JPH0463606A - Diamond tool having amorphous carbon layer formed on surface - Google Patents

Diamond tool having amorphous carbon layer formed on surface

Info

Publication number
JPH0463606A
JPH0463606A JP17449890A JP17449890A JPH0463606A JP H0463606 A JPH0463606 A JP H0463606A JP 17449890 A JP17449890 A JP 17449890A JP 17449890 A JP17449890 A JP 17449890A JP H0463606 A JPH0463606 A JP H0463606A
Authority
JP
Japan
Prior art keywords
diamond
diamond tool
tool
cutting
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17449890A
Other languages
Japanese (ja)
Inventor
Nobuo Yasunaga
安永 暢男
Morihiro Okada
守弘 岡田
Yukimoto Tanaka
幸基 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17449890A priority Critical patent/JPH0463606A/en
Publication of JPH0463606A publication Critical patent/JPH0463606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To provide a diamond tool which can be used for cutting of an iron material by a method wherein the surface of the diamond tool is covered in a specified thickness with glassy carbon and brought into an amorphous state down to a specified depth from a surface. CONSTITUTION:The surface of a diamond tool is covered in thickness of 0.2-100mum with glassy carbon, and a surface is modified so that the surface of the diamond tool is brought into an amorphous state down to a depth 0.01-100mum from a surface. Since, by forming an amorphous carbon layer on the surface of the diamond tool, chemical reaction between a surface carbon layer and iron is difficult to occur, the generation of wear is reduced, a cut surface is smooth, an enough life for cutting of an iron material and cutting performance are provided, and a diamond tool having an arbitrary thickness responding to a material to be cut can be easily manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属材料、特に炭素鋼など鉄系の切削に用いる
、表面に非晶質炭素層を持つダイヤモンド工具に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a diamond tool having an amorphous carbon layer on its surface, which is used for cutting metal materials, particularly ferrous materials such as carbon steel.

[従来の技術] 焼結ダイヤモンドあるいは単結晶ダイヤモンドはその超
硬質性を利用してアルミニウム、銅など各種金属材料の
切削工具として多用されている。
[Prior Art] Sintered diamond or single crystal diamond is widely used as a cutting tool for various metal materials such as aluminum and copper due to its ultrahardness.

また最近、超硬工具なとの基材上にCVD法でダイヤモ
ンド膜を気相成長させたダイヤモンド膜被覆切削工具か
開発され、やはり軟質金属の切削に利用されつつある。
Recently, a cutting tool coated with a diamond film has been developed in which a diamond film is grown in vapor phase on a base material such as a carbide tool using the CVD method, and it is also being used for cutting soft metals.

しかし炭素鋼などの鉄系材料に対してはこれらのダイヤ
モンド工具は不適とされている。それは、ダイヤモンド
か鉄と化学的に反応しやすく、鉄系材料を切削するとダ
イヤモンドの摩耗か大きく、工具寿命か短くなるためで
ある(E、J、Duell & W、J、MacDon
ald:Wear、vol、4.N。
However, these diamond tools are considered unsuitable for ferrous materials such as carbon steel. This is because diamond easily reacts chemically with iron, and when cutting iron-based materials, diamond wear increases and tool life is shortened (E, J, Duell & W, J, MacDon
ald: Wear, vol, 4. N.

5(+961) 372 ’)。5 (+961) 372’).

[発明か解決しようとする課題] 上記のように、従来のダイヤモンド工具あるいはダイヤ
モンド膜被覆工具は鉄と化学的に反応しやすく、一般に
炭素鋼などの鉄系材料の切削には使用されていない。本
発明は、このような課題を解決するためになされたもの
で、鉄系材料の切削に使用できるダイヤモンド工具を提
供しようとするものである。
[Problems to be Solved by the Invention] As described above, conventional diamond tools or diamond film-coated tools tend to chemically react with iron, and are generally not used for cutting ferrous materials such as carbon steel. The present invention was made to solve these problems, and aims to provide a diamond tool that can be used for cutting ferrous materials.

