JP3397849B2 - Diamond coated cemented carbide tool - Google Patents

Diamond coated cemented carbide tool

Info

Publication number
JP3397849B2
JP3397849B2 JP22602393A JP22602393A JP3397849B2 JP 3397849 B2 JP3397849 B2 JP 3397849B2 JP 22602393 A JP22602393 A JP 22602393A JP 22602393 A JP22602393 A JP 22602393A JP 3397849 B2 JP3397849 B2 JP 3397849B2
Authority
JP
Japan
Prior art keywords
diamond
thin film
cemented carbide
diamond thin
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22602393A
Other languages
Japanese (ja)
Other versions
JPH0776775A (en
Inventor
治夫 泊里
康昭 杉崎
俊樹 佐藤
龍哉 安永
和久 河田
政憲 蔡
Original Assignee
エムエムシーコベルコツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムエムシーコベルコツール株式会社 filed Critical エムエムシーコベルコツール株式会社
Priority to JP22602393A priority Critical patent/JP3397849B2/en
Publication of JPH0776775A publication Critical patent/JPH0776775A/en
Application granted granted Critical
Publication of JP3397849B2 publication Critical patent/JP3397849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、超硬合金を工具母材と
し、該母材表面に気相合成法によってダイヤモンド薄膜
を被覆したダイヤモンド被覆超硬合金工具に関し、特に
母材とダイヤモンド薄膜との優れた密着性を達成し、非
鉄金属やセラミックス材料の切削等に適したダイヤモン
ド被覆超硬合金工具に関するものである。 【0002】 【従来の技術】ダイヤモンドは、従来硬質材料として汎
用されてきたアルミナ,窒化珪素,超硬合金等に比べて
も極めて高い硬度を有し、また熱伝導率も高いことか
ら、切削工具や耐摩耗性工具等の素材として用いられて
いる。特に、ダイヤモンド粉末を超高圧・高温下で焼結
して合成されたダイヤモンド焼結体を用いたダイヤモン
ド焼結体工具は、非鉄金属やセラミックス材料の切削工
具および研摩工具として広く使用されている。しかしな
がら、ダイヤモンド焼結体は高価であり、またダイヤモ
ンドよりも高硬度のものがないという理由から、複雑な
形状や細径のドリル,エンドミル等には適用し難いとい
う問題があった。 【0003】最近では、マイクロ波や熱フィラメント等
で励起状態にした炭素含有ガスを原料ガスとして用いた
化学的気相合成法によって、ダイヤモンド薄膜を母材上
に形成することが可能になっており、この技術では複雑
形状の工具に対しても容易且つ安価にダイヤモンド薄膜
を形成できるので、この技術を応用してダイヤモンド被
覆工具の研究開発が活発に進められている。 【0004】 【発明が解決しようとする課題】しかしながら、気相合
成したダイヤモンド薄膜は、熱膨張係数が非常に小さ
く、また母材温度が600〜1100℃程度という高温
でしか合成できないので、母材冷却時に母材との熱膨張
係数差から生じる熱応力によって母材との良好な密着性
が達成されないという問題がある。この様な不都合を回
避するという観点から、ダイヤモンド薄膜と熱膨張係数
がそれほど変わらない窒化珪素やサイアロン等の素材を
母材として用いる試みもなされており、これによって密
着性改善がかなり可能になっている。しかしながら、窒
化珪素やサイアロン等の素材は靭性が低く、この様な素
材を母材として切削工具として用いた場合は、刃先が欠
け易いという欠点がある。一方、靭性の点では超硬合金
が優れており、工具母材としては超硬合金を用いること
が望まれるが、熱膨張係数がダイヤモンドよりも高く、
前述した様な母材温度で合成するとダイヤモンド薄膜に
は約1GPaもの残留応力が生じることになり、場合に
よっては母材冷却中にダイヤモンド薄膜が母材から剥離
するという事態が生じる。本発明は上述した様な技術的
課題を解決するためになされたものであって、その目的
は、超硬合金製母材とダイヤモンド薄膜との優れた密着
性を達成し、各種工具として最適な機械的性質を有する
ダイヤモンド被覆超硬合金工具を提供することにある。 【0005】 【課題を解決するための手段】上記目的を達成し得た本
発明とは、超硬合金製工具母材表面に気相合成法によっ
てダイヤモンド薄膜を被覆したダイヤモンド被覆超硬合
金工具において、前記ダイヤモンド薄膜の膜厚が1〜2
0μmであり、且つ、このダイヤモンド薄膜には0.0
001〜1原子%の窒素がドービングされており、該ダ
イヤモンド薄膜に引張応力が付与されたものである点に
要旨を有するダイヤモンド被覆超硬合金工具である。 【0006】 【作用】前述の如く、ダイヤモンド被覆超硬合金工具の
ダイヤモンド薄膜が剥離し易くなる原因の一つは、ダイ
ヤモンド薄膜の熱膨張係数が超硬合金母材の熱膨張係数
よりも小さいことによるものである。即ち、ダイヤモン
ド薄膜の熱膨張係数は約3.1×10-6/℃程度であ
り、超硬合金の熱膨張係数は4〜6×10-6/℃程度で
あるから、合成時の母材温度が1000℃であれば、理
論上ダイヤモンド膜には約1〜2GPaもの圧縮応力が
加わることになる。但し、この圧縮応力は、ダイヤモン
ド薄膜が合成される時に膜応力が全く発生しないと仮定
したときの値であり、実際には成膜時のダイヤモンド薄
膜には引張応力が発生しており、圧縮応力(残留圧縮応
力)は上記の値よりも低くなる。しかしながら、上記引
張応力は、せいぜい0.5GPa程度であり、熱膨張係
数差に起因する圧縮応力を完全に緩和するには至らな
い。 【0007】そこで本発明者らは、ダイヤモンド薄膜の
圧縮応力を緩和するという観点から種々検討した。その
結果、ダイヤモンド薄膜を気相合成する際に、ダイヤモ
ンド薄膜中に窒素をドーピングする様にすれば、ダイヤ
モンドの成膜時に生じる引張応力が増大して前記圧縮応
力と同程度にすることができ、前記残留応力が緩和でき
ることを見出し、本発明を完成した。 【0008】図1は、反応ガス中の窒素(N2 )濃度を
0〜1容量%の範囲で変化させてダイヤモンド膜に窒素
をドーピングしたときに、反応ガス中の窒素濃度と残留
引張応力の関係を調査した結果を示すグラフである。こ
のときのダイヤモンド膜合成条件は下記の通りである。
尚上記ダイヤモンド膜は、引張応力を残留引張応力とし
て測定し易い様に、Si基板上(5mm×20mm×0.4
7mm)に合成し、残留引張応力をSi基板の反り量を測
定することにより求めた。またモルフォロジーや膜質等
について、走査型電子顕微鏡、ラマン分析、X線回折に
よって調査した。 【0009】(合成条件) 反応ガス:H2(流量:100SCCM)とエタノール
(流量:3SCCM)の混合ガスフィラメント温度:2
200℃ Si基板温度:1000℃ 圧力:80Torr 合成時間:2.5時間 【0010】図1から明らかな様に、残留応力は全窒素
濃度に亘って引張応力であり、反応ガス中の窒素濃度が
ほぼ0.5容量%までは応力は増大していることがわか
る。また窒素濃度が0.5容量%までは、ダイヤモンド
薄膜の表面モルフォロジーは殆ど変化は認められなかっ
た。一方、窒素濃度が0.5容量%を超えて増加すると
応力は減少するが、それに伴って表面モルフォロジーも
変化した。即ち、窒素濃度が0.5容量%を超えると
(100)面の結晶が配向し、さらに濃度が増えると微
結晶化が見られた。このように、窒素のドーピングによ
る残留応力への影響は結晶形態と相関があり、残留応力
の減少は粒界への非ダイヤモンド炭素の偏析に起因する
と考えられた。いずれにしても、反応ガス中に所定量の
