JPH04234110A - Method of selectively growing compound semiconductor crystal - Google Patents
Method of selectively growing compound semiconductor crystalInfo
- Publication number
- JPH04234110A JPH04234110A JP41665890A JP41665890A JPH04234110A JP H04234110 A JPH04234110 A JP H04234110A JP 41665890 A JP41665890 A JP 41665890A JP 41665890 A JP41665890 A JP 41665890A JP H04234110 A JPH04234110 A JP H04234110A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- substrate
- compound semiconductor
- semiconductor crystal
- selectively
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 80
- 239000004065 semiconductor Substances 0.000 title claims abstract description 59
- 150000001875 compounds Chemical class 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 45
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims abstract description 11
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 239000002184 metal Substances 0.000 claims abstract description 7
- 238000000927 vapour-phase epitaxy Methods 0.000 claims description 6
- 229910052738 indium Inorganic materials 0.000 abstract description 5
- 229910052733 gallium Inorganic materials 0.000 abstract description 4
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 3
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract description 3
- 239000012159 carrier gas Substances 0.000 abstract description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052785 arsenic Inorganic materials 0.000 abstract description 2
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 2
- 239000001257 hydrogen Substances 0.000 abstract description 2
- 238000000206 photolithography Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 2
- 239000007789 gas Substances 0.000 description 24
- 239000002994 raw material Substances 0.000 description 16
- 238000009792 diffusion process Methods 0.000 description 12
- 230000005693 optoelectronics Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 4
- 125000002524 organometallic group Chemical group 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910021478 group 5 element Inorganic materials 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 2
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- -1 lInAs and GaInP Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、化合物半導体の選択成
長方法に関する。より詳細には、半導体結晶基板上の限
られた領域に、良質の化合物半導体結晶を成長させる方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively growing compound semiconductors. More specifically, the present invention relates to a method for growing high-quality compound semiconductor crystals in a limited area on a semiconductor crystal substrate.
【0002】0002
【従来の技術】光通信技術の発達により、光素子と電子
素子とを一体に集積した光電子集積回路が使用されるよ
うになってきた。光電子集積回路には、例えば、発光素
子とその駆動回路を集積したもの、受光素子と増幅回路
を集積したもの等がある。光電子集積回路は、一般の半
導体素子と異なり、光素子と電子素子という全く異なっ
た結晶構造の素子を集積したものである。2. Description of the Related Art With the development of optical communication technology, optoelectronic integrated circuits in which optical elements and electronic elements are integrated have come into use. Examples of optoelectronic integrated circuits include those in which a light emitting element and its driving circuit are integrated, and those in which a light receiving element and an amplifier circuit are integrated. Optoelectronic integrated circuits differ from general semiconductor devices in that they integrate elements with completely different crystal structures, such as optical elements and electronic elements.
【0003】上記の光電子集積回路のように、全く異な
る結晶構造の素子を備える集積回路の作製方法は、一般
の半導体素子のそれとは違ったものとなる。即ち、一般
の半導体素子は、半導体基板そのもの、あるいは、半導
体基板の表面全面にエピタキシャル成長させた半導体結
晶を加工して作製する。一方、それに対し、光電子集積
回路では、光素子の結晶構造を有する半導体結晶層およ
び電子素子の結晶構造を有する半導体結晶層の2種類の
半導体層を半導体基板表面の全面に積層する。そして、
下層の半導体層のみを使用する素子の領域では、上層の
半導体層をエッチング等により除去する方法が多用され
ていた。[0003] The manufacturing method of an integrated circuit including elements with completely different crystal structures, such as the above-mentioned optoelectronic integrated circuit, is different from that of general semiconductor devices. That is, a typical semiconductor element is manufactured by processing a semiconductor substrate itself or a semiconductor crystal epitaxially grown on the entire surface of a semiconductor substrate. On the other hand, in an optoelectronic integrated circuit, two types of semiconductor layers, a semiconductor crystal layer having a crystal structure of an optical device and a semiconductor crystal layer having a crystal structure of an electronic device, are laminated over the entire surface of a semiconductor substrate. and,
In the area of devices that use only the lower semiconductor layer, a method of removing the upper semiconductor layer by etching or the like has often been used.
