JPH04260441A - Catalyst and method for purifying exhaust gas - Google Patents

Catalyst and method for purifying exhaust gas

Info

Publication number
JPH04260441A
JPH04260441A JP3042312A JP4231291A JPH04260441A JP H04260441 A JPH04260441 A JP H04260441A JP 3042312 A JP3042312 A JP 3042312A JP 4231291 A JP4231291 A JP 4231291A JP H04260441 A JPH04260441 A JP H04260441A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
hydrocarbons
carbon monoxide
nitrogen oxides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3042312A
Other languages
Japanese (ja)
Other versions
JP3143936B2 (en
Inventor
Yoshiaki Kawai
河合 良昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP03042312A priority Critical patent/JP3143936B2/en
Priority to US07/834,193 priority patent/US5407651A/en
Priority to DE69226710T priority patent/DE69226710T2/en
Priority to EP95105052A priority patent/EP0664149B1/en
Priority to DE69212508T priority patent/DE69212508T2/en
Priority to EP92102540A priority patent/EP0499286B1/en
Publication of JPH04260441A publication Critical patent/JPH04260441A/en
Application granted granted Critical
Publication of JP3143936B2 publication Critical patent/JP3143936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst removing nitrogen oxide, carbon monoxide and hydrocarbon from oxygen excessive exhaust gas containing nitrogen oxide, carbon monoxide and hydrocarbon with high purifying efficiency. CONSTITUTION:A catalyst is obtained by adding cobalt and silver to zeolite and has purifying function removing nitrogen oxide, carbon monoxide and hydrocarbon from oxygen excessive exhaust gas containing nitrogen oxide, carbon monoxide and hydrocarbon.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、内燃機関から排出され
る排気ガスを浄化する触媒および方法に関し、特に酸素
過剰の排気ガス中の窒素酸化物、一酸化炭素及び炭化水
素を除去する触媒および方法に関するものである。
[Field of Industrial Application] The present invention relates to a catalyst and method for purifying exhaust gas emitted from an internal combustion engine, and in particular to a catalyst and method for removing nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas. It is about the method.

【0002】0002

【従来の技術】現在、環境問題の深刻化から窒素酸化物
、一酸化炭素、炭化水素等の浄化が重要視されている。 窒素酸化物は自動車のガソリンエンジン等の内燃機関を
代表とする各種移動発生源、および工場プラントのボイ
ラー、コージェネレーションシステムのガスエンジン、
ガスタービン等の内燃機関を代表する固定発生源からも
多量に排出されておりその浄化は緊急かつ重大な社会的
課題である。
BACKGROUND OF THE INVENTION Currently, purification of nitrogen oxides, carbon monoxide, hydrocarbons, etc. is becoming more important as environmental problems become more serious. Nitrogen oxides are generated from various mobile sources such as internal combustion engines such as automobile gasoline engines, boilers in factory plants, gas engines in cogeneration systems,
Large amounts are also emitted from stationary sources, such as internal combustion engines such as gas turbines, and their purification is an urgent and serious social issue.

【0003】現在、内燃機関から排出される排気ガスの
浄化触媒としてPt、Rh、Pd等を担体上に担持させ
た三元触媒が用いられているが、三元触媒は酸素過剰排
ガス中の窒素酸化物を浄化することができないので、空
気と燃料の比(所謂、空燃比)を制御するシステムと併
用されている。
Currently, a three-way catalyst in which Pt, Rh, Pd, etc. are supported on a carrier is used as a purification catalyst for exhaust gas emitted from an internal combustion engine. Since it is not possible to purify oxides, it is used in conjunction with a system that controls the ratio of air to fuel (so-called air-fuel ratio).

【0004】一方、低燃費化や排出炭酸ガスの低減等の
目的で希薄燃焼方式が開発されているが、希薄燃焼の排
気ガスは酸素過剰となるため、上記三元触媒では窒素酸
化物を除去することができない。
On the other hand, a lean burn system has been developed for the purpose of improving fuel efficiency and reducing carbon dioxide emissions, but the lean burn exhaust gas has an excess of oxygen, so the three-way catalyst described above removes nitrogen oxides. Can not do it.

【0005】酸素過剰排ガスの窒素酸化物除去方法とし
ては、アンモニア添加による還元脱硝が行われているが
、装置の大型化、アンモニアの危険性からその利用範囲
が限定される。
[0005] As a method for removing nitrogen oxides from oxygen-excess exhaust gas, reduction denitrification by adding ammonia has been carried out, but its range of use is limited due to the large size of the equipment and the danger of ammonia.

【0006】最近、アンモニア等の特別な還元剤を添加
しなくても、酸素過剰な排気ガス中の窒素酸化物を浄化
できるゼオライト系触媒が提案されている。例えば、特
開昭63−283727号公報や特開平1−13073
5号公報には、遷移金属をイオン交換したゼオライト触
媒が、酸素過剰の排ガス中でも微量含まれている未燃の
炭化水素を還元剤として窒素酸化物を浄化できることが
提案されている。
[0006]Recently, a zeolite catalyst has been proposed that can purify nitrogen oxides in oxygen-excess exhaust gas without adding a special reducing agent such as ammonia. For example, JP-A-63-283727 and JP-A-1-13073.
Publication No. 5 proposes that a zeolite catalyst in which transition metals are ion-exchanged can purify nitrogen oxides by using unburned hydrocarbons, which are present in small amounts even in oxygen-excessive exhaust gas, as a reducing agent.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開昭
63−283727号公報や特開平1−130735号
公報等で提案された従来のゼオライト系触媒は、窒素酸
化物の浄化率が低く、いまだ実用の域に達していない。
[Problems to be Solved by the Invention] However, the conventional zeolite catalysts proposed in JP-A-63-283727 and JP-A-1-130735 have a low nitrogen oxide purification rate and are still not in practical use. It has not reached the level of

【0008】さらに、ガスエンジン、ガスタービン等の
気体燃料を使用した内燃機関の場合、排気ガス中に含ま
れる微量炭化水素は主に炭素数1の炭化水素であり、従
来提案されているゼオライト系触媒では窒素酸化物の浄
化性能が低かった。
Furthermore, in the case of internal combustion engines such as gas engines and gas turbines that use gaseous fuel, the trace hydrocarbons contained in the exhaust gas are mainly 1-carbon hydrocarbons, and the zeolite-based The catalyst had low nitrogen oxide purification performance.

【0009】本発明の目的は、窒素酸化物、一酸化炭素
及び炭化水素を含む酸素過剰な排気ガスから、窒素酸化
物、一酸化炭素及び炭化水素を効率良く除去する触媒及
び方法を提供することにある。
An object of the present invention is to provide a catalyst and method for efficiently removing nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons. It is in.

【0010】また本発明の別の目的は、このような触媒
を用いた排気ガスの浄化方法を提供するところにある。
Another object of the present invention is to provide a method for purifying exhaust gas using such a catalyst.

【0011】[0011]

【課題を解決するための手段】本発明者らは上記問題点
を解決するため鋭意検討した結果、ゼオライトにコバル
トおよび銀を含有させることにより、酸素過剰な排気ガ
スから、窒素酸化物、一酸化炭素及び炭化水素を効率良
く除去できること、また、該触媒を使用し該排気ガスに
炭化水素を添加することにより更に窒素酸化物の浄化率
を高めることができることを見出し、本発明を完成する
に至った。
[Means for Solving the Problems] The present inventors have made extensive studies to solve the above problems, and have found that by incorporating cobalt and silver into zeolite, nitrogen oxides and monoxide can be removed from oxygen-excess exhaust gas. They discovered that carbon and hydrocarbons can be efficiently removed, and that by adding hydrocarbons to the exhaust gas using the catalyst, the purification rate of nitrogen oxides can be further increased, leading to the completion of the present invention. Ta.

【0012】即ち、本発明は窒素酸化物、一酸化炭素及
び炭化水素を含む酸素過剰な排気ガスから、窒素酸化物
、一酸化炭素及び炭化水素を効率良く除去する触媒とし
て、コバルトおよび銀を含有したゼオライトからなるこ
とを特徴とする排気ガス浄化触媒を提供するものであり
、更に、該触媒を用いて該排気ガスに炭化水素を添加す
ることを特徴とする排気ガス浄化方法を提供するもので
る。
That is, the present invention uses cobalt and silver-containing catalysts to efficiently remove nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons. The present invention provides an exhaust gas purification catalyst characterized in that it is made of zeolite, and further provides an exhaust gas purification method characterized in that hydrocarbons are added to the exhaust gas using the catalyst. .

【0013】以下、本発明をより詳細に説明する。The present invention will be explained in more detail below.

【0014】本発明において用いるゼオライトは、一般
に、 xM2/nO・Al2O3・ySiO2・zH2O(但
し、nは陽イオンMの原子価、xは0.8〜1.2の範
囲の数、yは2以上の数、zは0以上の数である)の組
成を有する結晶性のアルミノシリケートであり、天然品
および合成品として多くの種類が知られている。本発明
に用いられるゼオライトの種類は特に限定はされないが
、シリカ/アルミナモル比が10以上であることが望ま
しい。代表的には、フェリエライト、Y、モルデナイト
、ZSM−5、ZSM−11等を挙げることができる。 これらのうちZSM−5が最も好ましい。また、これら
のゼオライトはそのまま用いても良いが、これをNH4
Cl、NH4NO3,(NH4)2SO4等でイオン交
換したNH4型あるいはH型として用いても一向に差し
支えない。また、アルカリ金属、アルカリ土類金属等の
陽イオンを含んでいても一向に差し支えない。
The zeolite used in the present invention generally has the following formula: xM2/nO.Al2O3.ySiO2.zH2O (where n is the valence of the cation M, x is a number in the range of 0.8 to 1.2, and y is 2 It is a crystalline aluminosilicate having a composition of the above number, where z is a number of 0 or more), and many types are known as natural products and synthetic products. Although the type of zeolite used in the present invention is not particularly limited, it is desirable that the silica/alumina molar ratio is 10 or more. Typical examples include ferrierite, Y, mordenite, ZSM-5, and ZSM-11. Among these, ZSM-5 is most preferred. In addition, these zeolites may be used as they are, but they are
There is no problem in using it as NH4 type or H type which is ion-exchanged with Cl, NH4NO3, (NH4)2SO4, etc. Further, there is no problem even if cations such as alkali metals and alkaline earth metals are included.

【0015】本発明の排気ガス浄化触媒は、コバルトお
よび銀を含有することを特徴とする。ゼオライトにコバ
ルトおよび銀を含有させる方法は特に限定されず、イオ
ン交換法、含浸担持法等により行えば良いが、コバルト
の含有法としてはイオン交換法が好ましく、銀の含有法
としては含浸担持法が好ましい。
The exhaust gas purification catalyst of the present invention is characterized by containing cobalt and silver. The method for incorporating cobalt and silver into zeolite is not particularly limited, and may be carried out by an ion exchange method, an impregnation support method, etc., but an ion exchange method is preferable as a method for containing cobalt, and an impregnation support method is a method for containing silver. is preferred.

【0016】イオン交換する場合、特に制限がなく、例
えば、コバルトイオンを含む溶液にゼオライトを投入し
、20〜100℃で数時間撹拌して行えばよい。使用す
るコバルト塩としては、酢酸塩、硝酸塩、シュウ酸塩、
塩化物等を挙げることができる。
When performing ion exchange, there are no particular restrictions; for example, zeolite may be added to a solution containing cobalt ions and stirred at 20 to 100° C. for several hours. Cobalt salts used include acetate, nitrate, oxalate,
Examples include chloride.

【0017】銀の含有法にも特に制限はなく、例えば、
銀を含む溶液にゼオライトを浸し、撹拌しながら熱をか
けて水分を除去して行えばよい。銀塩としては、硝酸塩
、酢酸塩等を挙げることができる。
[0017] There are no particular restrictions on the method of containing silver; for example,
This can be done by soaking zeolite in a solution containing silver and applying heat while stirring to remove water. Examples of silver salts include nitrates and acetates.

【0018】コバルトおよび銀の含有量は特に限定され
ないが、コバルトはCoO/Al2O3モル比で表わし
て0.5〜1.5、銀はAg2O/Al2O3モル比で
表わして0.01〜5.0が好ましい。すなわち、(A
g2O+CoO)/Al2O3モル比では0.5〜6.
5が望ましい。CoはCoO/Al2O3モル比が0.
5よりも低い場合、十分な活性が得られない。CoO/
Al2O3モル比を1.5より高くしても、コバルトを
多くした効果が得られにくい。また、Ag2O/Al2
O3モル比が0.01よりも低い場合、十分な活性が得
られない。Ag2O/Al2O3モル比が5.0より高
くしても、銀を多くした効果が得られない。
The contents of cobalt and silver are not particularly limited, but the content of cobalt is 0.5 to 1.5 in CoO/Al2O3 molar ratio, and the content of silver is 0.01 to 5.0 in Ag2O/Al2O3 molar ratio. is preferred. That is, (A
g2O+CoO)/Al2O3 molar ratio is 0.5 to 6.
5 is desirable. Co has a CoO/Al2O3 molar ratio of 0.
When it is lower than 5, sufficient activity cannot be obtained. CoO/
Even if the Al2O3 molar ratio is higher than 1.5, it is difficult to obtain the effect of increasing cobalt. Also, Ag2O/Al2
When the O3 molar ratio is lower than 0.01, sufficient activity cannot be obtained. Even if the Ag2O/Al2O3 molar ratio is higher than 5.0, the effect of increasing silver cannot be obtained.

【0019】コバルトおよび銀を含有させた試料は、触
媒として用いるに際して、乾燥や焼成等の前処理を行っ
てから用いてもよい。
The sample containing cobalt and silver may be subjected to pretreatment such as drying or calcination before being used as a catalyst.

【0020】本発明に係わるコバルトと銀を含有した触
媒は粉状体、ペレット状体、ハニカム状体等の形状、構
造等は問わない。また、金属元素の導入は成型後に行う
こともできる。
The catalyst containing cobalt and silver according to the present invention may have any shape or structure, such as powder, pellet, or honeycomb. Further, the introduction of the metal element can also be performed after molding.

【0021】本発明の排気ガス浄化触媒は、アルミナゾ
ルやシリカゾルや粘土等のバインダーを加えて所定の形
状に成型したり、水を加えてスラリー状とし、ハニカム
等の形状のアルミナ、マグネシア、コージエライト等の
耐火性基材上に塗布してから使用してもよい。
The exhaust gas purification catalyst of the present invention can be formed into a predetermined shape by adding a binder such as alumina sol, silica sol, or clay, or made into a slurry by adding water to form alumina, magnesia, cordierite, etc. in the shape of a honeycomb or the like. It may be used after being coated on a fire-resistant substrate.

【0022】本発明の触媒が対象とする排気ガスは、窒
素酸化物、一酸化炭素及び炭化水素を含む酸素過剰な排
気ガスである。酸素過剰な排気ガスとは、排気ガスに含
まれる一酸化炭素や炭化水素等の還元成分を完全に酸化
するのに必要な酸素量よりも過剰に酸素を含む排気ガス
を示す。また、排気ガスに含まれる炭化水素は、特に制
限はないが、本発明の触媒は炭化水素の主成分が炭素数
1の排気ガスにたいしても、効率良く排気ガスを浄化す
ることができる。一般的に、自動車等の液体燃料を使用
するエンジンから排出された排気ガスに含まれる炭化水
素のほとんどは炭素数2以上の炭化水素である。一方、
ガスエンジン等の気体燃料を使用するエンジンから排出
される排気ガスに含まれる炭化水素の主成分は炭素数1
である。通常、炭化水素の反応性は炭素数が多くなるほ
ど高くなる傾向があり、炭素数1の場合特に反応性が低
い。ここで、炭化水素の主成分が炭素数1の排気ガスと
は、排気ガス中に含まれる炭化水素の80%以上が炭素
数1である排気ガスのことを示す。このような排気ガス
としては例えば、都市ガスを燃料とした希薄燃焼式のガ
スエンジンから排出される排気ガスを挙げることができ
る。
[0022] The exhaust gas targeted by the catalyst of the present invention is an oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons. Excessive oxygen exhaust gas refers to exhaust gas that contains oxygen in excess of the amount of oxygen required to completely oxidize reducing components such as carbon monoxide and hydrocarbons contained in the exhaust gas. Further, although there is no particular restriction on the hydrocarbons contained in the exhaust gas, the catalyst of the present invention can efficiently purify the exhaust gas even if the main component of the hydrocarbon is one carbon number. Generally, most of the hydrocarbons contained in exhaust gas discharged from an engine using liquid fuel such as an automobile are hydrocarbons having two or more carbon atoms. on the other hand,
The main component of hydrocarbons contained in the exhaust gas emitted from engines that use gaseous fuel, such as gas engines, has a carbon number of 1.
It is. Generally, the reactivity of hydrocarbons tends to increase as the number of carbon atoms increases, and when the number of carbon atoms is 1, the reactivity is particularly low. Here, the exhaust gas in which the main component of hydrocarbons is 1 carbon number refers to exhaust gas in which 80% or more of the hydrocarbons contained in the exhaust gas have 1 carbon number. Examples of such exhaust gas include exhaust gas discharged from lean-burn gas engines using city gas as fuel.

【0023】また、添加する炭化水素としては、特に制
限はないが、本発明の触媒は、炭化水素がメタンあるい
はメタンを主成分とする炭化水素の混合ガスであっても
効率良く排気ガスを浄化することができる。メタンを主
成分とする炭化水素の混合ガスとは、混合ガス中の炭化
水素の80%以上がメタンである混合ガスのことを示す
。このような混合ガスとしては、例えば、各種の都市ガ
スを挙げることができる。
Although there are no particular restrictions on the hydrocarbon to be added, the catalyst of the present invention can efficiently purify exhaust gas even if the hydrocarbon is methane or a mixed gas of hydrocarbons containing methane as a main component. can do. A mixed gas of hydrocarbons containing methane as a main component refers to a mixed gas in which 80% or more of the hydrocarbons in the mixed gas are methane. Examples of such a mixed gas include various city gases.

【0024】添加する炭化水素の濃度は、特に制限はな
く、排気ガス全体に対して50ppm〜1%程度の濃度
となるように添加すれば良い。更に添加量を多くしても
かまわないが、経済性の低下および炭化水素浄化率の低
下を招くため、あまり好ましくない。
The concentration of the hydrocarbon to be added is not particularly limited, and it may be added to a concentration of about 50 ppm to 1% of the total exhaust gas. Although it is possible to further increase the amount added, this is not so preferable because it causes a decrease in economic efficiency and a decrease in the hydrocarbon purification rate.

【0025】[0025]

【実施例】以下、実施例において本発明をさらに詳細に
説明するが、本発明はこれら実施例のみに限定されるも
のではない。
EXAMPLES The present invention will be explained in more detail in the following Examples, but the present invention is not limited to these Examples.

【0026】比較例1<比較触媒1の調製>シリカ/ア
ルミナ比が40のNH4型ZSM−5ゼオライト:20
0gを、0.25MのCo(CH3COO)2・4H2
O水溶液1800mlに投入し、80℃で20時間攪拌
してイオン交換をおこなった。スラリーを固液分離後、
ゼオライトケーキを再び上記と同じ組成の水溶液中に投
入して再度イオン交換操作をおこなった。固液分離後、
20リットルの純水で洗浄し、110℃で10時間乾燥
し、比較触媒1とした。元素分析の結果、コバルトはア
ルミナの1.39倍であった。
Comparative Example 1 <Preparation of Comparative Catalyst 1> NH4 type ZSM-5 zeolite with a silica/alumina ratio of 40: 20
0g to 0.25M Co(CH3COO)2.4H2
The mixture was poured into 1800 ml of an O aqueous solution and stirred at 80° C. for 20 hours to perform ion exchange. After solid-liquid separation of the slurry,
The zeolite cake was again put into an aqueous solution having the same composition as above and the ion exchange operation was performed again. After solid-liquid separation,
It was washed with 20 liters of pure water and dried at 110° C. for 10 hours to obtain Comparative Catalyst 1. As a result of elemental analysis, the amount of cobalt was 1.39 times that of alumina.

【0027】実施例1<触媒1の調製>比較触媒1の2
0gを、ゼオライト中のアルミナのモル数に対して0.
1倍のAgNO3を溶解した水溶液100ccに投入し
、80℃で減圧乾燥させAgを担持させた後、110℃
で10時間乾燥し、触媒1とした。元素分析の結果、コ
バルトはアルミナの1.39倍、銀は0.1倍であった
Example 1 <Preparation of catalyst 1> Comparative catalyst 1-2
0g to the number of moles of alumina in the zeolite.
Pour into 100 cc of an aqueous solution containing 1x AgNO3, dry under reduced pressure at 80°C to support Ag, and then heat to 110°C.
The catalyst was dried for 10 hours to obtain catalyst 1. As a result of elemental analysis, the amount of cobalt was 1.39 times that of alumina, and the amount of silver was 0.1 times.

【0028】実施例2<触媒2の調製>AgNO3をゼ
オライト中のアルミナのモル数に対して2.0倍とした
こと以外は実施例1と同様な方法で調製し、触媒2とし
た。元素分析の結果、コバルトはアルミナの1.39倍
、銀は2.0倍であった。
Example 2 <Preparation of Catalyst 2> Catalyst 2 was prepared in the same manner as in Example 1 except that AgNO3 was increased to 2.0 times the number of moles of alumina in the zeolite. As a result of elemental analysis, the amount of cobalt was 1.39 times that of alumina, and the amount of silver was 2.0 times that of alumina.

【0029】実施例3<触媒3の調製>AgNO3をゼ
オライト中のアルミナのモル数に対して3.0倍とした
こと以外は実施例1と同様な方法で調製し、触媒3とし
た。元素分析の結果、コバルトはアルミナの1.39倍
、銀は3.0倍であった。
Example 3 <Preparation of Catalyst 3> Catalyst 3 was prepared in the same manner as in Example 1 except that AgNO3 was increased to 3.0 times the number of moles of alumina in the zeolite. As a result of elemental analysis, cobalt was 1.39 times that of alumina, and silver was 3.0 times that of alumina.

【0030】比較例2<比較触媒2の調製>シリカ/ア
ルミナ比が40のNH4型ZSM−5:1Kgを、ゼオ
ライトのAl原子数に対して1倍の銅原子数になるよう
に、0.1M酢酸銅の水溶液に添加した。その後、2.
5%アンモニア水を添加して、pHを10.5に調整し
、室温にて20時間攪拌し、イオン交換処理を行った。 この操作を2回繰り返した後、洗浄、110℃で12時
間乾燥して比較触媒2を調製した。化学分析の結果、C
uO/Al2O3モル比は1.05であった。
Comparative Example 2 <Preparation of Comparative Catalyst 2> 1 kg of NH4 type ZSM-5 with a silica/alumina ratio of 40 was mixed with 0.0 kg of NH4 type ZSM-5 having a silica/alumina ratio of 40 so that the number of copper atoms was 1 times the number of Al atoms in the zeolite. Added to an aqueous solution of 1M copper acetate. After that, 2.
The pH was adjusted to 10.5 by adding 5% ammonia water, and the mixture was stirred at room temperature for 20 hours to perform ion exchange treatment. This operation was repeated twice, followed by washing and drying at 110°C for 12 hours to prepare Comparative Catalyst 2. As a result of chemical analysis, C
The uO/Al2O3 molar ratio was 1.05.

【0031】比較例3  <比較触媒3の調製>シリカ
/アルミナ比が40のNH4型ZSM−5:20gを、
濃度0.23Mの酢酸ニッケル4水和物の水溶液180
mlに投入し、80℃で16時間攪拌した。スラリ−を
固液分離後、ゼオライトケ−キを再度調製した上記組成
の水溶液に投入して同様な操作を行った。固液分離後、
充分水洗し、110℃で10時間乾燥し、比較触媒3を
得た。化学分析の結果、NiO/Al2O3モル比は1
.40であった。
Comparative Example 3 <Preparation of Comparative Catalyst 3> 20 g of NH4 type ZSM-5 with a silica/alumina ratio of 40,
Aqueous solution of nickel acetate tetrahydrate with a concentration of 0.23M 180
ml and stirred at 80°C for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation,
Comparative catalyst 3 was obtained by thoroughly washing with water and drying at 110° C. for 10 hours. As a result of chemical analysis, the NiO/Al2O3 molar ratio is 1.
.. It was 40.

【0032】比較例4  <比較触媒4の調製>シリカ
/アルミナ比が40のNa型ZSM−5:20gを、A
gNO3をゼオライト中のアルミナのモル数に対して0
.5倍含む水溶液180mlに投入し、80℃で16時
間攪拌した。スラリ−を固液分離後、充分水洗し、11
0℃で10時間乾燥し、比較触媒4を得た。化学分析の
結果、Ag2O/Al2O3モル比は0.39で、Na
2O/Al2O3モル比は0.62であった。
Comparative Example 4 <Preparation of Comparative Catalyst 4> 20 g of Na-type ZSM-5 with a silica/alumina ratio of 40 was
gNO3 to the number of moles of alumina in the zeolite
.. The mixture was poured into 180 ml of an aqueous solution containing 5 times the amount and stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, it was thoroughly washed with water and 11
Comparative catalyst 4 was obtained by drying at 0° C. for 10 hours. As a result of chemical analysis, the Ag2O/Al2O3 molar ratio was 0.39, and Na
The 2O/Al2O3 molar ratio was 0.62.

【0033】実施例4<触媒評価1> 触媒1〜3および比較触媒1〜4を各々打錠成型後破砕
し、12〜20メッシュに整粒し、その1.2gを常圧
固定床反応装置に充填した。空気流通下、500℃で1
時間前処理を施した後、表1に示す組成のガス(以下反
応ガスと呼ぶ。)を500ml/分で流通させ、400
℃および500℃における触媒活性を測定した。各温度
で定常に達した時のNOおよびメタンの浄化率を表2に
示した。CO浄化率はいずれの触媒においてもほぼ10
0%であった。なお、NO浄化率は次式から求めた値で
、メタン浄化率もそれに準じて求めた値である。
Example 4 <Catalyst Evaluation 1> Catalysts 1 to 3 and Comparative Catalysts 1 to 4 were each compressed into tablets, crushed, sized to 12 to 20 mesh, and 1.2 g of them was transferred to an atmospheric fixed bed reactor. was filled. 1 at 500℃ under air circulation
After the time pretreatment, a gas having the composition shown in Table 1 (hereinafter referred to as reaction gas) was passed at a rate of 500 ml/min.
Catalytic activity was measured at .degree. C. and 500.degree. Table 2 shows the purification rates of NO and methane when steady state was reached at each temperature. The CO purification rate is approximately 10 for both catalysts.
It was 0%. Note that the NO purification rate is a value obtained from the following equation, and the methane purification rate is also a value obtained according to the same.

【0034】[0034]

【数1】[Math 1]

【0035】[0035]

【表1】[Table 1]

【0036】[0036]

【表2】 実施例5<触媒評価2> 反応ガスを表3に示した組成の反応ガスに変えた以外は
実施例4と同様にして触媒活性を測定した。各温度で定
常に達した時のNOおよびメタンの浄化率を表4に示し
た。なお、COおよびメタン以外の炭化水素の浄化率は
いずれの触媒においてもほぼ100%であった。
[Table 2] Example 5 <Catalyst Evaluation 2> Catalytic activity was measured in the same manner as in Example 4 except that the reaction gas was changed to a reaction gas having the composition shown in Table 3. Table 4 shows the purification rates of NO and methane when steady state was reached at each temperature. Note that the purification rate of hydrocarbons other than CO and methane was approximately 100% in all catalysts.

【0037】[0037]

【表3】[Table 3]

【0038】[0038]

【表4】 実施例6<触媒評価3> 表1に示した反応ガスに、更に表5に示すメタンを主成
分とする混合ガスを5000ppm添加して、実施例4
と同様にして触媒活性を測定した。各温度で定常に達し
た時のNOおよびメタンの浄化率を表6に示した。なお
、COおよびメタン以外の炭化水素の浄化率はいずれの
触媒においてもほぼ100%であった。
[Table 4] Example 6 <Catalyst Evaluation 3> Example 4
Catalytic activity was measured in the same manner as above. Table 6 shows the purification rates of NO and methane when steady state was reached at each temperature. Note that the purification rate of hydrocarbons other than CO and methane was approximately 100% in all catalysts.

【0039】[0039]

【表5】[Table 5]

【0040】[0040]

【表6】[Table 6]

【0041】[0041]

【発明の効果】表2、表4、表6の結果より、本発明の
コバルトおよび銀を含有したゼオライト触媒は、窒素酸
化物、一酸化炭素及び炭化水素を含む酸素過剰な排気ガ
スであって、炭化水素の主成分が炭素数1の排気ガスで
あっても、比較触媒と比べ高い浄化率で、窒素酸化物、
一酸化炭素及び炭化水素を除去することができ、更に、
本発明の触媒を用いて、炭化水素を添加することにより
、非常に高い浄化率で窒素酸化物を浄化することができ
ることは明らかであり、従って本発明は、環境保全上極
めて有意義である。
Effects of the Invention From the results in Tables 2, 4, and 6, it is clear that the zeolite catalyst containing cobalt and silver of the present invention is effective against oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons. , Even if the main component of hydrocarbon is exhaust gas with 1 carbon, it has a higher purification rate than the comparative catalyst, and removes nitrogen oxides, nitrogen oxides,
Carbon monoxide and hydrocarbons can be removed, and further,
It is clear that by using the catalyst of the present invention and adding hydrocarbons, nitrogen oxides can be purified at a very high purification rate, and therefore the present invention is extremely significant from the viewpoint of environmental conservation.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】窒素酸化物、一酸化炭素及び炭化水素を含
む酸素過剰な排気ガスから、窒素酸化物、一酸化炭素及
び炭化水素を除去する触媒であって、コバルトおよび銀
を含有したゼオライトからなることを特徴とする排気ガ
ス浄化触媒。
Claim 1: A catalyst for removing nitrogen oxides, carbon monoxide and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide and hydrocarbons, the catalyst being made from zeolite containing cobalt and silver. An exhaust gas purification catalyst characterized by:
【請求項2】窒素酸化物、一酸化炭素及び炭化水素を含
む酸素過剰な排気ガスから、窒素酸化物、一酸化炭素及
び炭化水素を除去するにあたり、請求項1に記載の排気
ガス浄化触媒を用いることを特徴とする排気ガス浄化方
法。
2. The exhaust gas purification catalyst according to claim 1 is used to remove nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons. An exhaust gas purification method characterized by using
【請求項3】炭化水素の主成分が炭素数1である請求項
1に記載の排気ガス浄化方法。
3. The exhaust gas purification method according to claim 1, wherein the main component of the hydrocarbon is 1 carbon atom.
【請求項4】窒素酸化物、一酸化炭素及び炭化水素を含
む酸素過剰な排気ガスから、窒素酸化物、一酸化炭素及
び炭化水素を除去するにあたり、当該排気ガスに更に炭
化水素を添加することを特徴とする請求項2に記載の排
気ガス浄化方法。
[Claim 4] In removing nitrogen oxides, carbon monoxide, and hydrocarbons from oxygen-excess exhaust gas containing nitrogen oxides, carbon monoxide, and hydrocarbons, hydrocarbons are further added to the exhaust gas. The exhaust gas purification method according to claim 2, characterized in that:
【請求項5】添加する炭化水素がメタンあるいはメタン
を主成分とする炭化水素の混合ガスである請求項4に記
載の排気ガス浄化方法。
5. The exhaust gas purification method according to claim 4, wherein the hydrocarbon added is methane or a mixed gas of hydrocarbons containing methane as a main component.
JP03042312A 1991-02-15 1991-02-15 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP3143936B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP03042312A JP3143936B2 (en) 1991-02-15 1991-02-15 Exhaust gas purification catalyst and exhaust gas purification method
US07/834,193 US5407651A (en) 1991-02-15 1992-02-12 Catalyst for and method of purifying exhaust gas
DE69226710T DE69226710T2 (en) 1991-02-15 1992-02-14 Exhaust gas purification process
EP95105052A EP0664149B1 (en) 1991-02-15 1992-02-14 Method of purifying exhaust gas
DE69212508T DE69212508T2 (en) 1991-02-15 1992-02-14 Exhaust gas purification catalyst and process
EP92102540A EP0499286B1 (en) 1991-02-15 1992-02-14 Catalyst for and method of purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03042312A JP3143936B2 (en) 1991-02-15 1991-02-15 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH04260441A true JPH04260441A (en) 1992-09-16
JP3143936B2 JP3143936B2 (en) 2001-03-07

Family

ID=12632508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03042312A Expired - Fee Related JP3143936B2 (en) 1991-02-15 1991-02-15 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3143936B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382416A (en) * 1990-12-18 1995-01-17 Tosoh Corporation Method for purifying exhaust gas
US5407651A (en) * 1991-02-15 1995-04-18 Tosoh Corporation Catalyst for and method of purifying exhaust gas
JPH07289905A (en) * 1994-04-28 1995-11-07 Sangyo Souzou Kenkyusho Catalyst and method for removing nitrogen oxide in engine exhaust gas
US5985225A (en) * 1995-10-06 1999-11-16 Osaka Gas Company Limited Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas
US5993764A (en) * 1995-04-17 1999-11-30 Osaka Gas Company Limited Nitrogen oxide-reducing catalyst and process for reducing nitrogen oxides in exhaust gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382416A (en) * 1990-12-18 1995-01-17 Tosoh Corporation Method for purifying exhaust gas
US5407651A (en) * 1991-02-15 1995-04-18 Tosoh Corporation Catalyst for and method of purifying exhaust gas
JPH07289905A (en) * 1994-04-28 1995-11-07 Sangyo Souzou Kenkyusho Catalyst and method for removing nitrogen oxide in engine exhaust gas
US5993764A (en) * 1995-04-17 1999-11-30 Osaka Gas Company Limited Nitrogen oxide-reducing catalyst and process for reducing nitrogen oxides in exhaust gas
US5985225A (en) * 1995-10-06 1999-11-16 Osaka Gas Company Limited Nitrogen oxides reduction catalyst and process for reducing nitrogen oxides in exhaust gas

Also Published As

Publication number Publication date
JP3143936B2 (en) 2001-03-07

Similar Documents

Publication Publication Date Title
US11845067B2 (en) Copper CHA zeolite catalysts
EP0664149B1 (en) Method of purifying exhaust gas
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JPH04219141A (en) Exhaust gas purification catalyst
JPH04260441A (en) Catalyst and method for purifying exhaust gas
JPH04244218A (en) Method for purifying exhaust gas
JP3298133B2 (en) Method for producing zeolite containing cobalt and palladium and method for purifying exhaust gas
JP3087321B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2605956B2 (en) Exhaust gas purification catalyst
JP3087320B2 (en) Exhaust gas purification method
JPH0655076A (en) Catalyst for purification of exhaust gas and method for purifying exhaust gas
JPH0389942A (en) Exhaust gas purifying catalyst and purifying method with it utilized therefor
JP3579745B2 (en) Exhaust gas purification method
JP2601018B2 (en) Exhaust gas purification catalyst
JPH04219147A (en) Exhaust gas purification catalyst
JPH0751542A (en) Purification of exhaust gas
JPH04219143A (en) Exhaust gas purification catalyst
JP3482662B2 (en) Exhaust gas purification method
JPH06198191A (en) Exhaust gas purification catalyst
JPH07116474A (en) Method for cleaning exhaust gas
JPH0751541A (en) Purification of exhaust gas
JPH04219146A (en) Exhaust gas purification catalyst
JPH06198188A (en) Exhaust gas purification catalyst
JPH09248427A (en) Removal of nitrogen oxide
JPH06126183A (en) Catalyst for purifying exhaust gas, its production, and purification of exhaust gas by using it

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees