655A (en) Dental cutter and preparation thereof
JPS63199871A (en) Method for synthesizing high hardness boron nitride
JPS63140084A (en) Hard carbon coated parts
JPH01225774A (en) High-hardness polycrystalline diamond tool