【0004】しかしながら、上記の方法では上層の半導
体結晶が、結晶構造の異なる下層の半導体結晶層の影響
を受けてその特性が劣化する。また、2種類の半導体結
晶層を積層するので、得られる素子の厚さが大きくなり
、さらに上層の半導体結晶層の一部を除去するので、素
子表面を平坦にすることができない等の問題がある。However, in the above method, the properties of the upper semiconductor crystal layer deteriorate due to the influence of the lower semiconductor crystal layer having a different crystal structure. In addition, since two types of semiconductor crystal layers are stacked, the thickness of the resulting device becomes large, and since a portion of the upper semiconductor crystal layer is removed, there are problems such as the inability to flatten the device surface. be.
【0005】そこで、最近では、光電子集積回路のよう
な集積回路を作製する場合に、選択成長の技術が用いら
れることがある。選択成長とは、基板上の限定された領
域だけに選択的に、周囲とは異なる結晶構造の結晶を成
長させる技術である。この結晶成長技術を用いることに
より、基板上に3次元的に任意の結晶構造を作製するこ
とができる。従って、光電子集積回路のように、全く異
なる結晶構造の素子を備える集積回路の機能を大幅に高
めることができる。さらに、選択成長させる領域を予め
エッチングして凹ませておく、いわゆる、埋め込み選択
成長を行えば、表面を平坦にすることが可能である。こ
の半導体結晶の選択成長には、例えば、有機金属気相成
長法(MO−CVD法)が使用されていた。[0005] Recently, therefore, selective growth techniques are sometimes used when producing integrated circuits such as optoelectronic integrated circuits. Selective growth is a technique for selectively growing a crystal with a crystal structure different from that of the surrounding area only in a limited area on a substrate. By using this crystal growth technique, it is possible to create any three-dimensional crystal structure on a substrate. Therefore, the functionality of integrated circuits including elements with completely different crystal structures, such as optoelectronic integrated circuits, can be greatly enhanced. Furthermore, the surface can be made flat by performing so-called embedded selective growth in which the region to be selectively grown is etched and recessed in advance. For example, metal organic chemical vapor deposition (MO-CVD) has been used for selective growth of semiconductor crystals.
【0006】[0006]
【発明が解決しようとする課題】有機金属気相成長法を
用いて、半導体基板上に化合物半導体結晶の選択成長を
行う場合、基板上の一部にSiNあるいはSiO2 な
どの誘電体膜を形成して、それをマスクとして使用する
。このとき、マスク上に供給された原料はマスクされて
いない領域に拡散して、マスクされていない領域の結晶
成長速度を増加させることがある(Jounal of
Crystal Growth 77 (1986)
p334−339 ) 。[Problems to be Solved by the Invention] When selectively growing compound semiconductor crystals on a semiconductor substrate using metal organic vapor phase epitaxy, a dielectric film such as SiN or SiO2 is formed on a portion of the substrate. and use it as a mask. At this time, the raw material supplied on the mask may diffuse into the unmasked area and increase the crystal growth rate in the unmasked area (Journal of
Crystal Growth 77 (1986)
p334-339).
【0007】選択成長させる結晶が、GaInAs、A
lInAs、GaInP等の3元系化合物半導体の結晶
またはGaInAsP、AlGaInP等の4元系化合
物半導体の結晶の場合には、特に、Al、Ga、In等
III族元素の原料ガスの拡散速度の互いの差が問題に
なる。即ち、上記の化合物半導体結晶を基板表面の一部
に通常の条件で選択成長させると、基板全面に成長させ
た場合と異なる組成の結晶になってしまう。これは、I
II族元素の有機金属原料ガスは、互いに基板直上に形
成される境界層内おける拡散速度の差が大きいからであ
ると考えられている。そのため、拡散速度の速い原料は
容易にマスクされていない領域に拡散するため、マスク
されていない領域での原料濃度は拡散速度の速い原料ほ
ど高くなる。換言すれば、結晶成長領域へ供給されるI
II族元素の割合は、原料ガスの分圧比(供給量の比)
とは異なってしまう。The crystal to be selectively grown is GaInAs, A
In the case of crystals of ternary compound semiconductors such as lInAs and GaInP, or crystals of quaternary compound semiconductors such as GaInAsP and AlGaInP, in particular, the diffusion rates of group III element source gases such as Al, Ga, and In are different from each other. The difference becomes a problem. That is, if the above-mentioned compound semiconductor crystal is selectively grown on a part of the substrate surface under normal conditions, the crystal will have a different composition than when it is grown on the entire surface of the substrate. This is I
It is thought that this is because the organometallic raw material gases of Group II elements have a large difference in diffusion rate within the boundary layer formed directly above the substrate. Therefore, since a raw material with a fast diffusion rate easily diffuses into an unmasked area, the concentration of the raw material in an unmasked area becomes higher as the rate of diffusion of the raw material is faster. In other words, I supplied to the crystal growth region
The proportion of group II elements is determined by the partial pressure ratio of the raw material gas (ratio of supply amount)
It will be different.
【0008】その結果、選択成長させた3元系化合物半
導体、4元系化合物半導体の結晶組成が所定の組成から
ずれてしまって格子定数が変わり基板との格子不整合が
生じ、結晶の品質が低下するなどの問題があった。この
格子不整合は、選択成長領域およびマスクパターンが均
一な場合は、原料ガスの供給量を補正することによって
ある程度まで改善することができる。しかしながら、選
択成長領域の形状が基板全面で均一でない場合には、所
定の化合物半導体結晶を成長させ得る原料ガスの分圧比
が領域毎に異なる。そのため、原料ガスの全体の供給量
を補正するだけでは格子整合させることはできない。ま
た、選択成長領域の形状が基板全面で均一な場合でも、
選択成長領域が大きい場合等は、その領域内で原料ガス
の組成が分布を有するため、やはり原料ガスの供給量を
補正するだけでは格子整合させることはできない。As a result, the crystal composition of the selectively grown ternary compound semiconductor or quaternary compound semiconductor deviates from the predetermined composition, the lattice constant changes, and lattice mismatch with the substrate occurs, resulting in poor crystal quality. There were problems such as a decline in If the selective growth region and mask pattern are uniform, this lattice mismatch can be improved to some extent by correcting the supply amount of the source gas. However, if the shape of the selective growth region is not uniform over the entire surface of the substrate, the partial pressure ratio of the raw material gas that can grow a predetermined compound semiconductor crystal differs from region to region. Therefore, lattice matching cannot be achieved simply by correcting the total supply amount of source gas. Furthermore, even if the shape of the selective growth region is uniform over the entire substrate,
When the selective growth region is large, the composition of the source gas has a distribution within that region, so lattice matching cannot be achieved simply by correcting the supply amount of the source gas.
【0009】そこで本発明の目的は、上記従来技術の問
題点を解決した3元系以上の化合物半導体の良質な結晶
を基板上に選択成長させる方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for selectively growing high-quality crystals of ternary or higher compound semiconductors on a substrate, which solves the problems of the prior art described above.
【0010】0010
【課題を解決するための手段】本発明に従うと、半導体
結晶基板上に有機金属気相成長法により、3元系以上の
化合物半導体結晶を前記半導体結晶基板上の限られた領
域に選択的に成長させる方法において、前記化合物半導
体結晶を成長させる際の圧力を15〜30Torrとす
ることを特徴とする化合物半導体結晶の選択成長方法が
提供される。[Means for Solving the Problems] According to the present invention, a ternary or higher compound semiconductor crystal is selectively deposited in a limited area on a semiconductor crystal substrate by an organometallic vapor phase epitaxy method. A method for selectively growing a compound semiconductor crystal is provided, the method comprising growing the compound semiconductor crystal at a pressure of 15 to 30 Torr.