[課題を解決するための手段コ 本発明のダイヤモンド工具は、ダイヤモンドエ具の表面
に0.2〜100μlの厚さのガラス状炭素を被覆して
なる表面に非晶質炭素層を持ち、更にはダイヤモンド工
具に表面から0.01〜100μ■の深さにわたって前
記ダイヤモンド工具の表面を非晶質化する表面改質を施
すことにより表面に非晶質炭素層を持つダイヤモンド工
具であることを特徴とする。
[Means for Solving the Problems] The diamond tool of the present invention has an amorphous carbon layer on the surface formed by coating the surface of the diamond tool with glassy carbon with a thickness of 0.2 to 100 μl, and further is a diamond tool that has an amorphous carbon layer on its surface by subjecting the diamond tool to surface modification that makes the surface of the diamond tool amorphous over a depth of 0.01 to 100μ from the surface. shall be.

本発明で言うダイヤモンド工具には、天然及び高圧法に
よるダイヤモンド単石工具、焼結ダイヤモンド工具、気
相法ダイヤモンド工具などが含まわる。
The diamond tools referred to in the present invention include natural and high-pressure diamond single stone tools, sintered diamond tools, vapor phase diamond tools, and the like.

ダイヤモンドは硬度が最も高いが、鉄とA、変態点(7
23℃)以上では急速に反応してセメンタイトFe5C
を生じることが知られており、鉄系材料を切削するとき
にダイヤモンド工具の摩耗が大きく寿命が短いのはこの
反応のしやすさが主因と考えられる。一方黒鉛(gra
phHe)や非晶質炭素はダイヤモンドに比してはるか
に鉄と反応しにくいので(安永ほか:精密機械、38巻
、4号(1972)413〜415頁)、鉄系材料切削
用としてはダイヤモンドよりも黒鉛あるいは非晶質炭素
の方が優れた特性を示すことか期待されるが、通常の黒
鉛や非晶質炭素は硬度か大変低く工具としては使用でき
ないのが実状である。
Diamond has the highest hardness, but it has a transformation point (7
Above 23°C, it reacts rapidly and forms cementite Fe5C.
It is believed that the ease of this reaction is the main reason why diamond tools suffer significant wear and short life when cutting ferrous materials. On the other hand, graphite (gra
phHe) and amorphous carbon are far less likely to react with iron than diamond (Yasunaga et al., Precision Machinery, Vol. 38, No. 4 (1972), pp. 413-415), so diamond is the preferred choice for cutting ferrous materials. It is expected that graphite or amorphous carbon will exhibit superior properties, but the reality is that normal graphite and amorphous carbon have very low hardness and cannot be used as tools.

第1図に各種炭素材料のラマンスペクトルを示す。ダイ
ヤモンド、単結晶黒鉛は鋭い1つのピークを示し、黒鉛
を乱した構造のガラス状炭素は黒鉛のピークか高波数側
にシフトしたものに加えて黒鉛結晶子の端面の振動によ
るもう1つのピークを示し、かつ半値幅か広い。硬質炭
素或いはダイヤモンドライクカーボンまたはi−カーボ
ンとも呼ばれている高硬度の非晶質膜は、ピークの位置
が特定できないほど広い半値幅を示す。ガラス状炭素と
硬質炭素はいずれも非晶質材料に分類されるが、ガラス
状炭素の方が薄膜状に製造することが容易である上に、
耐熱温度が2000℃以上であるのに対して、硬質非晶
質炭素の薄膜はPVD法等により作製しなければならず
製造コストが高い上に、更に耐熱温度が約400℃と低
い。
Figure 1 shows Raman spectra of various carbon materials. Diamond and single-crystal graphite exhibit one sharp peak, while glassy carbon, which has a structure in which graphite is disordered, exhibits the peak of graphite or one shifted to the higher wavenumber side, as well as another peak due to the vibration of the end faces of graphite crystallites. and the half-width is wide. A highly hard amorphous film, also called hard carbon, diamond-like carbon, or i-carbon, exhibits a half-width so wide that the peak position cannot be determined. Both glassy carbon and hard carbon are classified as amorphous materials, but glassy carbon is easier to produce in the form of a thin film, and
While the heat resistance temperature is 2000° C. or higher, a thin film of hard amorphous carbon must be produced by a PVD method or the like, resulting in high manufacturing costs and also has a low heat resistance temperature of about 400° C.

本発明の第一発明はかかる知見に基づき、ガラス状炭素
膜をダイヤモンド工具の表面に被覆することにより、鉄
系材料に対して大きな耐摩耗性を示す切削工具を開発し
たものである。さらに、本発明の第二発明は、ダイヤモ
ンド工具の表面を改質して非晶質構造にすることにより
、鉄系材料に対して大きな耐摩耗性を示す切削工具を開
発したものである。
The first invention of the present invention is based on this knowledge and has developed a cutting tool that exhibits high wear resistance against ferrous materials by coating the surface of the diamond tool with a glassy carbon film. Furthermore, the second aspect of the present invention is to develop a cutting tool that exhibits high wear resistance against iron-based materials by modifying the surface of the diamond tool to give it an amorphous structure.

まず、第一の発明について説明する。ダイヤモンド工具
の表面に被覆すべきガラス状炭素皮膜の厚さは、0.2
〜100μmが望ましい。ガラス状炭素の皮膜の厚さが
0.2μ1未満では摩耗やピンホールの発生等で耐摩耗
効果が少なく、100 uI11超では皮膜の内部応力
のために皮膜がダイヤモンド工具表面から剥離しやすく
なり、切削工具として十分な性能が発揮できない。望ま
しくは2〜l Oumの皮膜厚さで、十分な工具寿命で
の切削が可能となる。
First, the first invention will be explained. The thickness of the glassy carbon film to be coated on the surface of the diamond tool is 0.2
~100 μm is desirable. If the thickness of the glassy carbon film is less than 0.2μ1, the anti-wear effect will be low due to abrasion and pinhole formation, and if it exceeds 100uI11, the film will easily peel off from the diamond tool surface due to the internal stress of the film. It cannot demonstrate sufficient performance as a cutting tool. Desirably, a coating thickness of 2 to 1 Oum allows cutting with a sufficient tool life.

ガラス状炭素膜の形成法としては、公知の塩化ビニル樹
脂、酢酸ビニル樹脂、フェノール樹脂などの有機重合体
を原料とし、フェノール樹脂の場合は有機溶剤に希釈し
てから噴霧や塗布で黒鉛やセラミックスなとの表面に被
覆した後、不活性雰囲気下で加熱する方法、あるいは、
塩化ビニル樹脂や酢酸ビニル樹脂等を原料とした場合は
、−度加熱して得た不完全熱分解生成物を有機溶剤に溶
解したのち、その溶液を黒鉛やセラミックスなどに被覆
して不活性雰囲気下て加熱する方法を用いる。
The method for forming a glassy carbon film is to use known organic polymers such as vinyl chloride resin, vinyl acetate resin, and phenolic resin as raw materials. In the case of phenolic resin, it is diluted with an organic solvent and then coated with graphite or ceramics by spraying or coating. A method of coating the surface of the metal and then heating it in an inert atmosphere, or
When vinyl chloride resin, vinyl acetate resin, etc. are used as raw materials, the incomplete thermal decomposition products obtained by heating at -degrees are dissolved in an organic solvent, and then the solution is coated on graphite or ceramics and placed in an inert atmosphere. Use the method of lowering and heating.

製造方法によっても異なるが、ガラス状炭素の硬度とし
てHvlO00相当(HvlOOOのシリコン単結晶に
は疵をつけることができるが、Hv1300の窒化珪素
には疵をつけることができない〉のものが形成される。
Although it varies depending on the manufacturing method, the hardness of glassy carbon equivalent to HvlO00 (silicon single crystal with HvlOOO can be scratched, but silicon nitride with Hv1300 cannot be scratched) is formed. .

ガラス状炭素のダイヤモンドへの付着力を向上させるた
めには、ダイヤモンド工具表面を改質して非晶質化して
から上記の樹脂を被覆、焼成することも場合によっては
有効である。
In order to improve the adhesion of glassy carbon to diamond, it may be effective in some cases to modify the surface of the diamond tool to make it amorphous, then coat it with the above-mentioned resin and sinter it.

焼結ダイヤモンド工具及び気相法多結晶ダイヤモンド工
具には微細な穴があるので、上記の樹脂や溶液を含浸し
た後加熱することで、ガラス状炭素の表面層を形成させ
ることも可能である。
Since sintered diamond tools and vapor phase polycrystalline diamond tools have fine holes, it is also possible to form a surface layer of glassy carbon by impregnating them with the above resin or solution and then heating them.

次に、第二の発明について説明する。ダイヤモント工具
表面の改質すべき非晶質炭素層の厚さは0.01〜10
0μmが望ましい。改質層の厚さが0,019m未満で
は薄すぎて耐摩耗効果が少なく、100μ回超では最表
面がもろくなり耐摩耗効果か少なくなり、切削工具とし
ては利用できない。望ましくは0.05um−10μm
の表面改質層で、十分な工具寿命での切削が可能となる
。ダイヤモンドの表面改質法としては、公知の微量酸素
雰囲気中でダイヤモンドを加熱する方法(fl:、Ph
aal:Ind、Diamond Rev、。
Next, the second invention will be explained. The thickness of the amorphous carbon layer to be modified on the surface of the diamond tool is 0.01 to 10
0 μm is desirable. If the thickness of the modified layer is less than 0,019 m, it is too thin and has little wear-resistant effect, and if it exceeds 100 microns, the outermost surface becomes brittle and the wear-resistant effect is reduced, making it unusable as a cutting tool. Preferably 0.05um-10μm
The surface modified layer enables cutting with sufficient tool life. As a diamond surface modification method, a known method of heating diamond in a trace oxygen atmosphere (fl:, Ph
aal:Ind, Diamond Rev.

25.300. (1965) 486)およびダイヤ
モンドに水素、アルゴン等の原子を打ち込んで表面改質
する方法(開田ほか:第15回炭素材料学会年会要旨集
、(1988) 142〜143頁)を用いる。こうし
た表面改質法によりダイヤモンド表面を非晶質炭素で覆
うことができる。例えばダイヤモンド単結晶にカウフマ
ン型イオン源を用いて、圧力5 x 1O−5Torr
、加速電圧]、200V、 イオン電流密度1 mA/
cm2、の条件で水素イオンを2時間照射した場合、目
視では僅かに茶色に呈色し、ラマン分光分析により表面
に非晶質層の存在が確認され、窒素同位体の共鳴核反応
法による分析で、表面から0.06umの深さにわたっ
て水素原子か存在することか確認できる。
25.300. (1965) 486) and a method of surface modification by implanting atoms such as hydrogen and argon into diamond (Kaida et al.: Abstracts of the 15th Annual Meeting of the Carbon Materials Society, (1988) pp. 142-143). This surface modification method makes it possible to cover the diamond surface with amorphous carbon. For example, using a Kaufmann type ion source for a diamond single crystal, the pressure is 5 x 1O-5 Torr.
, acceleration voltage], 200V, ion current density 1 mA/
cm2, when irradiated with hydrogen ions for 2 hours, the color turned slightly brown to the naked eye, and the presence of an amorphous layer on the surface was confirmed by Raman spectroscopy, and analysis by nitrogen isotope resonance nuclear reaction method. It can be confirmed that hydrogen atoms exist from the surface to a depth of 0.06 um.

ダイヤモンド単結晶製の円錐形スライダと、該スライダ
表面に2JJ111の厚さのガラス状炭素を被覆したス
ライダと、該スライダの表面層を水素イオン照射によフ
て0.06umの深さにわたって改質したスライダの3
つのスライダの耐摩耗性を比較すると、例えば535C
炭素鋼に対して、真空中、荷重2.0kg 、摩擦速度
1130m/minの条件で摩擦させた場合、ダイヤモ
ンド単結晶スライダの摩耗!が13X 10−’mm3
/kmであるのに対して、ガラス状炭素被覆スライダの
摩耗量は1.2 x ICl−’mm3/kmであり、
表面改質スライダのそれは5 X 10−’mm’/k
mであり、該ガラス状炭素被覆スライダの場合は約10
倍、表面改質スライダの場合は約2倍耐摩耗性が優れて
いると言える。
A conical slider made of single crystal diamond, a slider whose surface is coated with glassy carbon to a thickness of 2JJ111, and a surface layer of the slider modified to a depth of 0.06um by hydrogen ion irradiation. Slider 3
Comparing the wear resistance of two sliders, for example, 535C
When friction is applied to carbon steel in a vacuum with a load of 2.0 kg and a friction speed of 1130 m/min, the diamond single crystal slider wears out! is 13X 10-'mm3
/km, whereas the wear amount of the glassy carbon coated slider is 1.2 x ICl-'mm3/km,
That of the surface modified slider is 5 x 10-'mm'/k
m, and about 10 m for the glassy carbon coated slider.
It can be said that the surface-modified slider has twice as good wear resistance.

また前記摩擦条件で、前記単結晶ダイヤモンドスライダ
と同形状の焼結ダイヤセントで作製したスライダと、該
焼結ダイヤモンドスライダ表面に2μmの厚さのガラス
状炭素を被覆したスライダと、該スライダの表面層を水
素イオン照射によって0.06μmの深さにわたって改
質したスライダの3つのスライダの耐摩耗性を比較する
と、焼結ダイヤモンドスライダの摩耗量が23x 10
−’mm3/kmであるのに対して、ガラス状炭素被覆
スライダの摩耗量は1.6 x 10−’mm”/km
であり、表面改質スライダのそれは10x 10−’m
m3/kmであり、該ガラス状炭素被覆スライダの場合
は約14倍、表面改質スライダの場合は約2倍耐摩耗性
が優れていると言える。
In addition, under the above friction conditions, a slider made of sintered diamond having the same shape as the single crystal diamond slider, a slider whose surface was coated with glassy carbon with a thickness of 2 μm, and a slider whose surface was coated with glassy carbon with a thickness of 2 μm; Comparing the wear resistance of three sliders whose layers were modified by hydrogen ion irradiation to a depth of 0.06 μm, the wear resistance of the sintered diamond slider was 23 x 10
-'mm3/km, whereas the wear amount of the glassy carbon coated slider is 1.6 x 10-'mm"/km
and that of the surface-modified slider is 10x 10-'m
m3/km, and it can be said that the glassy carbon-coated slider has about 14 times better wear resistance, and the surface-modified slider has about twice the wear resistance.

さらに前記摩擦条件で、前記単結晶ダイヤモンドスライ
ダと同形状の気相法多結晶ダイヤモンドで作製したスラ
イダと、該気相法ダイヤモンドスライダ表面に2μmの
厚さのガラス状炭素を被覆したスライダと、該スライダ
の表面層を水素イオン照射によって0.061μmの深
さにわたって改質したスライダの3つのスライダの耐摩
耗性を比較すると、気相法ダイヤモンドスライダの摩耗
量が20x10−’mm3/kmであるのに対して、ガ
ラス状炭素被覆スライダの摩耗量は1.3 x 10−
’mm3/kmであり、表面改質スライダのそれは7X
10〜411IID37kIIIであり、該ガラス状炭
素被覆スライダの場合は約15倍、表面改質スライダの
場合は約3倍耐摩耗性が優れていると言える。
Furthermore, under the above friction conditions, a slider made of vapor-grown polycrystalline diamond having the same shape as the single-crystal diamond slider, a slider whose surface was coated with glassy carbon with a thickness of 2 μm, Comparing the wear resistance of three sliders whose surface layer has been modified to a depth of 0.061 μm by hydrogen ion irradiation, the wear resistance of the vapor phase diamond slider is 20x10-'mm3/km. On the other hand, the wear amount of the glassy carbon coated slider is 1.3 x 10-
'mm3/km, and that of the surface modified slider is 7X
10 to 411IID37kIII, and it can be said that the glassy carbon-coated slider has about 15 times better wear resistance, and the surface-modified slider has about 3 times better wear resistance.

[作用] 上記の、表面に非晶質炭素層を持つダイヤモンド工具を
用いれば、該表面炭素層と鉄との化学反応が生しにくい
ので、非晶質炭素層を持たないダイヤモンド工具よりも
摩耗が少なく、また切削面も滑らかで、鉄系材料の切削
に十分な寿命と切削性能を発揮する。ガラス状炭素を被
覆する場合は被切削材に応じて任意の厚みのものを容易
に製造することかできる。表面を改質した場合は、改質
層の剥離のおそれがなく、同じ厚みならばガラス状炭素
被覆バイトと比へてより強固である。
[Function] When using the above-mentioned diamond tool with an amorphous carbon layer on its surface, chemical reaction between the surface carbon layer and iron is less likely to occur, so wear is lower than with a diamond tool without an amorphous carbon layer. It also has a smooth cutting surface and exhibits sufficient life and cutting performance for cutting ferrous materials. When coating with glassy carbon, it can be easily manufactured to any thickness depending on the material to be cut. When the surface is modified, there is no risk of peeling of the modified layer, and if the thickness is the same, it is stronger than a glassy carbon coated tool.

[実施例] ダイヤモンド工具に単結晶ダイヤモンドバイト(旭ダイ
ヤモンド工業製)、焼結ダイヤモンドバイト(Crys
ton Diamond IND製)、気相法ダイヤモ
ンドバイト(三菱金属製)の三種類を用い、表面の非晶
質炭素層をガラス状炭素の被覆及び水素イオン照射によ
る表面改質の2通りの方法で形成した。こうしたダイヤ
モンド工具を用いて75mmφの被剛材545Gを切り
込み(1,511101、送り(1,]Omm/rev
1.切削速度400m/m切削速度4性0ときの逃げ面
摩耗量を測定した。ダイヤモンド工具の硬度は荷重10
gfのマイクロビッカース硬さにて測定した。ガラス状
炭素は次の方法で被覆した。フェノール樹脂を5重量%
アセトンに溶解した溶液を3μm弱の厚みでダイヤモン
ド工具に被覆した後、該工具を加熱炉に入れ、雰囲気を
空気にした状態で以下の条件で昇温した。
[Example] Diamond tools include a single-crystal diamond tool (manufactured by Asahi Diamond Industries) and a sintered diamond tool (Crys
The amorphous carbon layer on the surface was formed using two methods: coating with glassy carbon and surface modification by hydrogen ion irradiation. did. Using such a diamond tool, cut into a rigid material 545G with a diameter of 75 mm (1,511101, feed (1,] Omm/rev
1. The flank wear amount was measured when the cutting speed was 400 m/m and the cutting speed was 0. The hardness of a diamond tool is load 10
The micro Vickers hardness of gf was measured. Glassy carbon was coated by the following method. 5% by weight of phenolic resin
After coating a diamond tool with a solution dissolved in acetone to a thickness of just under 3 μm, the tool was placed in a heating furnace and heated under the following conditions in an air atmosphere.

室温〜150℃   5℃/l1in J50〜270℃   0,08℃/1Ilin270
℃      5時間保持 次に雰囲気をアルゴンガスに置換し以下の条件で昇温加
熱した。
Room temperature ~ 150℃ 5℃/l1in J50~270℃ 0.08℃/1lin270
The temperature was maintained at 0.degree. C. for 5 hours, and then the atmosphere was replaced with argon gas, and the temperature was increased under the following conditions.

270〜350℃   15℃/m1n350〜550
℃   2℃/win 550 〜990℃   15℃/win990℃  
    30分間保持 この結果、表面に2μm厚のガラス状炭素層を持つダイ
ヤモンド工具を得た。表面改質は、カウフマン型イオン
源を用いて、圧力5 x 1O−5Torr、加速電圧
1200V 、イオン電流密度1 mA/cm2、ダイ
ヤモンド工具に水素イオンを2時間照射して行なった。
270~350℃ 15℃/m1n350~550
℃ 2℃/win 550 ~990℃ 15℃/win990℃
Holding for 30 minutes As a result, a diamond tool having a 2 μm thick glassy carbon layer on the surface was obtained. The surface modification was performed by irradiating the diamond tool with hydrogen ions for 2 hours using a Kauffman type ion source at a pressure of 5 x 1O-5 Torr, an acceleration voltage of 1200 V, and an ion current density of 1 mA/cm2.

ラマン分光分析により表面に非晶質層の存在が確認され
、窒素同位体の共鳴核反応法による分析で、それぞわ表
面から0.06〜0.07μmの深さにわたって水素原
子の存在を確認した。こうして、表面に約0.06μm
厚の非晶質炭素層を持つダイヤモンド工具を得た。
Raman spectroscopy confirmed the presence of an amorphous layer on the surface, and analysis using nitrogen isotope resonance nuclear reaction confirmed the presence of hydrogen atoms at a depth of 0.06 to 0.07 μm from the surface. did. In this way, about 0.06 μm on the surface
A diamond tool with a thick amorphous carbon layer was obtained.

以上の結果を第1表に示す。単結晶ダイヤモンドバイト
、焼結ダイヤモンドバイト、気相法ダイヤモンドバイト
ともに、無処理のものに比べてガラス状炭素を被覆した
ものは10分の1以下の摩耗量を示し、水素イオン照射
で表面を改質したものは2分の1以下の摩耗量を示した
The above results are shown in Table 1. For single-crystal diamond bits, sintered diamond bits, and vapor-phase diamond bits, those coated with glassy carbon show less than one-tenth the wear amount compared to untreated ones, and the surface is modified by hydrogen ion irradiation. The ones tested showed less than half the amount of wear.

[発明の効果コ 本発明は、非晶質炭素層をタイヤモント工具表面に形成
した結果、鉄に対する化学反応を生しにくく、従来タ゛
イヤモント工具か苦手としてきた鉄系材料の切削に使用
できるダイヤモント工具を与えるものてあり、金属素材
として最も大きなマーケットを占める鉄系材料の切削加
工の生産性や品質向上に寄与するところか大きいと期待
される。
[Effects of the Invention] The present invention has an amorphous carbon layer formed on the surface of a tire mont tool, which makes it difficult to cause a chemical reaction with iron, making it possible to use diamond for cutting ferrous materials, which conventional tire mont tools have difficulty with. It is expected that it will greatly contribute to improving the productivity and quality of cutting of ferrous materials, which account for the largest market for metal materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種炭素材料のラマンスペクトルである。 Figure 1 shows Raman spectra of various carbon materials.

Claims (1)

【特許請求の範囲】 1、ダイヤモンド工具の表面に0.2〜100μmの厚
さのガラス状炭素を被覆してなる、表面に非晶質炭素層
を持つダイヤモンド工具。 2、ダイヤモンド工具に表面から0.01〜100μm
の深さにわたって前記ダイヤモンド工具の表面を非晶質
化する表面改質を施してなる、表面に非晶質炭素層を持
つダイヤモンド工具。
[Claims] 1. A diamond tool having an amorphous carbon layer on the surface, which is formed by coating the surface of the diamond tool with glassy carbon having a thickness of 0.2 to 100 μm. 2. 0.01 to 100 μm from the surface of the diamond tool
A diamond tool having an amorphous carbon layer on its surface, which is subjected to surface modification to make the surface of the diamond tool amorphous over a depth of .
JP17449890A 1990-07-03 1990-07-03 Diamond tool having amorphous carbon layer formed on surface Pending JPH0463606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17449890A JPH0463606A (en) 1990-07-03 1990-07-03 Diamond tool having amorphous carbon layer formed on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17449890A JPH0463606A (en) 1990-07-03 1990-07-03 Diamond tool having amorphous carbon layer formed on surface

Publications (1)

Publication Number Publication Date
JPH0463606A true JPH0463606A (en) 1992-02-28

Family

ID=15979546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17449890A Pending JPH0463606A (en) 1990-07-03 1990-07-03 Diamond tool having amorphous carbon layer formed on surface

Country Status (1)

Country Link
JP (1) JPH0463606A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803897A2 (en) * 1996-04-22 1997-10-29 Nisshinbo Industries Inc. Electrode for plasma etching
JP2002540970A (en) * 1999-03-31 2002-12-03 セメコン−セラミック メタル コーティングス−ドクトル−インジェネア アントニウス レイエンデッカー ゲーエムベーハー Diamond coated tool and method of making same
JP2012161873A (en) * 2011-02-07 2012-08-30 Mitsubishi Materials Corp Diamond-coated cutting tool

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803897A2 (en) * 1996-04-22 1997-10-29 Nisshinbo Industries Inc. Electrode for plasma etching
EP0803897A3 (en) * 1996-04-22 1998-04-01 Nisshinbo Industries Inc. Electrode for plasma etching
US5951814A (en) * 1996-04-22 1999-09-14 Nisshinbo Industries, Inc. Electrode for plasma etching
JP2002540970A (en) * 1999-03-31 2002-12-03 セメコン−セラミック メタル コーティングス−ドクトル−インジェネア アントニウス レイエンデッカー ゲーエムベーハー Diamond coated tool and method of making same
JP2012161873A (en) * 2011-02-07 2012-08-30 Mitsubishi Materials Corp Diamond-coated cutting tool

Similar Documents

Publication Publication Date Title
EP1598441B1 (en) Amorphous carbon film and process for producing the same
US5198285A (en) Hard and lubricant thin film of iron base metallic material coated with amorphous carbon-hydrogen-silicon
Bhushan Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: recent developments
US5571616A (en) Ultrasmooth adherent diamond film coated article and method for making same
EP1841896A1 (en) Amorphous carbon film, process for forming the same, and high wear-resistant sliding member with amorphous carbon film provided
CA2029873A1 (en) Diamond-coated member and process for the preparation thereof
US7132129B2 (en) Method of forming a diamond coating on an iron-based substrate and use of an iron-based substrate for hosting a CVD diamond coating
JPH03240957A (en) Thin hard amorphous carbon-hydrogen-silicon film having lubricity, ferrous metallic material having this thin film on surface, and their production
JPH0463606A (en) Diamond tool having amorphous carbon layer formed on surface
US20110223332A1 (en) Method for depositing cubic boron nitride thin film
JP2801451B2 (en) Jig for metal processing
US20180016194A1 (en) Method for producing carbide derived carbon layer with dimple pattern and carbide derived carbon layer with dimple pattern produced by the method
JPH09124394A (en) Wear-resistant member
JPS58153774A (en) Preparation of hard coating member
JP2005002457A (en) Compound surface reforming method and compound surface reformed article
JPS6228452A (en) Knitting needle
JP4133150B2 (en) Method for producing diamond film-coated member
JPH0394062A (en) Diamond-coated sintered hard alloy
JPH0328373A (en) Diamond-coated member and its production
JP4257425B2 (en) Novel inorganic compound, superhard material using the same, and method for producing the same
US20050003194A1 (en) Method for making diamond-coated composite materials
JPH0941145A (en) Wear resistant member
JPH05230655A (en) Manufacture of diamond coated member
JPH09220610A (en) Wire drawing die for thin wire using polycrystalline diamond synthesized by vapor deposition method
JP3044944B2 (en) Manufacturing method of substrate for vapor phase synthetic diamond film formation