JPH04221429A - Manufacture of magnetic recording medium - Google Patents

Manufacture of magnetic recording medium

Info

Publication number
JPH04221429A
JPH04221429A JP41262990A JP41262990A JPH04221429A JP H04221429 A JPH04221429 A JP H04221429A JP 41262990 A JP41262990 A JP 41262990A JP 41262990 A JP41262990 A JP 41262990A JP H04221429 A JPH04221429 A JP H04221429A
Authority
JP
Japan
Prior art keywords
layer
room temperature
magnetic recording
recording medium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41262990A
Other languages
Japanese (ja)
Other versions
JP2720363B2 (en
Inventor
Tomio Takase
高瀬 富朗
Junichi Horikawa
順一 堀川
Yoichi Yamaguchi
洋一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2412629A priority Critical patent/JP2720363B2/en
Publication of JPH04221429A publication Critical patent/JPH04221429A/en
Application granted granted Critical
Publication of JP2720363B2 publication Critical patent/JP2720363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To enable a magnetic recording medium with a high coercive force, less scattering, and a high reproducibility to be produced. CONSTITUTION:A first layer consisting of a metal which is non-magnetic body at room temperature, a second layer consisting of a metal which is a ferromagnetic body at room temperature on the first layer, and a third layer consisting of a metal which is a non-magnetic body at room temperature on the second layer are laminated at room temperature and at 200 deg.C for producing a laminated body and then this laminated body is subjected to heating treatment for a specified amount of time by increasing temperature at a rate of 1 deg.C/minute to 40 deg.C/ minute from room temperature up to 300 deg.C or higher.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ハードディスク装置等
に使用される磁気記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium used in hard disk drives and the like.

【0002】0002

【従来の技術】近年、ハードディスク装置は大容量化、
小型化の傾向にあり、この種の装置に用いられる磁気記
録媒体には、より高い記録密度が要求されている。上述
した高記録密度を実現するために、金属薄膜を磁性体層
として有する磁気記録媒体が実用化に向けて研究されて
いる。この種の磁気記録媒体のうち、基板上にクロム非
磁性層を積層し、この上にコバルト合金強磁性層を積層
した二層構造の磁気記録媒体は、良好な保磁力を示すこ
とが第11回日本応用磁気学会学術講演概要集(198
7年)第18頁に記載されている。更に、ここでは、ス
パッタリングによる各膜積層の際、基板温度を上昇させ
ることによりさらに高い保磁力が得られることが指摘さ
れている。上記した二層構造の磁気記録媒体を実際に製
造する場合、スパッタリングの前工程に基板の予備加熱
を行って基板温度を上昇させ、この状態で、クロム非磁
性層及びコバルト合金強磁性層を基板上に積層している
。具体的に言えば、インライン型スパッタリング装置に
よる磁気記録媒体の製造工程においては、多数枚のディ
スク基板をパレットに装着してスパッタリングする工程
の前に、この多数枚のディスク基板をパレットごと予備
加熱している。しかし、前述したような予備加熱処理で
は所定の温度まで加熱し、しかも各基板の均一な温度分
布を得るためには長時間を要するという問題点がある。 また、スパッタリング中は各基板温度の正確な制御が困
難なため、製造された各磁気記録媒体の保磁力がばらつ
くという問題点がある。一方、第51回応用磁気学会学
術講演予稿集(1990年秋季)26a−MD−5には
、250℃に加熱した基板上にクロム層、その上にコバ
ルト合金強磁性層を形成した後、この積層体を適当な条
件でアニールすることにより磁気記録媒体を製造し、こ
れによって保磁力を向上させている。この方法は、保磁
力がアニール温度及びアニール時間に依存するとを利用
したものである。
[Background Art] In recent years, hard disk drives have become larger in capacity.
There is a trend toward miniaturization, and higher recording density is required of the magnetic recording media used in this type of device. In order to achieve the above-mentioned high recording density, magnetic recording media having a metal thin film as a magnetic layer are being studied for practical use. Among these types of magnetic recording media, magnetic recording media with a two-layer structure, in which a chromium nonmagnetic layer is laminated on a substrate and a cobalt alloy ferromagnetic layer is laminated thereon, exhibit good coercive force. Collected summaries of the academic lectures of the Japanese Society of Applied Magnetics (198
7 years) described on page 18. Furthermore, it is pointed out here that even higher coercivity can be obtained by increasing the substrate temperature when laminating each film by sputtering. When actually manufacturing the above-mentioned two-layer magnetic recording medium, the substrate is preheated in the pre-sputtering process to raise the substrate temperature, and in this state, the chromium nonmagnetic layer and the cobalt alloy ferromagnetic layer are attached to the substrate. layered on top. Specifically, in the process of manufacturing magnetic recording media using in-line sputtering equipment, before the process of mounting a large number of disk substrates on a pallet and sputtering, the large number of disk substrates are preheated together with the pallet. ing. However, the preheating treatment as described above has a problem in that it takes a long time to heat the substrate to a predetermined temperature and to obtain a uniform temperature distribution on each substrate. Furthermore, since it is difficult to accurately control the temperature of each substrate during sputtering, there is a problem in that the coercive force of each manufactured magnetic recording medium varies. On the other hand, in Proceedings of the 51st Academic Lectures of the Japan Society of Applied Magnetics (Autumn 1990) 26a-MD-5, a chromium layer is formed on a substrate heated to 250°C, and a cobalt alloy ferromagnetic layer is formed thereon. A magnetic recording medium is manufactured by annealing the laminate under appropriate conditions, thereby improving the coercive force. This method utilizes the fact that coercive force depends on annealing temperature and annealing time.

【0003】0003

【発明が解決しようとする課題】しかし、上述した熱処
理のように、アニール温度及びアニール時間を定めただ
けでは、製造された磁気記録媒体の保磁力がばらつくこ
とが判明した。更に、上記した金属薄膜を磁性体層とす
る磁気記録媒体は主に二層構造のものに限られており、
多層構造のものについては考慮されていないのが実情で
ある。本発明の課題は、高い保磁力を有するとともに、
ばらつきが少なく、したがって、再現性の高い磁気記録
媒体の製造方法を提供することである。本発明の他の課
題は多層構造にしても、高い保磁力を得ることができる
磁気記録媒体の製造方法を提供することである。
However, it has been found that simply setting the annealing temperature and annealing time as in the heat treatment described above causes variations in the coercive force of the manufactured magnetic recording media. Furthermore, magnetic recording media using the above-mentioned metal thin film as a magnetic layer are mainly limited to those with a two-layer structure.
The reality is that multilayer structures are not taken into account. The object of the present invention is to have high coercive force and
It is an object of the present invention to provide a method for manufacturing a magnetic recording medium with little variation and therefore high reproducibility. Another object of the present invention is to provide a method for manufacturing a magnetic recording medium that can obtain a high coercive force even if it has a multilayer structure.

【0004】0004

【課題を解決するための手段】本発明の一態様によれば
、第1の工程で基板上に常温にて非磁性体である金属か
ら成る第1の層を室温乃至200℃で積層し、第2の工
程で前記第1の層上に常温にて強磁性体である金属から
成る第2の層を室温乃至200℃で常温下で積層して積
層体を製造し、つづいて第3の工程で前記積層体を常温
から300℃以上まで所定の昇温速度で昇温し、第4の
工程で前記積層体を300℃以上で所定の時間熱処理す
ることによって二層構造を有する磁気記録媒体の製造方
法が得られる。更に、本発明の他の態様によれば、第1
の工程で基板上に常温にて非磁性体である金属から成る
第1の層を室温乃至200℃で積層し、第2の工程で前
記第1の層上に常温にて強磁性体である金属から成る第
2の層を室温乃至200℃で積層し、第3の工程で前記
第2の層上に常温にて非磁性体である金属から成る第3
の層を室温乃至200℃で積層して積層体を製造し、つ
づいて第4の工程で前記積層体を300℃以上で所定の
時間熱処理することによって三層構造を有する磁気記録
媒体の製造方法が得られる。
[Means for Solving the Problems] According to one aspect of the present invention, in a first step, a first layer made of a metal that is non-magnetic at room temperature is laminated on a substrate at room temperature to 200°C, In the second step, a second layer made of a metal that is ferromagnetic at room temperature is laminated on the first layer at room temperature to 200°C to produce a laminate, and then a third layer is formed. In the step, the temperature of the laminate is raised from room temperature to 300° C. or higher at a predetermined heating rate, and in the fourth step, the laminate is heat-treated at 300° C. or higher for a predetermined time, thereby producing a magnetic recording medium having a two-layer structure. A manufacturing method is obtained. Furthermore, according to another aspect of the invention, the first
In the step, a first layer made of a metal that is non-magnetic at room temperature is laminated on the substrate at room temperature to 200 ° C., and in the second step, a first layer made of a metal that is non-magnetic at room temperature is laminated on the first layer. A second layer made of metal is laminated at room temperature to 200°C, and in a third step, a third layer made of metal that is non-magnetic at room temperature is laminated on the second layer.
A method for producing a magnetic recording medium having a three-layer structure by laminating the layers at room temperature to 200°C to produce a laminate, and then heat-treating the laminate at 300°C or higher for a predetermined time in a fourth step. is obtained.

【0005】[0005]

【作用】本発明では、基板上に常温にて非磁性体である
金属から成る第1の層を室温乃至200℃で積層し、第
1の層上に常温にて強磁性体である金属から成る第2の
層を室温乃至200℃で積層して積層体を製造し、つづ
いて前記積層体を常温から300℃以上まで所定の昇温
速度で昇温し、所定の時間熱処理しているので、第1の
層の非磁性体が第2の層の結晶粒界へ熱拡散し、強磁性
体の各粒子間の強い磁気的相互作用を断ち切ることがで
きる。また、第1および第2の層を積層する際の温度は
上記のように室温乃至200℃が好ましく、更に好まし
くは室温乃至100℃以下、もっと好ましいのは室温で
ある。他方、200℃を越えると各基板の温度がばらつ
き、結果として、磁気特性がばらつくため好ましくない
[Operation] In the present invention, a first layer made of a metal that is non-magnetic at room temperature is laminated on a substrate at room temperature to 200°C, and a layer made of a metal that is ferromagnetic at room temperature is laminated on the first layer. A laminate is manufactured by laminating the second layer consisting of the following layers at room temperature to 200°C, and then the laminate is heated from room temperature to 300°C or higher at a predetermined temperature increase rate and heat-treated for a predetermined time. , the nonmagnetic material in the first layer thermally diffuses to the grain boundaries in the second layer, thereby breaking off the strong magnetic interaction between each grain of the ferromagnetic material. Further, the temperature at which the first and second layers are laminated is preferably room temperature to 200° C., more preferably room temperature to 100° C. or less, and even more preferably room temperature. On the other hand, if it exceeds 200°C, the temperature of each substrate will vary, resulting in variations in magnetic properties, which is not preferable.

【0006】[0006]

【実施例】以下、本発明の実施例について詳細に説明す
る。本発明の実施例に用いたスパッタリング装置(図示
せず)は、複数のターゲットを備えたスパッタリングを
行うスパッタリング室と、アニールを行うアニール室を
備えている。両室はバルブを備えたチューブで連通して
おり、ガラス基板を大気にさらすことなく両室間を移動
させることができる。また、両室はそれぞれ真空ポンプ
を備えている。以下、本発明の第1の実施例について説
明する。まず、ガラス基板を常温であるスパッタリング
室にセットした後、室内を真空度が3×10−6Tor
rに到達するまで排気した。続いて、Arガスを導入し
た。このときのArガス圧は1×10−2Torrであ
った。ガラス基板上にスパッタリングによって第1の層
としてクロム非磁性体層を350A/分の速度で300
0A積層し、この上に第2の層としてCo60−Ni3
2.5−Cr7.5 強磁性体層を30A/分の速度で
500A積層し、更に、この上に第3の層としてクロム
非磁性体層を350A/分の速度で60A積層した。こ
のようにして、三層構造を有する第1の積層体ができた
。第1の積層体をアニール室に移動して、室内を真空度
が2×10−5Torrに到達するまで排気した。この
状態で種々の温度条件にてアニールを行い、磁気記録媒
体を製造した。製造された第1の磁気記録媒体の磁気特
性を、試料振動型磁力計を用いて測定した。測定結果を
図1乃至図3に示す。各図中の数字は磁気記録媒体の保
磁力(Oe)を表している。図1はアニール温度とアニ
ール時間を変化させたときの保磁力の値を示す。図1よ
りアニール温度300℃乃至600℃、アニール時間1
5分乃至10時間なる条件のとき、保磁力が1448(
Oe)乃至2351(Oe)となり、保磁力向上に効果
的であることが分かる。なかでもアニール温度400℃
乃至500℃、アニール時間1時間乃至5時間のときが
、保磁力が2000(Oe)以上となり特に効果的であ
る。図2はアニール温度と昇温速度を変化させたときの
保磁力の値を示す。図2より昇温速度が1℃/分乃至4
0℃/分のとき、保磁力が1683(Oe)乃至235
1(Oe)となり、保磁力向上に効果的であることが分
かる。 また、昇温速度が40℃/分を越えると、保磁力向上効
果の減少に加えて、第1の層が剥離し易いため好ましく
ない。図3はアニール温度と降温速度を変化させたとき
の保磁力の値を示す。図3より降温速度が30℃/時間
以上のとき、保磁力が1508(Oe)乃至2408(
Oe)となり、保磁力向上に効果的であることが分かる
[Examples] Examples of the present invention will be described in detail below. The sputtering apparatus (not shown) used in the embodiment of the present invention includes a sputtering chamber that includes a plurality of targets and performs sputtering, and an annealing chamber that performs annealing. Both chambers are connected by a tube equipped with a valve, and the glass substrate can be moved between the two chambers without exposing it to the atmosphere. Additionally, both chambers are each equipped with a vacuum pump. A first embodiment of the present invention will be described below. First, after setting the glass substrate in a sputtering chamber at room temperature, the vacuum level in the chamber is set to 3 x 10-6 Torr.
It was evacuated until it reached r. Subsequently, Ar gas was introduced. The Ar gas pressure at this time was 1×10 −2 Torr. A chromium non-magnetic layer was deposited as a first layer on a glass substrate by sputtering at a rate of 300 A/min.
0A laminated, and Co60-Ni3 as a second layer on top of this.
A 2.5-Cr7.5 ferromagnetic layer was laminated at a rate of 30 A/min for 500 A, and a chromium nonmagnetic layer was further laminated thereon for 60 A at a rate of 350 A/min as a third layer. In this way, a first laminate having a three-layer structure was produced. The first laminate was moved to an annealing chamber, and the chamber was evacuated until the degree of vacuum reached 2×10 −5 Torr. In this state, annealing was performed under various temperature conditions to produce magnetic recording media. The magnetic properties of the manufactured first magnetic recording medium were measured using a sample vibrating magnetometer. The measurement results are shown in FIGS. 1 to 3. The numbers in each figure represent the coercive force (Oe) of the magnetic recording medium. FIG. 1 shows the values of coercive force when annealing temperature and annealing time are varied. From Figure 1, the annealing temperature is 300°C to 600°C, and the annealing time is 1.
Under conditions of 5 minutes to 10 hours, the coercive force is 1448 (
Oe) to 2351 (Oe), which shows that it is effective in improving coercive force. Among them, the annealing temperature is 400℃
When the temperature is 500° C. and the annealing time is 1 hour to 5 hours, the coercive force becomes 2000 (Oe) or more, which is particularly effective. FIG. 2 shows the values of coercive force when the annealing temperature and heating rate were varied. From Figure 2, the temperature increase rate is 1°C/min to 4°C.
At 0℃/min, the coercive force is 1683 (Oe) to 235
1 (Oe), which shows that it is effective in improving coercive force. Moreover, if the temperature increase rate exceeds 40° C./min, the effect of improving coercive force is reduced and the first layer is likely to peel off, which is not preferable. FIG. 3 shows the values of coercive force when the annealing temperature and cooling rate were varied. From Figure 3, when the temperature decreasing rate is 30°C/hour or more, the coercive force is 1508 (Oe) to 2408 (Oe).
Oe), which shows that it is effective in improving coercive force.

【0007】次に、第1の実施例と同じ装置を用いて行
った第2の実施例を説明する。まず、ガラス基板を常温
であるスパッタリング室にセットした後、室内を真空度
が3×10−6Torrに到達するまで排気した。続い
て、Arガスを導入した。このときのArガス圧は1×
10−2Torrであった。ガラス基板上にスパッタリ
ングによって第1の層としてクロム非磁性体層を350
A/分の速度で3000A積層し、この上に第2の層と
してCo60−Ni32.5−Cr7.5 強磁性体層
を30A/分の速度で厚さ500A積層した。このよう
にして、二層構造を有する第2の積層体ができた。次に
、第2の積層体をアニール室に移動して、室内を真空度
が2×10−5Torrに到達するまで排気した。この
状態で種々の温度条件にてアニールを行い、第2の磁気
記録媒体を製造した。製造された第2の磁気記録媒体の
磁気特性を、試料振動型磁力計を用いて測定したところ
、第1の実施例と同様の結果が得られた。図4はアニー
ル温度と昇温速度を変化させたときの保磁力の値を示す
。図4より昇温速度が1℃/分乃至40℃/分のとき、
保磁力が1202(Oe)乃至1821(Oe)となり
、保磁力向上に効果的であることが分かる。また、昇温
速度が40℃/分を越えると、保磁力向上効果の減少に
加えて、第1の層が剥離し易いため好ましくない。図5
はアニール温度を変化させたときの保磁力の値を示す。 尚、このときのアニール時間はいずれも30分である。 図5よりアニール温度300℃乃至600℃のときが、
保磁力向上に効果的であることが分る。図6はアニール
温度を400℃に保ち、アニール時間を変化させたとき
の保磁力の値を示す。図6よりアニール時間15分乃至
10時間のときが、保磁力向上に効果的であることが分
かる。
Next, a second embodiment using the same apparatus as the first embodiment will be described. First, a glass substrate was set in a sputtering chamber at room temperature, and then the chamber was evacuated until the degree of vacuum reached 3×10 −6 Torr. Subsequently, Ar gas was introduced. At this time, the Ar gas pressure is 1×
It was 10-2 Torr. A chromium nonmagnetic layer with a thickness of 350 nm is deposited as a first layer on a glass substrate by sputtering.
A layer of 3000 A was laminated at a rate of A/min, and a Co60-Ni32.5-Cr7.5 ferromagnetic layer was laminated thereon to a thickness of 500 A at a rate of 30 A/min as a second layer. In this way, a second laminate having a two-layer structure was created. Next, the second laminate was moved to an annealing chamber, and the chamber was evacuated until the degree of vacuum reached 2×10 −5 Torr. In this state, annealing was performed under various temperature conditions to produce a second magnetic recording medium. When the magnetic properties of the manufactured second magnetic recording medium were measured using a sample vibrating magnetometer, results similar to those of the first example were obtained. FIG. 4 shows the values of coercive force when the annealing temperature and heating rate were changed. From Figure 4, when the temperature increase rate is 1°C/min to 40°C/min,
It can be seen that the coercive force is 1202 (Oe) to 1821 (Oe), which is effective in improving the coercive force. Moreover, if the temperature increase rate exceeds 40° C./min, the effect of improving coercive force is reduced and the first layer is likely to peel off, which is not preferable. Figure 5
indicates the value of coercive force when the annealing temperature is changed. Note that the annealing time at this time was 30 minutes. From Figure 5, when the annealing temperature is 300°C to 600°C,
It is found that this is effective in improving coercive force. FIG. 6 shows the coercive force values when the annealing temperature was maintained at 400° C. and the annealing time was varied. It can be seen from FIG. 6 that an annealing time of 15 minutes to 10 hours is effective in improving the coercive force.

【0008】第1及び第2の実施例におけるアニールに
よる保磁力向上の原因を調べるために各磁気記録媒体を
TEMによって観察した。第2の層である強磁性体層中
の結晶粒径は500A乃至1000Aであった。また、
TEM微小領域分析によりこの層中の結晶粒界のクロム
濃度が約35at%と、結晶粒内のクロム濃度7.5a
t%に比べて明らかに高いことが定量的に確認できた。 このことから、アニールによって強磁性体層中に拡散し
た非磁性体であるクロムが、各強磁性体結晶粒の周囲を
包囲したことが分かる。更に、上述した結晶粒界のクロ
ム濃度(約35at%)が強磁性体であるコバルト合金
を非磁性化できることをコバルト−クロム系の平衡状態
図より確認した。このことから、非磁性体が強磁性体層
中に拡散することによって、各結晶粒間に存在していた
強い磁気的相互作用が断ち切られ各結晶粒が磁気的に孤
立するため、高い保磁力が得られると考えられる。
In order to investigate the cause of the improvement in coercive force due to annealing in the first and second embodiments, each magnetic recording medium was observed using a TEM. The crystal grain size in the ferromagnetic layer, which is the second layer, was 500A to 1000A. Also,
TEM micro-area analysis shows that the chromium concentration at the grain boundaries in this layer is approximately 35 at%, and the chromium concentration within the grains is 7.5 at%.
It was quantitatively confirmed that it was clearly higher than t%. This shows that chromium, which is a nonmagnetic substance, diffused into the ferromagnetic layer by annealing and surrounded each ferromagnetic crystal grain. Furthermore, it was confirmed from the cobalt-chromium system equilibrium diagram that the above-mentioned chromium concentration (approximately 35 at %) at the grain boundaries can make a ferromagnetic cobalt alloy nonmagnetic. From this, when the nonmagnetic material diffuses into the ferromagnetic material layer, the strong magnetic interaction that existed between each crystal grain is severed and each crystal grain becomes magnetically isolated, resulting in a high coercive force. is considered to be obtained.

【0009】尚、上記実施例における第1及び第3の層
の非磁性体から成る金属としては、例えば、クロム、ケ
イ素、アルミニウム、チタン、ビスマス、バナジウム、
マンガン、錫、亜鉛、ゲルマニウム、鉛、インジウム、
銅、モリブデン、タングステンの内から選ばれた少なく
とも1つであればよい。また、第2の層の強磁性体から
成る金属としては、コバルト、ニッケル、鉄の内から選
ばれた少なくとも1つであればよい。更に、アニールの
際の雰囲気はアルゴン、窒素、及び大気等でもよい。
[0009] In the above embodiment, examples of the non-magnetic metal of the first and third layers include chromium, silicon, aluminum, titanium, bismuth, vanadium,
Manganese, tin, zinc, germanium, lead, indium,
It may be at least one selected from copper, molybdenum, and tungsten. Further, the metal of the ferromagnetic material of the second layer may be at least one selected from cobalt, nickel, and iron. Furthermore, the atmosphere during annealing may be argon, nitrogen, air, or the like.

【0010】0010

【発明の効果】本発明によれば、基板上に非磁性体層及
び強磁性体層とが積層された積層体を製造した後、常温
から300℃以上まで所定の昇温速度で昇温し、所定の
時間熱処理しているから、高い保磁力を有するとともに
、ばらつきが少なく、したがって、再現性の高い磁気記
録媒体を製造することができる。
According to the present invention, after manufacturing a laminate in which a nonmagnetic layer and a ferromagnetic layer are laminated on a substrate, the temperature is increased from room temperature to 300° C. or higher at a predetermined heating rate. Since the magnetic recording medium is heat-treated for a predetermined period of time, it is possible to manufacture a magnetic recording medium that has a high coercive force and has little variation, and therefore has high reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】アニール温度及びアニール時間と磁気記録媒体
の保磁力との関係を示す図である。
FIG. 1 is a diagram showing the relationship between annealing temperature, annealing time, and coercive force of a magnetic recording medium.

【図2】アニール温度及び昇温速度と磁気記録媒体の保
磁力との関係を示す図である。
FIG. 2 is a diagram showing the relationship between annealing temperature, temperature increase rate, and coercive force of a magnetic recording medium.

【図3】アニール温度及び降温速度と磁気記録媒体の保
磁力との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the annealing temperature and temperature decreasing rate and the coercive force of the magnetic recording medium.

【図4】アニール温度及び昇温速度と磁気記録媒体の保
磁力との関係を示す図である。
FIG. 4 is a diagram showing the relationship between annealing temperature, temperature increase rate, and coercive force of a magnetic recording medium.

【図5】アニール温度と磁気記録媒体の保磁力との関係
を示す図である。
FIG. 5 is a diagram showing the relationship between annealing temperature and coercive force of a magnetic recording medium.

【図6】アニール時間と磁気記録媒体の保磁力との関係
を示す図である。
FIG. 6 is a diagram showing the relationship between annealing time and coercive force of a magnetic recording medium.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  基板上に常温にて非磁性体である金属
から成る第1の層を積層する第1の工程と、前記第1の
層上に常温にて強磁性体である金属から成る第2の層を
積層する第2の工程と、前記第2の層上に常温にて非磁
性体である金属から成る第3の層を積層する第3の工程
とを含み、前記第1、第2及び第3の工程を室温乃至2
00℃で行って積層体を製造する工程につづいて、前記
積層体を常温から300℃以上まで所定の昇温速度で昇
温する第4の工程と、前記積層体を300℃以上で所定
の時間熱処理する第5の工程とを含むことを特徴とする
磁気記録媒体の製造方法。
1. A first step of laminating a first layer made of a metal that is non-magnetic at room temperature on a substrate, and a step of laminating a first layer made of a metal that is ferromagnetic at room temperature on the first layer. a second step of laminating a second layer; a third step of laminating a third layer made of a metal that is non-magnetic at room temperature on the second layer; The second and third steps are carried out at room temperature
Following the step of manufacturing the laminate at 00°C, a fourth step of raising the temperature of the laminate from room temperature to 300°C or higher at a predetermined temperature increase rate, and heating the laminate at 300°C or higher at a predetermined temperature increase rate. A method for manufacturing a magnetic recording medium, comprising a fifth step of performing heat treatment for a period of time.
【請求項2】  前記所定の昇温速度が、1℃/分乃至
40℃/分であることを特徴とする請求項1記載の磁気
記録媒体の製造方法。
2. The method of manufacturing a magnetic recording medium according to claim 1, wherein the predetermined temperature increase rate is from 1° C./min to 40° C./min.
【請求項3】  前記第1および第3の層のうち少なく
とも一方が、クロム、ケイ素、アルミニウム、チタン、
ビスマス、バナジウム、マンガン、錫、亜鉛、ゲルマニ
ウム、鉛、インジウム、銅、モリブデン、タングステン
のグループから選ばれた少なくとも1つの非磁性体であ
る金属から成り、前記第2の層がコバルト、ニッケル、
鉄のグループから選ばれた少なくとも1つの強磁性体で
ある金属から成ることを特徴とする請求項1または2記
載の磁気記録媒体の製造方法。
3. At least one of the first and third layers comprises chromium, silicon, aluminum, titanium,
The second layer is made of at least one non-magnetic metal selected from the group consisting of bismuth, vanadium, manganese, tin, zinc, germanium, lead, indium, copper, molybdenum, and tungsten, and the second layer is made of cobalt, nickel,
3. The method of manufacturing a magnetic recording medium according to claim 1, wherein the magnetic recording medium is made of at least one ferromagnetic metal selected from the iron group.
【請求項4】  基板上に常温にて非磁性体である金属
から成る第1の層を積層する第1の工程と、前記第1の
層上に常温にて強磁性体である金属から成る第2の層を
積層する第2の工程とを含み、前記第1及び第2の工程
を室温乃至200℃で行って積層体を製造する工程につ
づいて、前記積層体を常温から300℃以上まで所定の
昇温速度で昇温する第3の工程と、前記積層体を300
℃以上で所定の時間熱処理する第4の工程とを含むこと
を特徴とする磁気記録媒体の製造方法。
4. A first step of laminating a first layer made of a metal that is non-magnetic at room temperature on a substrate; and a first step of laminating a first layer made of a metal that is ferromagnetic at room temperature on the first layer. a second step of laminating a second layer, and following a step of manufacturing a laminate by performing the first and second steps at room temperature to 200°C, the laminate is laminated from room temperature to 300°C or higher; a third step of heating the laminate at a predetermined heating rate until 300 ml.
A method for manufacturing a magnetic recording medium, comprising a fourth step of heat-treating at a temperature of .degree. C. or higher for a predetermined period of time.
JP2412629A 1990-12-21 1990-12-21 Manufacturing method of magnetic recording medium Expired - Lifetime JP2720363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2412629A JP2720363B2 (en) 1990-12-21 1990-12-21 Manufacturing method of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2412629A JP2720363B2 (en) 1990-12-21 1990-12-21 Manufacturing method of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPH04221429A true JPH04221429A (en) 1992-08-11
JP2720363B2 JP2720363B2 (en) 1998-03-04

Family

ID=18521446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2412629A Expired - Lifetime JP2720363B2 (en) 1990-12-21 1990-12-21 Manufacturing method of magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2720363B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670618A (en) * 1979-11-15 1981-06-12 Matsushita Electric Ind Co Ltd Manufacture of cobalt chrome alloy thin film
JPS5877024A (en) * 1981-10-29 1983-05-10 Tdk Corp Magnetic recording medium
JPH01186484A (en) * 1988-01-21 1989-07-25 Nippon Telegr & Teleph Corp <Ntt> Inside-pipe self-traveling device
JPH0267897A (en) * 1988-09-02 1990-03-07 Fujitsu Ltd Service control system in exchange
JPH02292715A (en) * 1989-05-02 1990-12-04 Hitachi Metals Ltd Magnetic recording medium and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5670618A (en) * 1979-11-15 1981-06-12 Matsushita Electric Ind Co Ltd Manufacture of cobalt chrome alloy thin film
JPS5877024A (en) * 1981-10-29 1983-05-10 Tdk Corp Magnetic recording medium
JPH01186484A (en) * 1988-01-21 1989-07-25 Nippon Telegr & Teleph Corp <Ntt> Inside-pipe self-traveling device
JPH0267897A (en) * 1988-09-02 1990-03-07 Fujitsu Ltd Service control system in exchange
JPH02292715A (en) * 1989-05-02 1990-12-04 Hitachi Metals Ltd Magnetic recording medium and its production

Also Published As

Publication number Publication date
JP2720363B2 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
JP2786621B2 (en) Magnetic recording disk for horizontal recording and manufacturing method
JPH03216811A (en) Magnetic recording medium of cobalt alloy with high saturated coercive force and low noise
JPH0363919A (en) Magnetic thin film recording medium and method of manufacturing the same
JP2911782B2 (en) Magnetic recording medium and method of manufacturing the same
JP3108637B2 (en) Method for manufacturing soft magnetic thin film
JPS6122852B2 (en)
JPH04221429A (en) Manufacture of magnetic recording medium
JP2519982B2 (en) Method for manufacturing in-plane magnetic recording medium
JPS61194635A (en) Production of thin film permanent magnet
JP2949875B2 (en) Manufacturing method of magnetic recording medium
JPH10261520A (en) Magnetic recording medium and its manufacture
JP2935606B2 (en) Manufacturing method of magnetic disk
JP3210736B2 (en) Manufacturing method of magnetic recording medium
JPH05205262A (en) Manufacture of magnetic disk
JP2989820B2 (en) Magnetic recording medium and method of manufacturing the same
JPH08329464A (en) Production of magnetic recording medium
JPH05325183A (en) Manufacture of magnetic disk
KR100333496B1 (en) Method for thermal processing of magnetic thin film having high coercive force
JPH02308419A (en) Production of magnetic recording medium
JPH1092640A (en) Ultra high-density magnetic recording medium and its manufacture
JP2989821B2 (en) Magnetic recording medium and method of manufacturing the same
JPH08329465A (en) Production of magnetic recording medium
JPS60236118A (en) Production of thin film magnetic recording medium
JPH03208311A (en) Magnetic substance film laminate body and manufacture thereof
JP2001243620A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 14