JPH04234110A - Method of selectively growing compound semiconductor crystal - Google Patents

Method of selectively growing compound semiconductor crystal

Info

Publication number
JPH04234110A
JPH04234110A JP41665890A JP41665890A JPH04234110A JP H04234110 A JPH04234110 A JP H04234110A JP 41665890 A JP41665890 A JP 41665890A JP 41665890 A JP41665890 A JP 41665890A JP H04234110 A JPH04234110 A JP H04234110A
Authority
JP
Japan
Prior art keywords
crystal
substrate
compound semiconductor
semiconductor crystal
selectively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41665890A
Other languages
Japanese (ja)
Other versions
JP3134315B2 (en
Inventor
Michio Murata
道夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP02416658A priority Critical patent/JP3134315B2/en
Publication of JPH04234110A publication Critical patent/JPH04234110A/en
Application granted granted Critical
Publication of JP3134315B2 publication Critical patent/JP3134315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable an excellent crystal of ternary or more compound semiconductor to grow selectively on a substrate by a method wherein a pressure is specified when a compound semiconductor crystal is made to grow can a semiconductor crystal substrate through an organic metal vapor growth method. CONSTITUTION:A crystal of ternary or more compound semiconductor is made to grow selectively on the limited region of a semiconductor crystal substrate 3 through an organic metal vapor growth method, where a pressure is set to 15-30Torr when the compound semiconductor crystal concerned is made to grow. For instance, an SiN film is formed on an InP substrate 3, which is formed into a required pattern through a photolithography method. Then, TEG, TMI, and AsH3 are used as Ga, In, and As material respectively, hydrogen is made to serve as carrier gas, and these materials are fed to a reaction oven 1. The substrate 3 is kept at a temperature of 650 deg.C, the growing pressure is set to 15-30Torr, and a GaInAs crystal is selectively grown through an organic metal vapor growth method.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、化合物半導体の選択成
長方法に関する。より詳細には、半導体結晶基板上の限
られた領域に、良質の化合物半導体結晶を成長させる方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for selectively growing compound semiconductors. More specifically, the present invention relates to a method for growing high-quality compound semiconductor crystals in a limited area on a semiconductor crystal substrate.

【0002】0002

【従来の技術】光通信技術の発達により、光素子と電子
素子とを一体に集積した光電子集積回路が使用されるよ
うになってきた。光電子集積回路には、例えば、発光素
子とその駆動回路を集積したもの、受光素子と増幅回路
を集積したもの等がある。光電子集積回路は、一般の半
導体素子と異なり、光素子と電子素子という全く異なっ
た結晶構造の素子を集積したものである。
2. Description of the Related Art With the development of optical communication technology, optoelectronic integrated circuits in which optical elements and electronic elements are integrated have come into use. Examples of optoelectronic integrated circuits include those in which a light emitting element and its driving circuit are integrated, and those in which a light receiving element and an amplifier circuit are integrated. Optoelectronic integrated circuits differ from general semiconductor devices in that they integrate elements with completely different crystal structures, such as optical elements and electronic elements.

【0003】上記の光電子集積回路のように、全く異な
る結晶構造の素子を備える集積回路の作製方法は、一般
の半導体素子のそれとは違ったものとなる。即ち、一般
の半導体素子は、半導体基板そのもの、あるいは、半導
体基板の表面全面にエピタキシャル成長させた半導体結
晶を加工して作製する。一方、それに対し、光電子集積
回路では、光素子の結晶構造を有する半導体結晶層およ
び電子素子の結晶構造を有する半導体結晶層の2種類の
半導体層を半導体基板表面の全面に積層する。そして、
下層の半導体層のみを使用する素子の領域では、上層の
半導体層をエッチング等により除去する方法が多用され
ていた。
[0003] The manufacturing method of an integrated circuit including elements with completely different crystal structures, such as the above-mentioned optoelectronic integrated circuit, is different from that of general semiconductor devices. That is, a typical semiconductor element is manufactured by processing a semiconductor substrate itself or a semiconductor crystal epitaxially grown on the entire surface of a semiconductor substrate. On the other hand, in an optoelectronic integrated circuit, two types of semiconductor layers, a semiconductor crystal layer having a crystal structure of an optical device and a semiconductor crystal layer having a crystal structure of an electronic device, are laminated over the entire surface of a semiconductor substrate. and,
In the area of devices that use only the lower semiconductor layer, a method of removing the upper semiconductor layer by etching or the like has often been used.

【0004】しかしながら、上記の方法では上層の半導
体結晶が、結晶構造の異なる下層の半導体結晶層の影響
を受けてその特性が劣化する。また、2種類の半導体結
晶層を積層するので、得られる素子の厚さが大きくなり
、さらに上層の半導体結晶層の一部を除去するので、素
子表面を平坦にすることができない等の問題がある。
However, in the above method, the properties of the upper semiconductor crystal layer deteriorate due to the influence of the lower semiconductor crystal layer having a different crystal structure. In addition, since two types of semiconductor crystal layers are stacked, the thickness of the resulting device becomes large, and since a portion of the upper semiconductor crystal layer is removed, there are problems such as the inability to flatten the device surface. be.

【0005】そこで、最近では、光電子集積回路のよう
な集積回路を作製する場合に、選択成長の技術が用いら
れることがある。選択成長とは、基板上の限定された領
域だけに選択的に、周囲とは異なる結晶構造の結晶を成
長させる技術である。この結晶成長技術を用いることに
より、基板上に3次元的に任意の結晶構造を作製するこ
とができる。従って、光電子集積回路のように、全く異
なる結晶構造の素子を備える集積回路の機能を大幅に高
めることができる。さらに、選択成長させる領域を予め
エッチングして凹ませておく、いわゆる、埋め込み選択
成長を行えば、表面を平坦にすることが可能である。こ
の半導体結晶の選択成長には、例えば、有機金属気相成
長法(MO−CVD法)が使用されていた。
[0005] Recently, therefore, selective growth techniques are sometimes used when producing integrated circuits such as optoelectronic integrated circuits. Selective growth is a technique for selectively growing a crystal with a crystal structure different from that of the surrounding area only in a limited area on a substrate. By using this crystal growth technique, it is possible to create any three-dimensional crystal structure on a substrate. Therefore, the functionality of integrated circuits including elements with completely different crystal structures, such as optoelectronic integrated circuits, can be greatly enhanced. Furthermore, the surface can be made flat by performing so-called embedded selective growth in which the region to be selectively grown is etched and recessed in advance. For example, metal organic chemical vapor deposition (MO-CVD) has been used for selective growth of semiconductor crystals.

【0006】[0006]

【発明が解決しようとする課題】有機金属気相成長法を
用いて、半導体基板上に化合物半導体結晶の選択成長を
行う場合、基板上の一部にSiNあるいはSiO2 な
どの誘電体膜を形成して、それをマスクとして使用する
。このとき、マスク上に供給された原料はマスクされて
いない領域に拡散して、マスクされていない領域の結晶
成長速度を増加させることがある(Jounal of
 Crystal Growth 77 (1986)
 p334−339 ) 。
[Problems to be Solved by the Invention] When selectively growing compound semiconductor crystals on a semiconductor substrate using metal organic vapor phase epitaxy, a dielectric film such as SiN or SiO2 is formed on a portion of the substrate. and use it as a mask. At this time, the raw material supplied on the mask may diffuse into the unmasked area and increase the crystal growth rate in the unmasked area (Journal of
Crystal Growth 77 (1986)
p334-339).

【0007】選択成長させる結晶が、GaInAs、A
lInAs、GaInP等の3元系化合物半導体の結晶
またはGaInAsP、AlGaInP等の4元系化合
物半導体の結晶の場合には、特に、Al、Ga、In等
III族元素の原料ガスの拡散速度の互いの差が問題に
なる。即ち、上記の化合物半導体結晶を基板表面の一部
に通常の条件で選択成長させると、基板全面に成長させ
た場合と異なる組成の結晶になってしまう。これは、I
II族元素の有機金属原料ガスは、互いに基板直上に形
成される境界層内おける拡散速度の差が大きいからであ
ると考えられている。そのため、拡散速度の速い原料は
容易にマスクされていない領域に拡散するため、マスク
されていない領域での原料濃度は拡散速度の速い原料ほ
ど高くなる。換言すれば、結晶成長領域へ供給されるI
II族元素の割合は、原料ガスの分圧比(供給量の比)
とは異なってしまう。
The crystal to be selectively grown is GaInAs, A
In the case of crystals of ternary compound semiconductors such as lInAs and GaInP, or crystals of quaternary compound semiconductors such as GaInAsP and AlGaInP, in particular, the diffusion rates of group III element source gases such as Al, Ga, and In are different from each other. The difference becomes a problem. That is, if the above-mentioned compound semiconductor crystal is selectively grown on a part of the substrate surface under normal conditions, the crystal will have a different composition than when it is grown on the entire surface of the substrate. This is I
It is thought that this is because the organometallic raw material gases of Group II elements have a large difference in diffusion rate within the boundary layer formed directly above the substrate. Therefore, since a raw material with a fast diffusion rate easily diffuses into an unmasked area, the concentration of the raw material in an unmasked area becomes higher as the rate of diffusion of the raw material is faster. In other words, I supplied to the crystal growth region
The proportion of group II elements is determined by the partial pressure ratio of the raw material gas (ratio of supply amount)
It will be different.

【0008】その結果、選択成長させた3元系化合物半
導体、4元系化合物半導体の結晶組成が所定の組成から
ずれてしまって格子定数が変わり基板との格子不整合が
生じ、結晶の品質が低下するなどの問題があった。この
格子不整合は、選択成長領域およびマスクパターンが均
一な場合は、原料ガスの供給量を補正することによって
ある程度まで改善することができる。しかしながら、選
択成長領域の形状が基板全面で均一でない場合には、所
定の化合物半導体結晶を成長させ得る原料ガスの分圧比
が領域毎に異なる。そのため、原料ガスの全体の供給量
を補正するだけでは格子整合させることはできない。ま
た、選択成長領域の形状が基板全面で均一な場合でも、
選択成長領域が大きい場合等は、その領域内で原料ガス
の組成が分布を有するため、やはり原料ガスの供給量を
補正するだけでは格子整合させることはできない。
As a result, the crystal composition of the selectively grown ternary compound semiconductor or quaternary compound semiconductor deviates from the predetermined composition, the lattice constant changes, and lattice mismatch with the substrate occurs, resulting in poor crystal quality. There were problems such as a decline in If the selective growth region and mask pattern are uniform, this lattice mismatch can be improved to some extent by correcting the supply amount of the source gas. However, if the shape of the selective growth region is not uniform over the entire surface of the substrate, the partial pressure ratio of the raw material gas that can grow a predetermined compound semiconductor crystal differs from region to region. Therefore, lattice matching cannot be achieved simply by correcting the total supply amount of source gas. Furthermore, even if the shape of the selective growth region is uniform over the entire substrate,
When the selective growth region is large, the composition of the source gas has a distribution within that region, so lattice matching cannot be achieved simply by correcting the supply amount of the source gas.

【0009】そこで本発明の目的は、上記従来技術の問
題点を解決した3元系以上の化合物半導体の良質な結晶
を基板上に選択成長させる方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for selectively growing high-quality crystals of ternary or higher compound semiconductors on a substrate, which solves the problems of the prior art described above.

【0010】0010

【課題を解決するための手段】本発明に従うと、半導体
結晶基板上に有機金属気相成長法により、3元系以上の
化合物半導体結晶を前記半導体結晶基板上の限られた領
域に選択的に成長させる方法において、前記化合物半導
体結晶を成長させる際の圧力を15〜30Torrとす
ることを特徴とする化合物半導体結晶の選択成長方法が
提供される。
[Means for Solving the Problems] According to the present invention, a ternary or higher compound semiconductor crystal is selectively deposited in a limited area on a semiconductor crystal substrate by an organometallic vapor phase epitaxy method. A method for selectively growing a compound semiconductor crystal is provided, the method comprising growing the compound semiconductor crystal at a pressure of 15 to 30 Torr.

【0011】本発明の方法は、例えば、InP結晶基板
上にGaInAs化合物結晶を選択成長させる場合また
はInP結晶基板上にGaInAsP化合物結晶を選択
成長させる場合に有効である。
The method of the present invention is effective, for example, when selectively growing a GaInAs compound crystal on an InP crystal substrate or when selectively growing a GaInAsP compound crystal on an InP crystal substrate.

【0012】0012

【作用】本発明の方法は、有機金属気相成長法により3
元系以上の化合物半導体結晶を選択成長させる際に、圧
力を15〜30Torrとするところにその主要な特徴
がある。 有機金属気相成長法では、原料ガスの拡散定数は温度、
圧力等により変化する。また原料ガスは、境界層内で熱
分解して分子量が変化し、これによっても拡散定数が変
化する。従って、本発明では、圧力を15〜30Tor
rとすることによってIII族元素の原料ガスの拡散速
度がすべて等しくなる様に最適化することができ、選択
成長における組成のばらつきをなくすことができる。
[Function] The method of the present invention provides three
The main feature is that the pressure is set at 15 to 30 Torr when selectively growing compound semiconductor crystals of a higher than elementary type. In organometallic vapor phase epitaxy, the diffusion constant of the source gas is determined by the temperature,
Changes depending on pressure etc. Further, the raw material gas undergoes thermal decomposition within the boundary layer, resulting in a change in molecular weight, which also changes the diffusion constant. Therefore, in the present invention, the pressure is set to 15 to 30 Torr.
By setting r, it is possible to optimize the diffusion rates of all source gases of group III elements to be equal, and it is possible to eliminate variations in composition during selective growth.

【0013】以下、本発明を実施例により、さらに詳し
く説明するが、以下の開示は本発明の単なる実施例に過
ぎず、本発明の技術的範囲をなんら制限するものではな
い。
[0013] The present invention will be explained in more detail with reference to examples below, but the following disclosure is merely an example of the present invention and is not intended to limit the technical scope of the present invention in any way.

【0014】[0014]

【実施例】本発明の有効性を確認するために、反応炉の
圧力を変化させながら、InP基板上にGaInAs結
晶の選択成長を行った。図1に、有機金属気相成長法で
半導体基板上に化合物半導体結晶を成長させるのに使用
する装置の概略図を示す。図1の装置は、内部を気密に
保持でき、内部に半導体基板3を固定するサセプタ2を
備え、半導体基板3を加熱することが可能な反応炉1と
、反応炉1の内部を高真空に排気可能な真空ポンプ4と
、真空ポンプ4の排気量を制御する調整弁5とを具備す
る。反応炉1には、流量調整弁61を有する配管6によ
り、ボンベ7、8、バブラ9、10からキャリアガスと
ともに原料ガスが供給される。ボンベ7、8、バブラ9
、10には、それぞれ調整弁71、81、91および1
01 が備えられ、各原料ガスの供給量が調整できる。
EXAMPLE In order to confirm the effectiveness of the present invention, GaInAs crystal was selectively grown on an InP substrate while changing the pressure of the reactor. FIG. 1 shows a schematic diagram of an apparatus used to grow compound semiconductor crystals on a semiconductor substrate by metal organic vapor phase epitaxy. The apparatus shown in FIG. 1 includes a reactor 1 that can maintain an airtight interior, a susceptor 2 that fixes a semiconductor substrate 3 therein, a reactor 1 that can heat the semiconductor substrate 3, and a high vacuum inside the reactor 1. It includes a vacuum pump 4 capable of evacuation, and a regulating valve 5 that controls the displacement of the vacuum pump 4. The reactor 1 is supplied with raw material gas together with a carrier gas from cylinders 7 and 8 and bubblers 9 and 10 through a pipe 6 having a flow rate regulating valve 61 . Cylinder 7, 8, Bubbler 9
, 10 have regulating valves 71, 81, 91 and 1, respectively.
01 is provided, and the supply amount of each raw material gas can be adjusted.

【0015】まず、InP基板3上にSiN膜を形成し
、図2に示すようフォトリソグラフィーによって幅 8
00μmのマスク31を200μmの間隔で並べたパタ
ーン、および幅200μmのマスク32を 800μm
の間隔で並べたパターンを形成した。Ga原料にTEG
(トリエチルガリウム)、In原料にTMI(トリメチ
ルインジウム)、Asの原料にはAsH3(アシン)を
使用し、水素をキャリアガスとして反応炉1に供給した
。それぞれの供給量を以下に示す。 TEG       2.9×10−6mol/分TM
I       3.4×10−6mol/分AsH3
        4.5×10−4mol/分基板3の
温度は 650℃に固定し、成長圧力は10Torrか
ら60Torrの範囲で変化させた。成長させたGaI
nAsの格子定数のInP基板の格子定数との差(格子
不整合)を2結晶X線回析法によって評価した。
First, a SiN film is formed on the InP substrate 3, and a width of 8 is formed by photolithography as shown in FIG.
A pattern in which 00 μm masks 31 are arranged at 200 μm intervals, and a 200 μm wide mask 32 is 800 μm wide.
A pattern was formed that was arranged at intervals of . TEG for Ga raw material
(triethylgallium), TMI (trimethylindium) as the In raw material, AsH3 (asine) as the As raw material, and hydrogen was used as a carrier gas and supplied to the reactor 1. The supply amount of each is shown below. TEG 2.9×10-6mol/minTM
I 3.4 x 10-6 mol/min AsH3
The temperature of the 4.5×10 −4 mol/min substrate 3 was fixed at 650° C., and the growth pressure was varied in the range of 10 Torr to 60 Torr. Grown GaI
The difference (lattice mismatch) between the lattice constant of nAs and the lattice constant of the InP substrate was evaluated by two-crystal X-ray diffraction.

【0016】格子不整合の成長圧力依存性を図3に示す
。実線は、幅800μmのマスクを200μmの間隔で
並べたパターン領域での格子不整合を示し、破線は幅 
200μmのマスクを 800μmの間隔で並べたパタ
ーン領域での格子不整合を示す。点線は基板全面に結晶
成長させた時の格子不整合を示す。図3からわかるよう
に、選択成長させたGaInAs結晶の格子定数は、成
長圧力に大きく依存している。この場合、GaInAs
結晶の格子定数は結晶組成と相関関係にあり、上述のよ
うに結晶組成は原料ガスの拡散定数と関係しているので
、Gaの原料ガスの拡散定数とInの原料ガスの拡散定
数との比が成長圧力とともに変化することを示している
。また、図3から、圧力15〜30Torrで選択成長
させたGaInAs結晶は、基板全面に成長させたGa
InAs結晶の格子定数にほぼ等しくなることがわかる
。従って、反応炉内の圧力をこの範囲に設定すると、G
aの原料ガスの拡散定数とInの原料ガスの拡散定数と
が等しくなり、InP基板との間で格子定数の不整合が
起こらない。
FIG. 3 shows the growth pressure dependence of lattice mismatch. The solid line indicates the lattice mismatch in the pattern area where masks with a width of 800 μm are arranged at intervals of 200 μm, and the dashed line indicates the width
The figure shows the lattice mismatch in the pattern area of 200 μm masks arranged at 800 μm intervals. The dotted line indicates lattice mismatch when crystals are grown over the entire surface of the substrate. As can be seen from FIG. 3, the lattice constant of the selectively grown GaInAs crystal is largely dependent on the growth pressure. In this case, GaInAs
The lattice constant of the crystal is correlated with the crystal composition, and as mentioned above, the crystal composition is related to the diffusion constant of the source gas, so the ratio of the diffusion constant of the Ga source gas to the diffusion constant of the In source gas is This shows that the growth pressure changes with the growth pressure. Furthermore, from FIG. 3, it is clear that the GaInAs crystal grown selectively at a pressure of 15 to 30 Torr is different from the GaInAs crystal grown on the entire surface of the substrate.
It can be seen that the lattice constant is approximately equal to that of InAs crystal. Therefore, if the pressure inside the reactor is set within this range, G
The diffusion constant of the source gas for a is equal to the diffusion constant for the source gas for In, and no mismatch in lattice constant occurs with the InP substrate.

【0017】本発明の方法で、GaInAsP結晶を選
択成長させる場合には、上記の装置でさらにP原料とし
てPH3 (ホスフィン)を加えればよい。一般に有機
金属気相成長法では、P、As等のV族元素の原料ガス
はGa、In等のIII族元素の原料ガスに対して数倍
から数百倍過剰な量を供給する。選択成長を行う場合で
も、基板直上にはマスクの有無に関係なく過剰のV族元
素の原料ガスが存在し、III族元素の原料ガスのよう
にマスクされた領域からマスクされていない領域に原料
ガスが拡散することがない。従って、GaInAsPを
選択成長させる場合においても、格子不整合に関係する
のはGa、In等III族元素のみであり、成長圧力を
GaInAsの場合と同様に15〜30Torrに設定
することにより、InP基板との間で格子不整合が起こ
らない。
When a GaInAsP crystal is selectively grown using the method of the present invention, PH3 (phosphine) may be added as a P raw material to the above-mentioned apparatus. In general, in the organometallic vapor phase epitaxy method, a raw material gas of group V elements such as P and As is supplied in an amount several to several hundred times in excess of the raw material gas of group III elements such as Ga and In. Even when selective growth is performed, there is an excess of group V element source gas directly above the substrate regardless of the presence or absence of a mask, and like group III element source gas, the source gas is transferred from the masked area to the unmasked area. Gas cannot diffuse. Therefore, even when selectively growing GaInAsP, only group III elements such as Ga and In are related to lattice mismatch, and by setting the growth pressure to 15 to 30 Torr, as in the case of GaInAs, the InP substrate No lattice mismatch occurs between

【0010】0010

【発明の効果】以上説明したように、本発明に従うと、
基板上の任意の形状・大きさの領域に基板と格子整合の
とれた3元系以上の化合物半導体結晶を形成することが
できる。本発明により、光電子集積回路のように結晶構
造の異なる複数の半導体を集積する必要のある素子を容
易に作製することができる。
[Effects of the Invention] As explained above, according to the present invention,
A ternary or higher compound semiconductor crystal that is lattice-matched to the substrate can be formed in a region of any shape and size on the substrate. According to the present invention, an element such as an optoelectronic integrated circuit that requires the integration of a plurality of semiconductors having different crystal structures can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法を実現する装置の一例の概略図で
ある。
1 is a schematic diagram of an example of a device implementing the method of the invention; FIG.

【図2】本発明の方法の有効性を確認するために行った
実験に使用したInP基板上に形成したマスクパターン
の斜視図である。
FIG. 2 is a perspective view of a mask pattern formed on an InP substrate used in an experiment conducted to confirm the effectiveness of the method of the present invention.

【図3】GaInAs化合物半導体結晶をInP基板上
に選択成長させた場合の、成長圧力と格子不整合との関
係を示したグラフである。
FIG. 3 is a graph showing the relationship between growth pressure and lattice mismatch when a GaInAs compound semiconductor crystal is selectively grown on an InP substrate.

【符号の説明】[Explanation of symbols]

1  反応炉            2  サセプタ
3  基板              4  真空ポ
ンプ5、61、71、81、91、101  調整弁7
、8  ボンベ 9、10  バブラ
1 Reactor 2 Susceptor 3 Substrate 4 Vacuum pump 5, 61, 71, 81, 91, 101 Regulating valve 7
, 8 cylinder 9, 10 bubbler

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  半導体結晶基板上に有機金属気相成長
法により、3元系以上の化合物半導体結晶を前記半導体
結晶基板上の限られた領域に選択的に成長させる方法に
おいて、前記化合物半導体結晶を成長させる際の圧力を
15〜30Torrとすることを特徴とする化合物半導
体結晶の選択成長方法。
1. A method for selectively growing a ternary or higher compound semiconductor crystal in a limited region on a semiconductor crystal substrate by metal organic vapor phase epitaxy, wherein the compound semiconductor crystal 1. A method for selectively growing a compound semiconductor crystal, the method comprising growing a compound semiconductor crystal at a pressure of 15 to 30 Torr.
【請求項2】  前記半導体結晶基板が、InP結晶基
板であり、前記化合物半導体結晶が、GaInAs結晶
であることを特徴とする請求項1に記載の化合物半導体
結晶の選択成長方法。
2. The method for selectively growing a compound semiconductor crystal according to claim 1, wherein the semiconductor crystal substrate is an InP crystal substrate, and the compound semiconductor crystal is a GaInAs crystal.
【請求項3】  前記半導体結晶基板が、InP結晶基
板であり、前記化合物半導体結晶が、GaInAsP結
晶であることを特徴とする請求項1に記載の化合物半導
体結晶の選択成長方法。
3. The method for selectively growing a compound semiconductor crystal according to claim 1, wherein the semiconductor crystal substrate is an InP crystal substrate, and the compound semiconductor crystal is a GaInAsP crystal.
JP02416658A 1990-12-28 1990-12-28 Method for selective growth of compound semiconductor crystal Expired - Fee Related JP3134315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02416658A JP3134315B2 (en) 1990-12-28 1990-12-28 Method for selective growth of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02416658A JP3134315B2 (en) 1990-12-28 1990-12-28 Method for selective growth of compound semiconductor crystal

Publications (2)

Publication Number Publication Date
JPH04234110A true JPH04234110A (en) 1992-08-21
JP3134315B2 JP3134315B2 (en) 2001-02-13

Family

ID=18524865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02416658A Expired - Fee Related JP3134315B2 (en) 1990-12-28 1990-12-28 Method for selective growth of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JP3134315B2 (en)

Also Published As

Publication number Publication date
JP3134315B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US5399522A (en) Method of growing compound semiconductor
US6596377B1 (en) Thin film product and method of forming
US7579263B2 (en) Threading-dislocation-free nanoheteroepitaxy of Ge on Si using self-directed touch-down of Ge through a thin SiO2 layer
US5108947A (en) Integration of gaas on si substrates
US9356102B2 (en) Double stepped semiconductor substrate
US6188090B1 (en) Semiconductor device having a heteroepitaxial substrate
JPH04234110A (en) Method of selectively growing compound semiconductor crystal
JPH05335241A (en) Compound semiconductor and manufacture thereof
US20050136564A1 (en) Method of laterally growing GaN with indium doping
US6245144B1 (en) Doping control in selective area growth (SAG) of InP epitaxy in the fabrication of solid state semiconductor lasers
JP4256698B2 (en) Multilayer thin film manufacturing apparatus and manufacturing method
JPS5984417A (en) Iii-v family mixed crystalline semiconductor device
JP2005150187A (en) Method for manufacturing compound semiconductor epitaxial substrate
JPS58223317A (en) Method and device for growing of compound semiconductor crystal
JPH0547668A (en) Crystal growth method for compound semiconductor
JPH0442898A (en) Crystal growth of compound semiconductor
JP2625377B2 (en) Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor
KR20130007546A (en) Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate
JPH03232221A (en) Vapor growth method for compound semiconductor
JPH0423471A (en) Manufacture of vertical superplattice element
JPS6134930A (en) Growing process of selective type crystal
JPH04130717A (en) Formation method of crystal
JPH04333220A (en) Inp substrate, inp semiconductor device and manufacture of inp substrate
Juergensen GaInP/GaAs multiwafer production in a commercial-available AIX 2000 reactor
JPS6216517A (en) Manufacture of compound semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees