JPH04210241A - Catalyst for cleaning exhaust gas - Google Patents

Catalyst for cleaning exhaust gas

Info

Publication number
JPH04210241A
JPH04210241A JP2400292A JP40029290A JPH04210241A JP H04210241 A JPH04210241 A JP H04210241A JP 2400292 A JP2400292 A JP 2400292A JP 40029290 A JP40029290 A JP 40029290A JP H04210241 A JPH04210241 A JP H04210241A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
transition metal
strong acid
solid super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2400292A
Other languages
Japanese (ja)
Inventor
Koichi Yamashita
公一 山下
Koji Yokota
幸治 横田
Motohisa Saiki
斉木 基久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2400292A priority Critical patent/JPH04210241A/en
Publication of JPH04210241A publication Critical patent/JPH04210241A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To obtain a catalyst having excellent cleaning ability of hydrocarbon (HC), CO and NOx even in an excess oxygen atmosphere by using a solid super strong acid with a transition metal or a transition metal oxide. CONSTITUTION:The solid super strong acid such as SO4/TiO2 or WO3/ZrO2 is used jointly with the transition metal or the transition metal oxide of Mn, Fe, Co or the like. The catalyst obtained in such a way has excellent cleaning ability of HC, CO and NOx in the exhaust gas of the diesel engine or even in the case of lean burn under a dilute condition of gasoline conc. in an excess oxygen atmosphere. Of course, it has excellent cleaning ability of the exhaust gas in the case of not containing excessive oxygen.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】本発明は、例えば内燃機関の排気
系に設けられ排気ガスを浄化する排気浄化用触媒に関す
る。 [0002]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst that is installed, for example, in the exhaust system of an internal combustion engine to purify exhaust gas. [0002]

【従来の技術】自動車用内燃機関の排気浄化用触媒とし
ては、従来よりモノリス触媒、ペレット触媒が広く用い
られている。これらの排気浄化用触媒は、担体基材と、
担体基材表面に被覆された活性アルミナなどの触媒担持
層と、触媒担持層に担持された触媒金属と、から構成さ
れている。ここで触媒金属としては、Pt、 Pd、 
Rhなどが一種または二種以上用いられている。そして
排気ガス中のHC,、COを酸化し、NOxを還元して
、この3成分を同時に浄化しているので、三元触媒と呼
ばれている。 [0003]
2. Description of the Related Art Monolithic catalysts and pellet catalysts have been widely used as exhaust purifying catalysts for automobile internal combustion engines. These exhaust purification catalysts include a carrier base material,
It is composed of a catalyst support layer such as activated alumina coated on the surface of a carrier base material, and a catalyst metal supported on the catalyst support layer. Here, the catalytic metals include Pt, Pd,
One or more types of Rh and the like are used. It is called a three-way catalyst because it simultaneously purifies these three components by oxidizing HC, CO and reducing NOx in the exhaust gas. [0003]

【発明が解決しようとする課題】しかしながら、このよ
うな三元触媒では、排気ガス中の酸素濃度が理論値(排
気ガス中の未燃焼成分を完全に酸化するのに必要な最小
酸素濃度)より大きくなった場合・(これをリーン・バ
ーンと称する)には、排気中のNOxを還元除去するこ
とができないという欠点がある。すなわち酸素が多く含
まれるディーゼルエンジン排気ガス中のNOxを浄化す
ることは困難であった。また、近年ガソリンエンジンに
おいても、低燃費化や排出炭酸ガス低減の目的からガソ
リン濃度の希薄な条件(リーン領域)で燃焼させる傾向
にあるが、この場合にも酸素が過剰となり、同様にNO
xの浄化率が低下するという不具合がある。 [0004]なお、酸素過剰のガス中のNOxを浄化す
る方法としては、アンモニアなどの還元剤を添加する方
法、アルカリに吸収させる方法などがあるが、自動車の
排気ガスの浄化には適さない。本発明はこのような事情
に鑑みてなされたものであり、自動車などの内燃機関か
ら排出される酸素過剰雰囲気の排気ガスからHC,C0
とともにNOxも同時に浄化することを目的とする。 [00051
[Problem to be solved by the invention] However, in such a three-way catalyst, the oxygen concentration in the exhaust gas is lower than the theoretical value (the minimum oxygen concentration necessary to completely oxidize the unburned components in the exhaust gas). When it becomes large (this is called lean burn), there is a drawback that NOx in the exhaust cannot be reduced and removed. That is, it has been difficult to purify NOx in diesel engine exhaust gas that contains a large amount of oxygen. In addition, in recent years, there has been a trend in gasoline engines to burn fuel under conditions with a dilute gasoline concentration (lean region) for the purpose of improving fuel efficiency and reducing carbon dioxide emissions, but in this case as well, oxygen becomes excessive and NO
There is a problem that the purification rate of x decreases. [0004] Methods for purifying NOx in oxygen-excess gas include adding a reducing agent such as ammonia and absorbing it in an alkali, but these methods are not suitable for purifying automobile exhaust gas. The present invention was made in view of the above circumstances, and it is possible to remove HC and CO from exhaust gas in an oxygen-rich atmosphere discharged from internal combustion engines such as automobiles.
The purpose is to purify NOx at the same time. [00051

【課題を解決するための手段]上記課題を解決する本発
明の排気ガス浄化触媒は、固体超強酸と、遷移金属及び
遷移金属酸化物の中から選ばれる少なくとも1種と、を
含むことを特徴とする。固体超強酸とは、100%硫酸
より強い酸性質(HO≦−11,9)を有する固体酸を
いう。この固体超強酸は、室温から200℃程度で飽和
炭化水素の骨格異性化を起こす程度の酸性質を有するこ
とが必要であり、例えばS 04 / Hf 02 、
 S O4/ 5n02、S○4/Fe2O3、504
/Z rOz 、 S。 4 /T iO2、WO3/Z r 02 、MOO3
/Z rozなどを使用することができる。 [00061遷移金属としては主遷移元素としてのMn
、 Fe、 Co、Ni、Cu、Ag、Pt、Auなど
が挙げられ、これらの金属単体及びこれらの酸化物のう
ち少なくとも1種が用いられる。この添加量は、固体超
強酸との合計量のうち0.5〜20重量%が好ましく、
2〜7重量%が特に好ましい。本発明の排気ガス浄化触
媒は、固体超強酸に遷移金属あるいは遷移金属酸化物を
担持し、また必要であればS i02.Ah 03 、
TiO2、ゼオライトなどの他の成分を加えた後、粒状
に成形してペレット触媒として用いることができる。遷
移金属酸化物の粉末である酸化銅の粉末を用いる場合は
、粒径1μm以下の微粒子が好ましい。またモノリス型
のセラミック担体基材あるいはメタル担体基材に、少な
くとも固体超強酸と遷移金属あるいは遷移金属酸化物と
を含むスラリーを付着させてモノリス触媒とすることも
できる。なお、固体超強酸に遷移金属あるいは遷移金属
酸化を担持させるには、混合法、混練法、含浸法、イオ
ン交換法などが利用できる。 [0007] 【発明の作用及び効果】本発明の排気ガス浄化触媒では
、固体超強酸と、遷移金属及び遷移金属酸化物の少なく
とも1種とを含むので、そのメカニズムは不明であるが
、酸素過剰雰囲気下でのHC,CO及びNOxの浄化性
能に優れている。勿論、酸素過剰でない排気ガスの浄化
性能にも優れている。 [0008]t、たがって本発明の排気ガス浄化触媒に
よれば、酸素が過剰なディーゼルエンジンの排気ガス、
リーン領域で運転されたガソリンエンジンの排気ガスな
どに含まれるHC,CO及びNOxを同時に浄化するこ
とができる。 [0009]
[Means for Solving the Problems] The exhaust gas purification catalyst of the present invention that solves the above problems is characterized by containing a solid super strong acid and at least one selected from transition metals and transition metal oxides. shall be. The term "solid super strong acid" refers to a solid acid having stronger acidity than 100% sulfuric acid (HO≦-11,9). This solid super strong acid needs to have acidic properties to the extent that it causes skeletal isomerization of saturated hydrocarbons at temperatures from room temperature to about 200°C, for example, S 04 / Hf 02 ,
S O4/5n02, S○4/Fe2O3, 504
/Z rOz, S. 4/T iO2, WO3/Z r 02 , MOO3
/Z roz etc. can be used. [00061 As the transition metal, Mn as the main transition element
, Fe, Co, Ni, Cu, Ag, Pt, Au, etc., and at least one of these metals and oxides thereof is used. The amount added is preferably 0.5 to 20% by weight of the total amount including the solid super strong acid.
Particularly preferred is 2 to 7% by weight. The exhaust gas purification catalyst of the present invention has a solid superacid supporting a transition metal or a transition metal oxide, and if necessary, Si02. Ah 03,
After adding other components such as TiO2 and zeolite, it can be formed into granules and used as a pellet catalyst. When using copper oxide powder, which is transition metal oxide powder, fine particles with a particle size of 1 μm or less are preferable. Furthermore, a monolithic catalyst can be obtained by attaching a slurry containing at least a solid super strong acid and a transition metal or a transition metal oxide to a monolithic ceramic carrier substrate or metal carrier substrate. In order to support a transition metal or a transition metal oxide on a solid superacid, a mixing method, a kneading method, an impregnation method, an ion exchange method, etc. can be used. [0007] Functions and Effects of the Invention The exhaust gas purification catalyst of the present invention contains a solid super strong acid and at least one of a transition metal and a transition metal oxide. Excellent purification performance of HC, CO and NOx under atmosphere. Of course, it also has excellent purification performance for exhaust gas that does not contain excess oxygen. [0008]t, Therefore, according to the exhaust gas purification catalyst of the present invention, the exhaust gas of a diesel engine containing excess oxygen,
It is possible to simultaneously purify HC, CO, and NOx contained in the exhaust gas of a gasoline engine operated in a lean region. [0009]

【実施例】以下、実施例により具体的に説明する。 (実施例1) 水冷した脱イオン水21gにTiCL  237.5を
溶解し、この水溶液にアンモニア水を攪拌しながら添加
してPH=9とした。アンモニア水添加中も水冷を行っ
た。その後80℃の水浴中で3時間保持して生成した沈
澱を熟成した。この沈澱を濾過し、塩素イオンが検出さ
れなくなるまで脱イオン水で洗浄した。そして100℃
で一昼夜乾燥後、500℃で3時間焼成してTiO2を
得た。 [00101次ニ、ニー(7)T i 02 100 
gを、 (NH4)2SO4が4.1g溶解した水溶液
200m1に浸漬し、水浴中で水を蒸発させた。そして
100℃で乾燥後500℃で3時間焼成して粉末状の固
体超強酸SO4/Ti0z を得た。この固体超強酸5
0gとCuO粉末4gとを乾式ボールミルで1時間混合
し、500℃で3時間焼成して本実施例の触媒を調製し
た。 (00111(実施例2) T i Cl 4 の代わりに180.2gのT i 
 (SO4) 2を用いたこと以外は実施例上と同様に
して沈澱を形成し、得られた沈澱を洗浄後100℃で乾
燥し500℃で3時間焼成して、粉末状の固体超強酸S
O4/T’=O:を得た。次にこの固体超強酸100g
をCu (NCh )L、−3H20が19.2g溶解
した水溶液200m1に溶解し、100℃で乾燥後50
0℃で3時間焼成して実施例2の触媒を調製した。 (0012]  (実施例3) T i CI 4 の代わりに216.9gのZr○(
NO3)! ・2H20を用いたこと以外は実施例1と
同様にして、ZrO2を形成し、同様にして固体超強酸
SO4/ZrO2を得た。この固体超強酸50gとCu
O粉末3gとを乾式ボールミルで1時間混合し、600
℃で3時間焼成して実施例3の触媒を調製した。 (0013]  (実施例4) T i Cl 4 の代わりに252.9gのF e 
 (NO3) 3・9H20を用いたこと以外は実施例
1と同様にして、FezO,+ を形成した。このFe
z O:l  loogを0゜5Nの硫酸水溶液500
m1に3時間浸漬し、濾過後100℃で乾燥し、500
℃で焼成して固体超強酸S04/ F e 203 を
得た。 (0014]この固体超強酸50gとCuO粉末1gと
を乾式ボールミルで1時間混合し、500℃で3時間焼
成して実施例4の触媒を調製した。 (実施例5)実施
例2で得られた固体超強酸SO4/T t 02 50
 gと、市販のC03043gを1時間混合し、500
℃で焼成して実施例5の触媒を調製した。 [0015]  (実施例6) 実施例2で得られた固体超強酸SO4/T ioz  
50 gを、0.INの(P t  (NH3) 4 
) C12水溶液100m1に浸漬し、水浴上で水を蒸
発させた。100℃で乾燥後、500℃で焼成して実施
例6の触媒を調製した。 (実施例7) 実施例3と同様にして得られたZ r (OH) 4 
の沈澱を、100℃で一昼夜乾燥した。このZr (O
H) 4 50gと市販の82 WO47gとを湿式ボ
ールミルで2時間混合し、800℃で焼成して固体超強
酸WO3/ Z rO2を得た。 [0016]この固体超強酸50gとCuO粉末3gと
を1時間混合し、500℃で焼成して実施例7の触媒を
調製した。 (比較例1) Cu (No:l ) 2  ・3H20が19.2g
溶解した水溶液200m1に100gのアルミナを浸漬
し、水浴上で水を蒸発させた。そして100℃で乾燥後
500℃で焼成して比較例1の触媒を調製した。 (0017]  (比較例2) 0.05Nの(P t  (NH3) 4 ) CI2
水溶液100m1に50gのアルミナを浸漬し、水浴中
で水を蒸発させた。そして100℃で乾燥後500℃で
焼成して比較例2の触媒を調製した。 (比較例3) 50gの5iOzA1203と0.3gのCuOとを1
時間混合し、500℃で焼成して比較例3の触媒を調製
した。 [0018]  (比較例4) 実施例2で調整した固体超強度SO4/Ti0z を比
較例4とした。 (試験例) 上記触媒をそれぞれプレス後粉砕して、10〜30メツ
シユに成粒した。これを直径10mmの石英管に入れ、
常圧固定床流通式反応装置を用いてそれぞれの触媒のN
01CO及びHCの浄化率を測定した。反応には表1に
示す組成のA/F=18相当のモデルガスを用い、触媒
重量0.7g、反応ガス流量は717m i n、とじ
、定温での定常状態で反応試験を行った。結果を表2に
示す。なお、Noの浄化率は次式で定義される。 [0019] 表2より、本発明の触媒は比較例に比べてリーン雰囲気
下でのNo浄化性能に優れていることが明らかである。 そしてこの特性の発現のためには、遷移金属又は遷移金
属酸化物と固体超強酸との共存が不可欠であることも明
らかである。 発明者
[Examples] Hereinafter, the present invention will be explained in detail using examples. (Example 1) TiCL 237.5 was dissolved in 21 g of water-cooled deionized water, and aqueous ammonia was added to this aqueous solution with stirring to adjust the pH to 9. Water cooling was also performed during the addition of ammonia water. Thereafter, the mixture was kept in a water bath at 80° C. for 3 hours to ripen the resulting precipitate. The precipitate was filtered and washed with deionized water until no chloride ions were detected. and 100℃
After drying for a day and night, it was fired at 500° C. for 3 hours to obtain TiO2. [00101st Ni, Knee (7) T i 02 100
g was immersed in 200 ml of an aqueous solution containing 4.1 g of (NH4)2SO4, and the water was evaporated in a water bath. After drying at 100°C, the mixture was calcined at 500°C for 3 hours to obtain a powdery solid superacid SO4/Ti0z. This solid super strong acid 5
0 g and 4 g of CuO powder were mixed in a dry ball mill for 1 hour and calcined at 500° C. for 3 hours to prepare the catalyst of this example. (00111 (Example 2) 180.2 g of T i instead of T i Cl 4
A precipitate was formed in the same manner as in the example above except that (SO4) 2 was used, and the obtained precipitate was washed, dried at 100°C, and calcined at 500°C for 3 hours to form a powdery solid superacid S.
O4/T'=O: was obtained. Next, 100g of this solid super strong acid
was dissolved in 200 ml of an aqueous solution containing 19.2 g of Cu(NCh)L, -3H20, and dried at 100°C.
The catalyst of Example 2 was prepared by calcining at 0° C. for 3 hours. (0012) (Example 3) 216.9 g of Zr○(
NO3)! -ZrO2 was formed in the same manner as in Example 1 except that 2H20 was used, and solid superacid SO4/ZrO2 was obtained in the same manner. 50g of this solid super strong acid and Cu
Mixed with 3g of O powder in a dry ball mill for 1 hour,
The catalyst of Example 3 was prepared by calcining at ℃ for 3 hours. (0013) (Example 4) 252.9 g of Fe instead of T i Cl 4
FezO,+ was formed in the same manner as in Example 1 except that (NO3) 3.9H20 was used. This Fe
z O:l log 0゜5N sulfuric acid aqueous solution 500
ml for 3 hours, filtered and dried at 100°C.
The solid superacid S04/F e 203 was obtained by calcining at ℃. (0014) 50 g of this solid superstrong acid and 1 g of CuO powder were mixed in a dry ball mill for 1 hour and calcined at 500°C for 3 hours to prepare the catalyst of Example 4. (Example 5) The catalyst obtained in Example 2 solid super acid SO4/T t 02 50
g and commercially available C03043g for 1 hour, and
The catalyst of Example 5 was prepared by calcining at . [0015] (Example 6) Solid super strong acid SO4/T ioz obtained in Example 2
50 g, 0. IN(P t (NH3) 4
) Immersed in 100 ml of C12 aqueous solution and evaporated water on a water bath. After drying at 100°C, the catalyst was calcined at 500°C to prepare the catalyst of Example 6. (Example 7) Z r (OH) 4 obtained in the same manner as Example 3
The precipitate was dried at 100°C overnight. This Zr (O
H) 50 g of 4 and 47 g of commercially available 82 WO were mixed in a wet ball mill for 2 hours and calcined at 800°C to obtain a solid superacid WO3/Z rO2. [0016] 50 g of this solid super strong acid and 3 g of CuO powder were mixed for 1 hour and calcined at 500° C. to prepare the catalyst of Example 7. (Comparative Example 1) 19.2 g of Cu (No:l) 2 ・3H20
100 g of alumina was immersed in 200 ml of the dissolved aqueous solution, and the water was evaporated on a water bath. The catalyst of Comparative Example 1 was prepared by drying at 100°C and calcining at 500°C. (0017) (Comparative Example 2) 0.05N of (P t (NH3) 4 ) CI2
50 g of alumina was immersed in 100 ml of aqueous solution and the water was evaporated in a water bath. Then, the catalyst of Comparative Example 2 was prepared by drying at 100°C and calcining at 500°C. (Comparative Example 3) 50g of 5iOzA1203 and 0.3g of CuO were mixed into 1
The catalyst of Comparative Example 3 was prepared by mixing for a time and calcining at 500°C. [0018] (Comparative Example 4) The solid super strength SO4/Ti0z prepared in Example 2 was designated as Comparative Example 4. (Test Example) Each of the above catalysts was pressed and pulverized to form granules of 10 to 30 meshes. Put this into a quartz tube with a diameter of 10 mm,
Using an atmospheric fixed bed flow reactor, the N of each catalyst was
01CO and HC purification rates were measured. For the reaction, a model gas having the composition shown in Table 1 and corresponding to A/F=18 was used, the catalyst weight was 0.7 g, the reaction gas flow rate was 717 min, and the reaction test was conducted in a steady state at a constant temperature. The results are shown in Table 2. In addition, the purification rate of No is defined by the following formula. [0019] From Table 2, it is clear that the catalyst of the present invention has excellent No purification performance in a lean atmosphere compared to the comparative example. It is also clear that the coexistence of a transition metal or a transition metal oxide and a solid superacid is essential for the expression of this property. inventor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】固体超強酸と、遷移金属及び遷移金属酸化
物の中から選ばれる少なくとも1種と、を含むことを特
徴とする排気ガス浄化触媒。
1. An exhaust gas purification catalyst comprising a solid super strong acid and at least one selected from transition metals and transition metal oxides.
JP2400292A 1990-12-04 1990-12-04 Catalyst for cleaning exhaust gas Pending JPH04210241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400292A JPH04210241A (en) 1990-12-04 1990-12-04 Catalyst for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400292A JPH04210241A (en) 1990-12-04 1990-12-04 Catalyst for cleaning exhaust gas

Publications (1)

Publication Number Publication Date
JPH04210241A true JPH04210241A (en) 1992-07-31

Family

ID=18510204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400292A Pending JPH04210241A (en) 1990-12-04 1990-12-04 Catalyst for cleaning exhaust gas

Country Status (1)

Country Link
JP (1) JPH04210241A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150339A (en) * 1994-11-30 1996-06-11 Hino Motors Ltd Exhaust gas purification catalyst and its production
WO1998047605A1 (en) * 1997-04-23 1998-10-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method and exhaust gas purification catalyst
JP2007222843A (en) * 2006-02-27 2007-09-06 Asahi Kasei Corp CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD
CN103357426A (en) * 2013-07-15 2013-10-23 江苏索普(集团)有限公司 Preparation method of solid strong acid and catalysis prompting function thereof in process of preparing chloroacetic acid by using acetic anhydride catalysis method
CN104226336A (en) * 2014-08-20 2014-12-24 清华大学苏州汽车研究院 Vanadium-based SCR catalyst and preparation method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08150339A (en) * 1994-11-30 1996-06-11 Hino Motors Ltd Exhaust gas purification catalyst and its production
WO1998047605A1 (en) * 1997-04-23 1998-10-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method and exhaust gas purification catalyst
US6191061B1 (en) 1997-04-23 2001-02-20 Toyota Jidosha Kabushiki Kaisha Method of purifying exhaust gas and catalyst for purifying exhaust gas
JP2007222843A (en) * 2006-02-27 2007-09-06 Asahi Kasei Corp CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD
CN103357426A (en) * 2013-07-15 2013-10-23 江苏索普(集团)有限公司 Preparation method of solid strong acid and catalysis prompting function thereof in process of preparing chloroacetic acid by using acetic anhydride catalysis method
CN104226336A (en) * 2014-08-20 2014-12-24 清华大学苏州汽车研究院 Vanadium-based SCR catalyst and preparation method thereof
CN106938200A (en) * 2014-08-20 2017-07-11 清华大学苏州汽车研究院(吴江) Vanadia-based SCR catalysts
CN106938200B (en) * 2014-08-20 2019-07-30 清华大学苏州汽车研究院(吴江) Vanadia-based SCR catalysts

Similar Documents

Publication Publication Date Title
JP3664182B2 (en) High heat-resistant exhaust gas purification catalyst and production method thereof
US4157316A (en) Polyfunctional catalysts
JP2018528847A (en) Nitrous oxide removal catalyst for exhaust system
JPH10235192A (en) Catalyst for cleaning exhaust gas
KR20080066920A (en) Method for treating a gas containing nitrogen oxides (nox), using as nox trap a composition based on zirconium oxide and praseodymium oxide
WO2009094891A1 (en) A cu-ce-al catalyst for removing soot particles and nox simultaneously and its preparation method
KR100416735B1 (en) Catalyst for purifying exhaust gas from car and method for preparing thereof
JP5463300B2 (en) Compositions based on zirconium oxide, yttrium oxide and tungsten oxide, preparation methods and use as catalysts or catalyst supports
JPH04210241A (en) Catalyst for cleaning exhaust gas
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JPH04215845A (en) Catalyst for purifying exhaust gas
JPH10151346A (en) Nox removing catalytic material, nox treating device using the material and method for removing nox
CN112246251A (en) Natural gas automobile exhaust purification catalyst and preparation method thereof
JP3246295B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3309711B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH06190282A (en) Catalyst for purification of exhaust gas
JPH04260441A (en) Catalyst and method for purifying exhaust gas
JPH04235742A (en) Aldehyde decomposing catalyst for purifyying exhaust gas
JP2002052342A (en) Exhaust gas purification catalyst
JP2000093795A (en) Catalyst for cleaning exhaust gas