窒素を含有させてダイヤモンド薄膜を合成してダイヤモ
ンド薄膜中に窒素をドーピングさせれば、ダイヤモンド
薄膜中の引張応力を増大させることができたのである。 【0011】窒素をドーピングすることによって上記の
様な効果が得られるのは、ダイヤモンド格子のC原子の
位置に窒素原子が置換したことによるものである。この
様な元素として、窒素の外に硼素(B)もあり、このB
をダイヤモンド中にドーピングすることによっても同様
の効果が発揮できると考えた。しかしながら、本発明者
らが実験によって確認したところ、Bには窒素によるほ
どの効果が得られないことが判明した。 【0012】本発明者らは、前記した反応ガス中に窒素
の変わりにBを含有(0.5容量%)させ、フィラメン
ト温度:2150℃,Si基板温度:950℃を夫々変
え、且つ合成時間ダイヤモンド(膜厚)を変える以外
は、前記合成条件と同じにしてダイヤモンド薄膜を合成
して該薄膜へのBのドーピングを行ない、残留引張応力
に与える効果について調査した。その結果を図2に示
す。尚図2には、比較の為に反応ガス中の窒素濃度を
0.5容量%,0%(何もドーピングしないもの)のも
のについての結果も示した。この結果から明らかな様
に、Bをドーピングしたものでは、何もドーピングしな
いものよりも却って残留引張応力が小さくなっており、
Bのドーピングはむしろ圧縮応力側に作用することが判
明した。 【0013】ところで前記図1の結果は、反応ガス中の
窒素濃度をパラメータとして示したものであり、実際に
ダイヤモンド中にドーピングされる窒素量は反応ガス中
の窒素濃度だけによって決定されるものではなく、例え
ば反応ガス組成や合成条件等によっても変化するもので
ある。こうしたことから、本発明では、ダイヤモンド薄
膜中にドーピングされる窒素量を規定しており、この窒
素量は0.0001〜1原子%とする必要があるが、こ
の理由は次の通りである。即ち、ダイヤモンド薄膜中の
窒素濃度が上記の範囲を外れると、ダイヤモンド薄膜中
の引張応力が約1GPaよりも小さくなり、熱膨張係数
の違いによる圧縮応力を完全に緩和することができなく
なる。従って、ダイヤモンド薄膜中の窒素濃度が上記の
範囲となる様に、反応ガス組成や合成条件を適切に設定
する必要がある。 【0014】一方、超硬合金母材表面に被覆されるダイ
ヤモンド薄膜の引張応力は、ダイヤモンド薄膜の厚さや
合成時の母材温度にも影響されるので、これらも適切に
設定する必要がある。こうした観点からすると、ダイヤ
モンド薄膜の膜厚は1〜20μmとする必要があり、膜
厚が上記の範囲を外れるとダイヤモンド薄膜の引張応力
が極端に低下し、圧縮応力を緩和できなくなる。一方、
合成時の基板温度については、前述の如く気相合成する
為には少なくとも600〜1100℃程度が必要となる
が、圧縮応力を少なくするという点を考慮すればできる
だけ低い方が良く、また反応性を考慮すればできるだけ
高い方が良い。本発明においては後記実施例に示す如
く、母材温度は750〜1000℃程度が適当である。 【0015】尚気相合成ダイヤモンドを合成する手段に
ついては特に限定されるものではないが、例えば水素と
炭化水素の原料ガスを熱電子放射材やマイクロ波無極放
電等で励起分解する化学蒸着法(CVD法)が挙げられ
る。またダイヤモンド薄膜中に窒素をドーピングさせる
手段についても特に限定されるものではなく、例えば原
料ガス中に窒素ガスを混入させる他、アセトアルデヒド
キシム,メチルアミノエタノール,ジメチルアセトアミ
ド,エチルアミノエタノール等の窒素を含有する有機化
合物を水素と混合して原料ガスとして用いれば良い。 【0016】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記に趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。 【0017】 【実施例】 実施例1 原料ガスとして、H2:200cc/min,アセトアル
デヒドキシム(CH3CH=NOH):2cc/min
の混合ガスを用い、マイクロ波プラズマCVD法によっ
て圧力40Torr,マイクロ波出力1kwの条件で、
超硬チップ上に30分で厚さ2μmのダイヤモンドを合
成し、本発明のダイヤモンド被覆超硬チップを作製し
た。得られたチップについて、2次イオン質量分析装置
でダイヤモンド膜中の窒素濃度を調べたところ、0.1
原子%の窒素が含まれていた。 【0018】一方、原料ガスとしてH2 :200cc/
min,CH4 :2cc/minの混合ガスを用い、マ
イクロ波プラズマCVD法によって、圧力40Tor
r,マイクロ波出力:1kwの条件で、上記と同形状の
超硬チップ上に厚さ2μmのダイヤモンド薄膜を合成し
て比較材のダイヤモンド被覆超硬チップについても作製
した。 【0019】これらのチップについて、被削材Al−1
2%Si合金の丸棒を用いて、切削速度:400m/m
in,切り込み:0.1mm、送り:0.1mm/revの
条件で乾式切削を行い、切削性能を評価した。その結
果、比較材のチップは切削5分で剥離したが、本発明の
ものについては切削90分でも剥離はみられなかった。 【0020】実施例2 直径0.5mmのタンタルフィラメントを用いた熱フィラ
メントCVD法によって、水素−エタノール蒸気からな
るガスに窒素ガスを添加した混合ガスを原料ガスとして
用い、下記表1に示す条件で超硬合金チップ上にダイヤ
モンド薄膜を形成した。これらのチップに対して、実施
例1と同様に90分の切削試験を行った。その結果を表
2に示すが、この結果から本発明ダイヤモンド被覆超硬
チップは剥離を生じることなく優れた密着性を示してい
ることが分かる。 【0021】 【表1】【0022】 【表2】 【0023】実施例3 原料ガスとして、H2:200cc/min,CH4:2c
c/min,NH3 :0.1cc/minの混合ガスを
用い、マイクロ波プラズマCVD法によって、圧力40
Torr,マイクロ波出力:1kwの条件で、直径:5
mmの超硬エンドミル上に30分で厚さ3μmのダイヤ
モンド薄膜を合成し、本発明のダイヤモンド被覆超硬エ
ンドミルを作製した。得られたエンドミルについて、2
次イオン質量分析装置でダイヤモンド膜中の窒素濃度を
調べたところ、0.1原子%の窒素が含まれていた。 【0024】一方、比較材として、原料ガスとして:H
2 200cc/min,CH4 :2cc/minの混合
ガスを用い、マイクロ波プラズマCVD法によって、圧
力40Torr,マイクロ波出力:1kwの条件で、上
記と同形状の超硬エンドミル上に厚さ3μmのダイヤモ
ンドを合成して比較材のダイヤモンド被覆超硬エンドミ
ルについても作製した。 【0025】これらのエンドミルを用い、Al−16%
Si合金の側面切削を行った。このときの切削条件は、
ダウンカットで切削速度:80m/min,送り量:
0.03mm/min,切り込み深さ:5mm,切削幅:2
mmとした。その結果、比較材のエンドミルは切削20分
で剥離したが、本発明のエンドミルは120分切削後も
全く剥離は生じることなく、良好な被削面が得られてい
た。 【0026】 【発明の効果】以上述べた如く本発明によれば、ダイヤ
モンドに窒素をドーピングすることによって、ダイヤモ
ンドと母材の熱膨張係数差に起因する圧縮応力を、成膜
時に発生する引張応力で緩和することができ、密着性に
優れたダイヤモンド被覆超硬合金工具を得ることができ
た。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond-coated cemented carbide in which a cemented carbide is used as a tool base material, and the surface of the base material is coated with a diamond thin film by a vapor phase synthesis method. More particularly, the present invention relates to a diamond-coated cemented carbide tool which achieves excellent adhesion between a base material and a diamond thin film and is suitable for cutting nonferrous metals and ceramic materials. 2. Description of the Related Art Diamond has a very high hardness as compared with alumina, silicon nitride, cemented carbide and the like which have been widely used as a conventional hard material, and has a high thermal conductivity. And is used as a material for wear-resistant tools. In particular, a diamond sintered body tool using a diamond sintered body synthesized by sintering diamond powder under ultra-high pressure and high temperature is widely used as a cutting tool and a polishing tool for non-ferrous metals and ceramic materials. However, diamond sintered bodies are expensive and have no higher hardness than diamond, so that there is a problem that they are difficult to apply to drills, end mills, and the like having complicated shapes and small diameters. Recently, it has become possible to form a diamond thin film on a base material by a chemical vapor synthesis method using a carbon-containing gas excited by a microwave or a hot filament as a source gas. However, since this technique can easily and inexpensively form a diamond thin film even for a tool having a complicated shape, research and development of a diamond-coated tool are being actively promoted by applying this technique. However, a diamond thin film synthesized in a gas phase has a very small coefficient of thermal expansion and can be synthesized only at a high temperature of about 600 to 1100 ° C. There is a problem that good adhesion to the base material cannot be achieved due to thermal stress generated by a difference in thermal expansion coefficient from the base material during cooling. From the viewpoint of avoiding such inconveniences, attempts have been made to use a material such as silicon nitride or sialon whose coefficient of thermal expansion is not so different from that of a diamond thin film as a base material, thereby making it possible to considerably improve adhesion. I have. However, materials such as silicon nitride and sialon have low toughness, and when such a material is used as a base material as a cutting tool, there is a disadvantage that the cutting edge is easily chipped. On the other hand, cemented carbide is superior in terms of toughness, and it is desired to use cemented carbide as a tool base material, but the thermal expansion coefficient is higher than diamond,
When the diamond thin film is synthesized at the above-described base material temperature, a residual stress of about 1 GPa is generated in the diamond thin film, and in some cases, the diamond thin film is separated from the base material during cooling of the base material. The present invention has been made in order to solve the technical problems as described above, and its purpose is to achieve excellent adhesion between a cemented carbide base material and a diamond thin film, making it ideal for various tools. An object of the present invention is to provide a diamond-coated cemented carbide tool having mechanical properties. SUMMARY OF THE INVENTION The present invention, which has achieved the above object, relates to a diamond-coated cemented carbide tool in which a diamond thin film is coated on the surface of a cemented carbide tool base material by a vapor phase synthesis method. The thickness of the diamond thin film is 1-2
0 μm, and the diamond thin film has a thickness of 0.0
The diamond-coated cemented carbide tool has a gist in that 001 to 1 atomic% of nitrogen is doped and a tensile stress is applied to the diamond thin film. As described above, one of the causes that the diamond thin film of the diamond coated cemented carbide tool is easily peeled off is that the coefficient of thermal expansion of the diamond thin film is smaller than that of the cemented carbide base material. It is due to. That is, the thermal expansion coefficient of the diamond thin film is about 3.1 × 10 −6 / ° C., and the thermal expansion coefficient of the cemented carbide is about 4 to 6 × 10 −6 / ° C. If the temperature is 1000 ° C., about 1 to 2 GPa of compressive stress is theoretically applied to the diamond film. However, this compressive stress is a value assuming that no film stress is generated when a diamond thin film is synthesized. In practice, a tensile stress is generated in a diamond thin film at the time of film formation, and a compressive stress is generated. (Residual compressive stress) is lower than the above value. However, the tensile stress is at most about 0.5 GPa, and does not completely reduce the compressive stress caused by the difference in thermal expansion coefficient. The present inventors have made various studies from the viewpoint of alleviating the compressive stress of the diamond thin film. As a result, when the diamond thin film is subjected to vapor phase synthesis, if nitrogen is doped into the diamond thin film, the tensile stress generated during the formation of diamond can be increased to be substantially equal to the compressive stress, The inventors have found that the residual stress can be reduced, and completed the present invention. FIG. 1 shows the relationship between the nitrogen concentration in the reaction gas and the residual tensile stress when the diamond film is doped with nitrogen by changing the nitrogen (N 2 ) concentration in the reaction gas in the range of 0 to 1% by volume. It is a graph which shows the result of having investigated the relationship. The diamond film synthesis conditions at this time are as follows.
The diamond film was placed on a Si substrate (5 mm × 20 mm × 0.4) so that the tensile stress could be easily measured as the residual tensile stress.
7 mm), and the residual tensile stress was determined by measuring the amount of warpage of the Si substrate. In addition, morphology, film quality, and the like were examined by a scanning electron microscope, Raman analysis, and X-ray diffraction. (Synthesis conditions) Reaction gas: mixed gas of H 2 (flow rate: 100 SCCM) and ethanol (flow rate: 3 SCCM) Filament temperature: 2
200 ° C. Si substrate temperature: 1000 ° C. Pressure: 80 Torr Synthesis time: 2.5 hours As is apparent from FIG. 1, the residual stress is a tensile stress over the entire nitrogen concentration. It can be seen that the stress increases up to approximately 0.5% by volume. Up to a nitrogen concentration of 0.5% by volume, the surface morphology of the diamond thin film hardly changed. On the other hand, as the nitrogen concentration increased beyond 0.5% by volume, the stress decreased, but the surface morphology changed accordingly. That is, when the nitrogen concentration exceeded 0.5% by volume, the crystals of the (100) plane were oriented, and when the concentration further increased, microcrystallization was observed. Thus, the effect of nitrogen doping on the residual stress was correlated with the crystal morphology, and the decrease in the residual stress was considered to be due to the segregation of non-diamond carbon at the grain boundaries. In any case, if a predetermined amount of nitrogen is contained in the reaction gas to synthesize a diamond thin film and dope the diamond thin film with nitrogen, the tensile stress in the diamond thin film could be increased. The above effect is obtained by doping with nitrogen because the nitrogen atom is substituted at the position of the C atom in the diamond lattice. As such an element, besides nitrogen, there is also boron (B).
It is thought that the same effect can be exerted by doping in diamond. However, the present inventors have confirmed through experiments that it has been found that B does not have the same effect as nitrogen. The present inventors included B (0.5% by volume) instead of nitrogen in the above-described reaction gas, changed the filament temperature: 2150 ° C., the Si substrate temperature: 950 ° C., and synthesized time. Except for changing the diamond (film thickness), a diamond thin film was synthesized under the same synthesis conditions as described above, B was doped into the thin film, and the effect on the residual tensile stress was investigated. The result is shown in FIG. For comparison, FIG. 2 also shows the results obtained when the nitrogen concentration in the reaction gas was 0.5% by volume and 0% (no doping was performed). As is clear from these results, the B-doped one has a smaller residual tensile stress than the B-doped one,
It has been found that the doping of B acts on the compressive stress side rather. The results of FIG. 1 show the nitrogen concentration in the reaction gas as a parameter, and the amount of nitrogen actually doped in diamond is not determined only by the nitrogen concentration in the reaction gas. However, it varies depending on, for example, the composition of the reaction gas and the synthesis conditions. For this reason, in the present invention, the amount of nitrogen to be doped in the diamond thin film is specified, and the amount of nitrogen needs to be 0.0001 to 1 atomic%, for the following reason. That is, when the nitrogen concentration in the diamond thin film is out of the above range, the tensile stress in the diamond thin film becomes smaller than about 1 GPa, and the compressive stress due to the difference in the thermal expansion coefficient cannot be completely reduced. Therefore, it is necessary to appropriately set the reaction gas composition and the synthesis conditions so that the nitrogen concentration in the diamond thin film falls within the above range. On the other hand, since the tensile stress of the diamond thin film coated on the surface of the cemented carbide base material is affected by the thickness of the diamond thin film and the base material temperature at the time of synthesis, it is necessary to set these appropriately. From such a viewpoint, the thickness of the diamond thin film needs to be 1 to 20 μm. If the thickness is out of the above range, the tensile stress of the diamond thin film is extremely reduced, and the compressive stress cannot be reduced. on the other hand,
As described above, the temperature of the substrate during the synthesis is required to be at least about 600 to 1100 ° C. in order to perform the gas phase synthesis, but it is better to be as low as possible in consideration of reducing the compressive stress. The higher the better, the better. In the present invention, as shown in Examples below, it is appropriate that the base material temperature is about 750 to 1000 ° C. The means for synthesizing the vapor-phase synthetic diamond is not particularly limited. For example, a chemical vapor deposition method (excitation decomposition of a raw material gas of hydrogen and hydrocarbon with a thermionic emitting material or a microwave non-polar discharge, etc.) CVD method). The means for doping nitrogen in the diamond thin film is not particularly limited. For example, in addition to mixing nitrogen gas into the raw material gas, nitrogen gas such as acetaldehyde oxime, methylaminoethanol, dimethylacetamide, ethylaminoethanol, etc. The organic compound to be used may be mixed with hydrogen and used as a source gas. Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples do not limit the present invention, and any design changes mentioned in the preceding and following paragraphs are intended to It is included in the technical scope. EXAMPLE 1 H 2 : 200 cc / min, acetaldehyde oxime (CH 3 CH = NOH): 2 cc / min as a raw material gas
Using a mixed gas of the following conditions, under the conditions of a pressure of 40 Torr and a microwave output of 1 kW by a microwave plasma CVD method,
A diamond having a thickness of 2 μm was synthesized on the cemented carbide chip in 30 minutes to produce a diamond-coated cemented carbide tip of the present invention. The obtained chip was examined for nitrogen concentration in the diamond film by a secondary ion mass spectrometer.
Atomic% nitrogen was included. On the other hand, H 2 : 200 cc /
min, CH 4 : Using a mixed gas of 2 cc / min, by microwave plasma CVD, at a pressure of 40 Torr.
r, microwave output: 1 kw, a 2 μm-thick diamond thin film was synthesized on a cemented carbide tip having the same shape as above, and a diamond-coated cemented carbide tip as a comparative material was also manufactured. For these chips, the work material Al-1 was used.
Cutting speed: 400 m / m using a 2% Si alloy round bar
Dry cutting was performed under the conditions of in, depth of cut: 0.1 mm, feed: 0.1 mm / rev, and the cutting performance was evaluated. As a result, the chip of the comparative material was peeled off in 5 minutes after cutting, but the chip of the present invention did not peel off in 90 minutes after cutting. Example 2 By a hot filament CVD method using a tantalum filament having a diameter of 0.5 mm, a mixed gas obtained by adding a nitrogen gas to a gas consisting of hydrogen-ethanol vapor was used as a raw material gas under the conditions shown in Table 1 below. A diamond thin film was formed on a cemented carbide tip. These chips were subjected to a 90-minute cutting test in the same manner as in Example 1. The results are shown in Table 2. From the results, it can be seen that the diamond-coated superhard tip of the present invention shows excellent adhesion without peeling. [Table 1] [Table 2] Example 3 As source gas, H 2 : 200 cc / min, CH 4 : 2c
c / min, NH 3 : Using a mixed gas of 0.1 cc / min, by microwave plasma CVD, at a pressure of 40
Torr, microwave power: 1 kw, diameter: 5
A 3 μm-thick diamond thin film was synthesized on a 30 mm carbide end mill in 30 minutes to produce a diamond-coated carbide end mill of the present invention. About the obtained end mill, 2
When the nitrogen concentration in the diamond film was examined using a secondary ion mass spectrometer, it was found that 0.1 atomic% of nitrogen was contained. On the other hand, as a comparative material,
2 Using a mixed gas of 200 cc / min, CH 4 : 2 cc / min, by a microwave plasma CVD method under the conditions of a pressure of 40 Torr and a microwave output of 1 kW, a 3 μm-thick film was formed on a carbide end mill having the same shape as above. A diamond-coated carbide end mill as a comparative material was prepared by synthesizing diamond. Using these end mills, Al-16%
Side cutting of the Si alloy was performed. The cutting conditions at this time are:
Cutting speed with down cut: 80m / min, feed rate:
0.03 mm / min, depth of cut: 5 mm, cutting width: 2
mm. As a result, the end mill of the comparative material peeled off in 20 minutes of cutting, but the end mill of the present invention did not peel off even after cutting for 120 minutes, and a good work surface was obtained. As described above, according to the present invention, by doping nitrogen into diamond, a compressive stress caused by a difference in thermal expansion coefficient between diamond and a base material is reduced by a tensile stress generated during film formation. Thus, a diamond-coated cemented carbide tool having excellent adhesion was obtained.

【図面の簡単な説明】 【図1】反応ガス中の窒素濃度とダイヤモンド薄膜の残
留引張応力との関係を示すグラフである。 【図2】窒素および硼素のドービング効果を比較して示
したグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing a relationship between a nitrogen concentration in a reaction gas and a residual tensile stress of a diamond thin film. FIG. 2 is a graph showing a comparison between the doping effects of nitrogen and boron.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 俊樹 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 安永 龍哉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 河田 和久 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 蔡 政憲 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 特開 昭64−75678(JP,A) 特開 昭63−53269(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 16/26 - 16/27 C30B 29/04 B23B 27/14 B23P 15/28 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiki Sato 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel, Ltd. Kobe Research Institute (72) Inventor Tatsuya Yasunaga Nishi-ku, Hyogo-ken 1-5-5 Takatsukadai Kobe Steel Engineering Co., Ltd.Kobe Research Institute (72) Inventor Kazuhisa Kawada 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Co., Ltd.Kobe Research Institute (72) Inventor Masanori Tsai 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Kobe Steel, Ltd. Kobe Research Institute (56) References JP-A-64-75678 (JP, A) JP-A Sho 63-53269 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C23C 16/26-16/27 C30B 29/04 B23B 27/14 B23P 15/28

Claims (1)

(57)【特許請求の範囲】 【請求項1】 超硬合金製工具母材表面に気相合成法に
よってダイヤモンド薄膜を被覆したダイヤモンド被覆超
硬合金工具において、前記ダイヤモンド薄膜の膜厚が1〜20μmであり、且
つ、 この ダイヤモンド薄膜には0.0001〜1原子%の窒
素がドーピングされており、該ダイヤモンド薄膜に引張
応力が付与されたものであることを特徴とするダイヤモ
ンド被覆超硬合金工具。
(1) In a diamond-coated cemented carbide tool in which a diamond thin film is coated on the surface of a cemented carbide tool base material by a gas phase synthesis method, the diamond thin film has a thickness of 1 to 5. 20 μm, and
One, this is the diamond thin film is 0.0001 atomic percent of nitrogen is doped, diamond-coated cemented carbide tool, characterized in that in which the tensile stress on the diamond thin film is applied.
JP22602393A 1993-09-10 1993-09-10 Diamond coated cemented carbide tool Expired - Lifetime JP3397849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22602393A JP3397849B2 (en) 1993-09-10 1993-09-10 Diamond coated cemented carbide tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22602393A JP3397849B2 (en) 1993-09-10 1993-09-10 Diamond coated cemented carbide tool

Publications (2)

Publication Number Publication Date
JPH0776775A JPH0776775A (en) 1995-03-20
JP3397849B2 true JP3397849B2 (en) 2003-04-21

Family

ID=16838579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22602393A Expired - Lifetime JP3397849B2 (en) 1993-09-10 1993-09-10 Diamond coated cemented carbide tool

Country Status (1)

Country Link
JP (1) JP3397849B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19859905C2 (en) * 1998-01-27 2002-05-23 Gfd Ges Fuer Diamantprodukte M Diamond cutting tool
DE102004025669A1 (en) * 2004-05-21 2005-12-15 Diaccon Gmbh Functional CVD diamond layers on large area substrates
JP5807840B2 (en) * 2011-08-10 2015-11-10 住友電気工業株式会社 Single crystal diamond with conductive layer and tool using the same
JPWO2013105348A1 (en) * 2012-01-10 2015-05-11 住友電工ハードメタル株式会社 Diamond coated tools
JP6036948B2 (en) * 2015-09-14 2016-11-30 住友電気工業株式会社 Single crystal diamond with conductive layer, tool using the same, and method for producing single crystal diamond with conductive layer
US20240300027A1 (en) 2023-03-10 2024-09-12 Ntk Cutting Tools Co., Ltd. Diamond coating cutting tool

Also Published As

Publication number Publication date
JPH0776775A (en) 1995-03-20

Similar Documents

Publication Publication Date Title
KR930001089B1 (en) Polycrystal diamond fluted tool and a process for the production of the same
KR101412164B1 (en) Coated cutting tool and method for producing the same
EP0413834B1 (en) Diamond-covered member and process for producing the same
US7645513B2 (en) Cubic boron nitride/diamond composite layers
JPH07315989A (en) Production of diamond coated member
JP3397849B2 (en) Diamond coated cemented carbide tool
JP2949863B2 (en) High toughness polycrystalline diamond and method for producing the same
US5626908A (en) Method for producing silicon nitride based member coated with film of diamond
US6365230B1 (en) Method of manufacturing a diamond film coated cutting tool
RU2413699C2 (en) Superhard material
JPS59170262A (en) Surface-coated tool member with superior wear resistance
EP0549801A1 (en) Diamond-covered member and production thereof
JPS61109628A (en) Diamond coated tool
US5334453A (en) Diamond-coated bodies and process for preparation thereof
Kikuchi et al. Characteristics of thin film growth in the synthesis of diamond by chemical vapour deposition and application of the thin film synthesis technology for tools
EP0435272B1 (en) Diamond-coated bodies and process for preparation thereof
JP2005248309A (en) Cemented carbide and coated cemented carbide
JPH05209276A (en) Manufacture of diamond coated member
JPH04261703A (en) Polycrystal diamond cutting tool
JP2781041B2 (en) Diamond coated members
JPH06248422A (en) Coated sintered compact and its production
JPS6333570A (en) Diamond coated cutting tool
JPH08243804A (en) Diamond coated cemented-carbide-made cutting tool excellent in resistance against cutting damage
JPH0623431B2 (en) Hard coating coated cutting tool parts
JP3068242B2 (en) Manufacturing method of diamond coated member

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030107

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080214

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090214

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100214

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110214

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120214

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130214

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140214

Year of fee payment: 11