【0011】本発明の方法は、例えば、InP結晶基板
上にGaInAs化合物結晶を選択成長させる場合また
はInP結晶基板上にGaInAsP化合物結晶を選択
成長させる場合に有効である。The method of the present invention is effective, for example, when selectively growing a GaInAs compound crystal on an InP crystal substrate or when selectively growing a GaInAsP compound crystal on an InP crystal substrate.
【0012】0012
【作用】本発明の方法は、有機金属気相成長法により3
元系以上の化合物半導体結晶を選択成長させる際に、圧
力を15〜30Torrとするところにその主要な特徴
がある。
有機金属気相成長法では、原料ガスの拡散定数は温度、
圧力等により変化する。また原料ガスは、境界層内で熱
分解して分子量が変化し、これによっても拡散定数が変
化する。従って、本発明では、圧力を15〜30Tor
rとすることによってIII族元素の原料ガスの拡散速
度がすべて等しくなる様に最適化することができ、選択
成長における組成のばらつきをなくすことができる。[Function] The method of the present invention provides three
The main feature is that the pressure is set at 15 to 30 Torr when selectively growing compound semiconductor crystals of a higher than elementary type. In organometallic vapor phase epitaxy, the diffusion constant of the source gas is determined by the temperature,
Changes depending on pressure etc. Further, the raw material gas undergoes thermal decomposition within the boundary layer, resulting in a change in molecular weight, which also changes the diffusion constant. Therefore, in the present invention, the pressure is set to 15 to 30 Torr.
By setting r, it is possible to optimize the diffusion rates of all source gases of group III elements to be equal, and it is possible to eliminate variations in composition during selective growth.
【0013】以下、本発明を実施例により、さらに詳し
く説明するが、以下の開示は本発明の単なる実施例に過
ぎず、本発明の技術的範囲をなんら制限するものではな
い。[0013] The present invention will be explained in more detail with reference to examples below, but the following disclosure is merely an example of the present invention and is not intended to limit the technical scope of the present invention in any way.
【0014】[0014]
【実施例】本発明の有効性を確認するために、反応炉の
圧力を変化させながら、InP基板上にGaInAs結
晶の選択成長を行った。図1に、有機金属気相成長法で
半導体基板上に化合物半導体結晶を成長させるのに使用
する装置の概略図を示す。図1の装置は、内部を気密に
保持でき、内部に半導体基板3を固定するサセプタ2を
備え、半導体基板3を加熱することが可能な反応炉1と
、反応炉1の内部を高真空に排気可能な真空ポンプ4と
、真空ポンプ4の排気量を制御する調整弁5とを具備す
る。反応炉1には、流量調整弁61を有する配管6によ
り、ボンベ7、8、バブラ9、10からキャリアガスと
ともに原料ガスが供給される。ボンベ7、8、バブラ9
、10には、それぞれ調整弁71、81、91および1
01 が備えられ、各原料ガスの供給量が調整できる。EXAMPLE In order to confirm the effectiveness of the present invention, GaInAs crystal was selectively grown on an InP substrate while changing the pressure of the reactor. FIG. 1 shows a schematic diagram of an apparatus used to grow compound semiconductor crystals on a semiconductor substrate by metal organic vapor phase epitaxy. The apparatus shown in FIG. 1 includes a reactor 1 that can maintain an airtight interior, a susceptor 2 that fixes a semiconductor substrate 3 therein, a reactor 1 that can heat the semiconductor substrate 3, and a high vacuum inside the reactor 1. It includes a vacuum pump 4 capable of evacuation, and a regulating valve 5 that controls the displacement of the vacuum pump 4. The reactor 1 is supplied with raw material gas together with a carrier gas from cylinders 7 and 8 and bubblers 9 and 10 through a pipe 6 having a flow rate regulating valve 61 . Cylinder 7, 8, Bubbler 9
, 10 have regulating valves 71, 81, 91 and 1, respectively.
01 is provided, and the supply amount of each raw material gas can be adjusted.
【0015】まず、InP基板3上にSiN膜を形成し
、図2に示すようフォトリソグラフィーによって幅 8
00μmのマスク31を200μmの間隔で並べたパタ
ーン、および幅200μmのマスク32を 800μm
の間隔で並べたパターンを形成した。Ga原料にTEG
(トリエチルガリウム)、In原料にTMI(トリメチ
ルインジウム)、Asの原料にはAsH3(アシン)を
使用し、水素をキャリアガスとして反応炉1に供給した
。それぞれの供給量を以下に示す。
TEG 2.9×10−6mol/分TM
I 3.4×10−6mol/分AsH3
4.5×10−4mol/分基板3の
温度は 650℃に固定し、成長圧力は10Torrか
ら60Torrの範囲で変化させた。成長させたGaI
nAsの格子定数のInP基板の格子定数との差(格子
不整合)を2結晶X線回析法によって評価した。First, a SiN film is formed on the InP substrate 3, and a width of 8 is formed by photolithography as shown in FIG.
A pattern in which 00 μm masks 31 are arranged at 200 μm intervals, and a 200 μm wide mask 32 is 800 μm wide.
A pattern was formed that was arranged at intervals of . TEG for Ga raw material
(triethylgallium), TMI (trimethylindium) as the In raw material, AsH3 (asine) as the As raw material, and hydrogen was used as a carrier gas and supplied to the reactor 1. The supply amount of each is shown below. TEG 2.9×10-6mol/minTM
I 3.4 x 10-6 mol/min AsH3
The temperature of the 4.5×10 −4 mol/min substrate 3 was fixed at 650° C., and the growth pressure was varied in the range of 10 Torr to 60 Torr. Grown GaI
The difference (lattice mismatch) between the lattice constant of nAs and the lattice constant of the InP substrate was evaluated by two-crystal X-ray diffraction.
【0016】格子不整合の成長圧力依存性を図3に示す
。実線は、幅800μmのマスクを200μmの間隔で
並べたパターン領域での格子不整合を示し、破線は幅
200μmのマスクを 800μmの間隔で並べたパタ
ーン領域での格子不整合を示す。点線は基板全面に結晶
成長させた時の格子不整合を示す。図3からわかるよう
に、選択成長させたGaInAs結晶の格子定数は、成
長圧力に大きく依存している。この場合、GaInAs
結晶の格子定数は結晶組成と相関関係にあり、上述のよ
うに結晶組成は原料ガスの拡散定数と関係しているので
、Gaの原料ガスの拡散定数とInの原料ガスの拡散定
数との比が成長圧力とともに変化することを示している
。また、図3から、圧力15〜30Torrで選択成長
させたGaInAs結晶は、基板全面に成長させたGa
InAs結晶の格子定数にほぼ等しくなることがわかる
。従って、反応炉内の圧力をこの範囲に設定すると、G
aの原料ガスの拡散定数とInの原料ガスの拡散定数と
が等しくなり、InP基板との間で格子定数の不整合が
起こらない。FIG. 3 shows the growth pressure dependence of lattice mismatch. The solid line indicates the lattice mismatch in the pattern area where masks with a width of 800 μm are arranged at intervals of 200 μm, and the dashed line indicates the width
The figure shows the lattice mismatch in the pattern area of 200 μm masks arranged at 800 μm intervals. The dotted line indicates lattice mismatch when crystals are grown over the entire surface of the substrate. As can be seen from FIG. 3, the lattice constant of the selectively grown GaInAs crystal is largely dependent on the growth pressure. In this case, GaInAs
The lattice constant of the crystal is correlated with the crystal composition, and as mentioned above, the crystal composition is related to the diffusion constant of the source gas, so the ratio of the diffusion constant of the Ga source gas to the diffusion constant of the In source gas is This shows that the growth pressure changes with the growth pressure. Furthermore, from FIG. 3, it is clear that the GaInAs crystal grown selectively at a pressure of 15 to 30 Torr is different from the GaInAs crystal grown on the entire surface of the substrate.
It can be seen that the lattice constant is approximately equal to that of InAs crystal. Therefore, if the pressure inside the reactor is set within this range, G
The diffusion constant of the source gas for a is equal to the diffusion constant for the source gas for In, and no mismatch in lattice constant occurs with the InP substrate.
【0017】本発明の方法で、GaInAsP結晶を選
択成長させる場合には、上記の装置でさらにP原料とし
てPH3 (ホスフィン)を加えればよい。一般に有機
金属気相成長法では、P、As等のV族元素の原料ガス
はGa、In等のIII族元素の原料ガスに対して数倍
から数百倍過剰な量を供給する。選択成長を行う場合で
も、基板直上にはマスクの有無に関係なく過剰のV族元
素の原料ガスが存在し、III族元素の原料ガスのよう
にマスクされた領域からマスクされていない領域に原料
ガスが拡散することがない。従って、GaInAsPを
選択成長させる場合においても、格子不整合に関係する
のはGa、In等III族元素のみであり、成長圧力を
GaInAsの場合と同様に15〜30Torrに設定
することにより、InP基板との間で格子不整合が起こ
らない。When a GaInAsP crystal is selectively grown using the method of the present invention, PH3 (phosphine) may be added as a P raw material to the above-mentioned apparatus. In general, in the organometallic vapor phase epitaxy method, a raw material gas of group V elements such as P and As is supplied in an amount several to several hundred times in excess of the raw material gas of group III elements such as Ga and In. Even when selective growth is performed, there is an excess of group V element source gas directly above the substrate regardless of the presence or absence of a mask, and like group III element source gas, the source gas is transferred from the masked area to the unmasked area. Gas cannot diffuse. Therefore, even when selectively growing GaInAsP, only group III elements such as Ga and In are related to lattice mismatch, and by setting the growth pressure to 15 to 30 Torr, as in the case of GaInAs, the InP substrate No lattice mismatch occurs between
【0010】0010
【発明の効果】以上説明したように、本発明に従うと、
基板上の任意の形状・大きさの領域に基板と格子整合の
とれた3元系以上の化合物半導体結晶を形成することが
できる。本発明により、光電子集積回路のように結晶構
造の異なる複数の半導体を集積する必要のある素子を容
易に作製することができる。[Effects of the Invention] As explained above, according to the present invention,
A ternary or higher compound semiconductor crystal that is lattice-matched to the substrate can be formed in a region of any shape and size on the substrate. According to the present invention, an element such as an optoelectronic integrated circuit that requires the integration of a plurality of semiconductors having different crystal structures can be easily manufactured.
【図1】本発明の方法を実現する装置の一例の概略図で
ある。1 is a schematic diagram of an example of a device implementing the method of the invention; FIG.
【図2】本発明の方法の有効性を確認するために行った
実験に使用したInP基板上に形成したマスクパターン
の斜視図である。FIG. 2 is a perspective view of a mask pattern formed on an InP substrate used in an experiment conducted to confirm the effectiveness of the method of the present invention.
【図3】GaInAs化合物半導体結晶をInP基板上
に選択成長させた場合の、成長圧力と格子不整合との関
係を示したグラフである。FIG. 3 is a graph showing the relationship between growth pressure and lattice mismatch when a GaInAs compound semiconductor crystal is selectively grown on an InP substrate.
1 反応炉 2 サセプタ
3 基板 4 真空ポ
ンプ5、61、71、81、91、101 調整弁7
、8 ボンベ
9、10 バブラ1 Reactor 2 Susceptor 3 Substrate 4 Vacuum pump 5, 61, 71, 81, 91, 101 Regulating valve 7
, 8 cylinder 9, 10 bubbler
Claims (3)
法により、3元系以上の化合物半導体結晶を前記半導体
結晶基板上の限られた領域に選択的に成長させる方法に
おいて、前記化合物半導体結晶を成長させる際の圧力を
15〜30Torrとすることを特徴とする化合物半導
体結晶の選択成長方法。1. A method for selectively growing a ternary or higher compound semiconductor crystal in a limited region on a semiconductor crystal substrate by metal organic vapor phase epitaxy, wherein the compound semiconductor crystal 1. A method for selectively growing a compound semiconductor crystal, the method comprising growing a compound semiconductor crystal at a pressure of 15 to 30 Torr.
板であり、前記化合物半導体結晶が、GaInAs結晶
であることを特徴とする請求項1に記載の化合物半導体
結晶の選択成長方法。2. The method for selectively growing a compound semiconductor crystal according to claim 1, wherein the semiconductor crystal substrate is an InP crystal substrate, and the compound semiconductor crystal is a GaInAs crystal.
板であり、前記化合物半導体結晶が、GaInAsP結
晶であることを特徴とする請求項1に記載の化合物半導
体結晶の選択成長方法。3. The method for selectively growing a compound semiconductor crystal according to claim 1, wherein the semiconductor crystal substrate is an InP crystal substrate, and the compound semiconductor crystal is a GaInAsP crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02416658A JP3134315B2 (en) | 1990-12-28 | 1990-12-28 | Method for selective growth of compound semiconductor crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02416658A JP3134315B2 (en) | 1990-12-28 | 1990-12-28 | Method for selective growth of compound semiconductor crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04234110A true JPH04234110A (en) | 1992-08-21 |
JP3134315B2 JP3134315B2 (en) | 2001-02-13 |
Family
ID=18524865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02416658A Expired - Fee Related JP3134315B2 (en) | 1990-12-28 | 1990-12-28 | Method for selective growth of compound semiconductor crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3134315B2 (en) |
-
1990
- 1990-12-28 JP JP02416658A patent/JP3134315B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP3134315B2 (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5399522A (en) | Method of growing compound semiconductor | |
US6596377B1 (en) | Thin film product and method of forming | |
US7579263B2 (en) | Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer | |
US5108947A (en) | Integration of gaas on si substrates | |
US9356102B2 (en) | Double stepped semiconductor substrate | |
US6188090B1 (en) | Semiconductor device having a heteroepitaxial substrate | |
JPH04234110A (en) | Method of selectively growing compound semiconductor crystal | |
JPH05335241A (en) | Compound semiconductor and manufacture thereof | |
US20050136564A1 (en) | Method of laterally growing GaN with indium doping | |
US6245144B1 (en) | Doping control in selective area growth (SAG) of InP epitaxy in the fabrication of solid state semiconductor lasers | |
JP4256698B2 (en) | Multilayer thin film manufacturing apparatus and manufacturing method | |
JPS5984417A (en) | Iii-v family mixed crystalline semiconductor device | |
JP2005150187A (en) | Method for manufacturing compound semiconductor epitaxial substrate | |
JPS58223317A (en) | Method and device for growing of compound semiconductor crystal | |
JPH0547668A (en) | Crystal growth method for compound semiconductor | |
JPH0442898A (en) | Crystal growth of compound semiconductor | |
JP2625377B2 (en) | Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor | |
KR20130007546A (en) | Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate | |
JPH03232221A (en) | Vapor growth method for compound semiconductor | |
JPH0423471A (en) | Manufacture of vertical superplattice element | |
JPS6134930A (en) | Growing process of selective type crystal | |
JPH04130717A (en) | Formation method of crystal | |
JPH04333220A (en) | Inp substrate, inp semiconductor device and manufacture of inp substrate | |
Juergensen | GaInP/GaAs multiwafer production in a commercial-available AIX 2000 reactor | |
JPS6216517A (en) | Manufacture of compound semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001031 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091201 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |