JP2007222843A - CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD - Google Patents

CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD Download PDF

Info

Publication number
JP2007222843A
JP2007222843A JP2006049810A JP2006049810A JP2007222843A JP 2007222843 A JP2007222843 A JP 2007222843A JP 2006049810 A JP2006049810 A JP 2006049810A JP 2006049810 A JP2006049810 A JP 2006049810A JP 2007222843 A JP2007222843 A JP 2007222843A
Authority
JP
Japan
Prior art keywords
nox
catalyst
oxygen
moisture
hafnium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049810A
Other languages
Japanese (ja)
Inventor
Tamikuni Komatsu
民邦 小松
Keizo Tomokuni
敬三 友国
Hideyuki Horino
秀幸 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Noguchi Institute
Original Assignee
Asahi Kasei Corp
Noguchi Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Noguchi Institute filed Critical Asahi Kasei Corp
Priority to JP2006049810A priority Critical patent/JP2007222843A/en
Publication of JP2007222843A publication Critical patent/JP2007222843A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new catalyst for NOx purification enabling an efficient purification treatment of a diesel exhaust NOx, and a purification method using the catalyst. <P>SOLUTION: The NOx is treated under a coexistence of oxygen and moisture using a catalyst containing hafnium oxide. An oxygen concentration may be on the order of equivalent or more to the NOx. In the case of an exhaust gas of cars, generally a NOx concentration is tens to hundreds of ppm, and since oxygen is contained about tens to thousands times NOx, it is not necessary to supply oxygen particularly. Further, since the moisture is also contained about tens to thousands times NOx, it is not necessary to supply the moisture particularly. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はNOx浄化用触媒及びNOx浄化方法に関するものであり、酸素と水分の共存下、還元剤を用いることなく低温領域でNOxを分解するための新規のNOx浄化用触媒及びNOx浄化方法を提供する。   The present invention relates to a NOx purification catalyst and a NOx purification method, and provides a novel NOx purification catalyst and a NOx purification method for decomposing NOx in a low temperature region without using a reducing agent in the presence of oxygen and moisture. To do.

従来、化学プラント、大型発電所等から排出されるNOxの浄化は、通常、触媒として遷移金属又は白金族元素を用い還元剤としてアンモニアを用いる、所謂アンモニアSCR(Selective Catalytic Reduction)法によって行われている。この方法は、NOxを100℃程度の比較的低温領域において効率的に浄化できるという利点を持つが、還元剤として高価なアンモニアを使用するという問題がある。また、従来、ガソリン車の排ガスに含まれるNOx、一酸化炭素、及び炭化水素は、通常、白金族元素から成る三元触媒によって浄化されている(特許文献1参照)。この方法は、空気:燃料の重量混合比である空燃比を理論空燃比(=14.7)近傍に制御することで(この燃焼はリッチバーンと呼ばれている)排ガスに含まれる酸素濃度を1%以下に維持できるので、排ガスに含まれる一酸化炭素及び炭化水素をNOxの還元剤として利用できるという利点を持つが、排ガス中の酸素濃度が数%以上になると触媒の著しい酸化劣化が生じるという問題がある。一方、軽油燃料で走行するトラック、バス等の大型ディーゼル車の排ガス処理は、触媒として遷移金属化合物又は白金族元素を用い還元剤として尿素水を用いる、所謂尿素SCR法が検討されている(特許文献2参照)。この方法は、100℃付近の比較的低温領域から600℃付近の比較的高温領域に渡ってNOxを効率的に浄化できるという利点を持つが、還元剤として高価な尿素水を搭載する必要があるという問題がある。しかし、ディーゼル乗用車等の小型ディーゼル車の排NOx処理には三元触媒が使用できない。それは、空燃比がガソリンの空燃比の数倍以上であるので(ディーゼル燃料の燃焼はリーンバーンとよばれている)ディーゼル排ガス中の酸素濃度が通常5%以上であり還元性物質がほとんどないためである。小型ディーゼル車の排NOx処理には、触媒としてNOx吸蔵剤を含有した白金族触媒である所謂NOx吸蔵還元触媒が検討されている(特許文献3参照)。この方法は、リーンバーンとリッチバーンのサイクル燃焼を行い、リーンバーン排NOxをNOx吸蔵剤で吸収し、吸収NOxをリッチバーン雰囲気下で放出させ、放出NOxをリッチバーン排ガス中の還元性物質(リッチバーン排ガス中の一酸化炭素、水素、炭化水素などが還元剤として働く)で還元処理する方法である。この方法は、ガソリン乗用車の排ガス処理に用いられている三元触媒が使用できないような高濃度の酸素共存雰囲気中でも250℃付近から600℃付近に渡ってNOxを浄化できるという利点を持つが、200℃付近以下の温度でのNOx浄化は非常に困難であるという問題と排ガス中の水分及び少量のSOxによってNOx吸蔵剤が著しく劣化するという問題がある。また、排NOx浄化用に研究されているゼオライトにイオン交換法によって担持された触媒は、水分及び酸素によって著しく活性が低下するという問題がある。ところで、国内ではディーゼル乗用車の排出する排ガスの温度は過渡走行時でおよそ120℃〜200℃であり安定走行時でおよそ200℃〜400℃であるが、排出されるNOxの約80%が過渡走行時に排出されている。したがって、ディーゼル乗用車の排NOx処理に要求される触媒は、上記120℃〜200℃の低温領域で高活性を有する触媒であることが望まれている。
以上の状況を鑑みると、酸素と水分の共存下で低温領域でも還元剤を用いないでNOxを効率的に分解できるようなNOx浄化用触媒が理想的である。しかし、従来、このような理想的触媒は開発されていないのが現状である。
Conventionally, purification of NOx emitted from chemical plants, large power plants and the like is usually performed by a so-called ammonia SCR (Selective Catalytic Reduction) method using a transition metal or a platinum group element as a catalyst and ammonia as a reducing agent. Yes. This method has an advantage that NOx can be efficiently purified in a relatively low temperature region of about 100 ° C., but has a problem that expensive ammonia is used as a reducing agent. Conventionally, NOx, carbon monoxide, and hydrocarbons contained in the exhaust gas of gasoline vehicles are usually purified by a three-way catalyst composed of a platinum group element (see Patent Document 1). This method controls the air-fuel ratio, which is the air: fuel weight mixture ratio, to near the stoichiometric air-fuel ratio (= 14.7) (this combustion is called rich burn). Since it can be maintained below, it has the advantage that carbon monoxide and hydrocarbons contained in the exhaust gas can be used as a reducing agent for NOx. However, when the oxygen concentration in the exhaust gas exceeds several percent, the problem of significant oxidative degradation of the catalyst occurs. There is. On the other hand, for exhaust gas treatment of heavy-duty diesel vehicles such as trucks and buses that run on light oil fuel, a so-called urea SCR method using a transition metal compound or a platinum group element as a catalyst and urea water as a reducing agent has been studied (patent) Reference 2). This method has the advantage of being able to efficiently purify NOx from a relatively low temperature region near 100 ° C. to a relatively high temperature region near 600 ° C., but it is necessary to mount expensive urea water as a reducing agent. There is a problem. However, a three-way catalyst cannot be used for the exhaust NOx treatment of small diesel vehicles such as diesel passenger cars. Because the air-fuel ratio is more than several times that of gasoline (combustion of diesel fuel is called lean burn), the oxygen concentration in diesel exhaust gas is usually 5% or more and there is almost no reducing substance. It is. A so-called NOx occlusion reduction catalyst, which is a platinum group catalyst containing a NOx occlusion agent as a catalyst, has been studied for the exhaust NOx treatment of small diesel vehicles (see Patent Document 3). In this method, lean burn and rich burn cycle combustion is performed, lean burn exhaust NOx is absorbed by the NOx storage agent, absorbed NOx is released in a rich burn atmosphere, and the released NOx is reduced in the rich burn exhaust gas ( Carbon monoxide, hydrogen, hydrocarbons, etc. in the rich burn exhaust gas serve as a reducing agent). This method has the advantage that NOx can be purified from about 250 ° C. to about 600 ° C. even in a high-concentration oxygen coexistence atmosphere in which a three-way catalyst used for exhaust gas treatment of gasoline passenger cars cannot be used. There is a problem that NOx purification at temperatures below about 0 ° C. is very difficult and a problem that the NOx occlusion agent deteriorates significantly due to moisture in the exhaust gas and a small amount of SOx. In addition, the catalyst supported by zeolite, which has been studied for purifying exhaust NOx, by the ion exchange method has a problem that the activity is significantly reduced by moisture and oxygen. By the way, in Japan, the temperature of exhaust gas discharged from diesel passenger cars is approximately 120 ° C to 200 ° C during transient driving and approximately 200 ° C to 400 ° C during stable driving, but about 80% of the exhausted NOx is transient driving. Sometimes discharged. Therefore, the catalyst required for the exhaust NOx treatment of diesel passenger cars is desired to be a catalyst having high activity in the low temperature range of 120 ° C. to 200 ° C.
In view of the above situation, an NOx purification catalyst that can efficiently decompose NOx without using a reducing agent even in a low temperature region in the presence of oxygen and moisture is ideal. However, at present, such an ideal catalyst has not been developed.

特開昭56−44771号公報JP 56-44771 A 特開2005−334681号公報JP 2005-334681 A 特開平11−333256号公報JP-A-11-333256

本発明の目的は、上記の事情に鑑み、リーンバーン排ガス中のNOxを還元剤の供給なしに浄化するためのNOx浄化用触媒及びNOx浄化方法を提供することである。特に、従来困難であったディーゼル排NOxを効率的に浄化するために、酸素と水分が共存する低温領域の排NOxを還元剤なしで分解することができる新規のNOx浄化用触媒及びこの触媒によるNOx浄化方法を提供することである。   In view of the above circumstances, an object of the present invention is to provide a NOx purification catalyst and a NOx purification method for purifying NOx in lean burn exhaust gas without supplying a reducing agent. In particular, in order to efficiently purify diesel exhaust NOx, which has been difficult in the past, a novel NOx purifying catalyst capable of decomposing exhaust NOx in a low temperature region where oxygen and moisture coexist without a reducing agent, and the catalyst. It is to provide a NOx purification method.

本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、酸化ハフニウムが酸素共存下で還元剤を用いなくてもNOxを分解できることを見いだし、この知見に基づいて本発明を完成させるに至った。
すなわち、本発明は、
(1)触媒の活性成分が酸化ハフニウムであることを特徴とするNOx浄化用触媒。
(2)酸素と水分の共存下、酸化ハフニウムを含有する触媒によってNOxを分解することを特徴とするNOx浄化方法、に関する。
As a result of intensive studies to achieve the above object, the present inventors have found that hafnium oxide can decompose NOx without using a reducing agent in the presence of oxygen. It came to complete.
That is, the present invention
(1) A catalyst for purifying NOx, wherein the active component of the catalyst is hafnium oxide.
(2) A NOx purification method characterized by decomposing NOx by a catalyst containing hafnium oxide in the presence of oxygen and moisture.

本発明の酸化ハフニウム触媒は、従来達成できなかったリーンバーン排NOxを還元剤の有無にかかわらず低温領域で極めて効率よく処理することができる。例えば、三元触媒では酸素濃度5%の雰囲気下における一酸化窒素はほとんど浄化できないが、本発明の酸化ハフニウム触媒は、排ガス中に数%の水分と1%〜20%の酸素が共存している一酸化窒素の80%以上を還元剤の有無にかかわらず80℃〜300℃において浄化できる。   The hafnium oxide catalyst of the present invention can treat lean burn exhaust NOx, which could not be achieved in the past, extremely efficiently in a low temperature region regardless of the presence or absence of a reducing agent. For example, a three-way catalyst can hardly purify nitric oxide in an atmosphere with an oxygen concentration of 5%. However, the hafnium oxide catalyst of the present invention contains several percent of water and 1% to 20% oxygen in the exhaust gas. 80% or more of nitric oxide can be purified at 80 ° C to 300 ° C with or without reducing agent.

以下、本発明を詳細に説明する。
本発明は、NOx浄化用触媒の活性成分として酸化ハフニウムを用いることである。
従来、自動車排ガス処理用触媒としては三元触媒が知られているが、この触媒はディーゼル排NOxの浄化処理にはほとんど効果がないことが知られている。その理由は、白金以外の構成元素であるパラジウム及びロジウムが低濃度の酸素によって表面酸化を受けるためである。三元触媒は白金-パラジウム-ロジウムで構成されているので表面酸化を受けるとたちまち失活し易い。本発明で酸化ハフニウムを用いる理由は、酸化ハフニウムが排NOxの主成分である一酸化窒素を酸素と水分の共存下で窒素と酸素に分解する触媒能力を持つことを見出したからである。従来、一酸化窒素を二酸化窒素に酸化する触媒は数多く知られており、酸化力の高い二酸化窒素が触媒表面で還元剤によって容易に窒素まで還元されることはよく知られている。また、一酸化窒素を無酸素及び無水の条件で窒素と酸素に分解する触媒も幾つか知られている。しかし、従来、酸素と水分の共存下で一酸化窒素を窒素と酸素に分解する触媒はほとんど知られていない。驚くべきことに、酸化ハフニウムがこのような触媒能力を持つことが、本発明によってはじめて見出された。酸化ハフニウムが持つこのような特殊な触媒活性の仕組みは、現在の所、十分には解明できていないが、酸素と水分のない条件では一酸化窒素は浄化できないことから、触媒表面上で水分の存在下、酸素を活性化し酸素陰イオン又は酸素ラジカルを発生させることによって一酸化窒素を酸化分解する機構が考えられる。
Hereinafter, the present invention will be described in detail.
The present invention is to use hafnium oxide as an active component of the NOx purification catalyst.
Conventionally, a three-way catalyst is known as a catalyst for automobile exhaust gas treatment, but this catalyst is known to have little effect on purification treatment of diesel exhaust NOx. The reason is that palladium and rhodium, which are constituent elements other than platinum, undergo surface oxidation by a low concentration of oxygen. Since the three-way catalyst is composed of platinum-palladium-rhodium, it is easily deactivated when subjected to surface oxidation. The reason for using hafnium oxide in the present invention is that it has been found that hafnium oxide has a catalytic ability to decompose nitrogen monoxide, which is a main component of exhaust NOx, into nitrogen and oxygen in the presence of oxygen and moisture. Conventionally, many catalysts that oxidize nitric oxide to nitrogen dioxide are known, and it is well known that highly oxidizing nitrogen dioxide is easily reduced to nitrogen by a reducing agent on the catalyst surface. Some catalysts that decompose nitrogen monoxide into nitrogen and oxygen under oxygen-free and anhydrous conditions are also known. However, there are few known catalysts that decompose nitrogen monoxide into nitrogen and oxygen in the presence of oxygen and moisture. Surprisingly, it was found for the first time by the present invention that hafnium oxide has such catalytic ability. The mechanism of the special catalytic activity of hafnium oxide has not been fully elucidated at present, but since nitric oxide cannot be purified under conditions without oxygen and moisture, moisture on the catalyst surface cannot be purified. A mechanism for oxidative decomposition of nitric oxide by activating oxygen in the presence and generating oxygen anions or oxygen radicals is conceivable.

本発明触媒の活性成分である酸化ハフニウムは単独で用いてもよいし、シリカ、アルミナ、ジルコニア、セリア、イットリア、ニオビア、チタニア、ゼオライト、マグネシア、カルシア、コージェライト、等の酸化物に固溶させて用いてもよく、希土類元素の酸化物及び/又は遷移金属酸化物との複酸化物として用いてもよく、ABO3で表されるペロブス
カイト型構造の酸化物として用いることもできるし、あるいは、ヘテロポリ酸塩、アルミン酸塩、ケイ酸塩、リン酸塩、チタン酸塩、鉄酸塩、等のオキシ酸塩として用いることもできる。また、触媒又は触媒原料として酸化雰囲気で酸化されて酸化ハフニウムになるような金属ハフニウムとかハフニウム化合物を用いることもできる。
Hafnium oxide, which is an active component of the catalyst of the present invention, may be used alone, or may be dissolved in an oxide such as silica, alumina, zirconia, ceria, yttria, niobia, titania, zeolite, magnesia, calcia, cordierite, etc. May be used as a double oxide with rare earth oxides and / or transition metal oxides, or may be used as an oxide having a perovskite structure represented by ABO 3 , or It can also be used as an oxyacid salt such as a heteropolyacid salt, aluminate, silicate, phosphate, titanate, or ferrate. Further, a metal hafnium or a hafnium compound that is oxidized in an oxidizing atmosphere to become hafnium oxide as a catalyst or a catalyst raw material can be used.

本発明のNOx浄化方法は、酸素と水分の共存下において酸化ハフニウムによってNOxを分解することを特徴とする。酸素濃度は、NOxと当量程度以上であればよい。自動車の排ガスの場合、通常、NOxは数十ppm〜数百ppm含まれ、酸素はNOxの数十倍〜数千倍ほど含まれているので特に酸素を供給する必要はない。また、水分の濃度は、NOxと当量程度以上であればよい。自動車の排ガスの場合、通常、水分はNOxの数十倍〜数千倍ほど含まれているので特に水分を供給する必要はない。また、自動車排ガス中には、NOx、酸素、水分、窒素の他に、一酸化炭素、炭化水素、SOx等が含まれているが、これらの共存物質による触媒活性の低下は殆どみられない。上記排ガス中の一酸化炭素及び炭化水素は本発明の触媒によって同時に酸化され炭酸ガスと水になる。本発明のNOx浄化方法におけるNOx分解反応は、通常、室温程度から開始し高温に行くほど触媒反応は促進される。通常、室温程度から酸化ハフニウムの融点である2812℃未満まで可能であるが、高温における触媒粒子のシンタリング(燒結ともいう)によって触媒活性が低下するので過度の高温状態は避けることが好ましい。自動車排ガスの温度は、通常、100℃程度から700℃程度であるので、この程度の排ガス温度は本発明の方法によって十分にNOx浄化を行うことができる温度である。また、本発明触媒を自動車の排NOx浄化用に用いる際は、通常、モノリス成形体のガス流路内壁に本発明触媒を付着させて用いる。ガス流路内壁への触媒の付着は、触媒成分とバインダー等から成るスラリーを塗布する従来の方法、酸化ハフニウムの前駆物質をモノリス成形体のガス流路内壁に薄膜状に付着させた後、焼成することによって薄膜状の酸化ハフニウムを固着させる方法、あるいは、酸化ハフニウムの前駆物質と酸化物形成用薄膜材料の混合物をモノリス成形体のガス流路内壁に薄膜状に付着させた後、焼成することによって酸化ハフニウムがドープされた酸化物薄膜を固着させる方法、等によって行うことができる。酸化ハフニウムの前駆物質としては、例えば、テトラメトキシハフニウム、テトラエトキシハフニウム、テトラ-i-プロポキシハフニウム、テトラ-t-ブトキシハフニウム、テトラキス(ジピバロイルメタナト)ハフニウム、テトラキス(ジメチルアミノ)ハフニウム、ハロゲン化ハフニウム、等の揮発性化合物を用いることができる。薄膜状中間体の焼成温度は、通常、数100℃から1000℃までの温度である。   The NOx purification method of the present invention is characterized in that NOx is decomposed by hafnium oxide in the presence of oxygen and moisture. The oxygen concentration may be about equal to or higher than NOx. In the case of automobile exhaust gas, NOx is usually contained in several tens to several hundred ppm, and oxygen is contained in several tens to several thousand times that of NOx, so that it is not particularly necessary to supply oxygen. Further, the moisture concentration may be about equal to or more than NOx. In the case of automobile exhaust gas, water is usually contained in several tens to several thousand times that of NOx, so it is not necessary to supply water. In addition to NOx, oxygen, moisture, and nitrogen, automobile exhaust gas contains carbon monoxide, hydrocarbons, SOx, etc., but there is almost no decrease in catalytic activity due to these coexisting substances. Carbon monoxide and hydrocarbons in the exhaust gas are simultaneously oxidized by the catalyst of the present invention into carbon dioxide gas and water. The NOx decomposition reaction in the NOx purification method of the present invention usually starts at about room temperature, and the catalytic reaction is accelerated as the temperature increases. Usually, it is possible from about room temperature to less than 2812 ° C., which is the melting point of hafnium oxide, but it is preferable to avoid an excessively high temperature state because the catalytic activity is lowered by sintering of the catalyst particles at high temperature (also called sintering). Since the temperature of automobile exhaust gas is normally about 100 ° C. to 700 ° C., this exhaust gas temperature is a temperature at which NOx purification can be sufficiently performed by the method of the present invention. Further, when the catalyst of the present invention is used for purifying NOx in automobiles, the catalyst of the present invention is usually used by attaching it to the inner wall of the gas flow path of the monolith molded body. The catalyst is attached to the inner wall of the gas flow path by a conventional method of applying a slurry composed of a catalyst component and a binder, and the precursor of hafnium oxide is attached to the inner wall of the gas flow path of the monolith molded body in the form of a thin film, followed by firing. A method for fixing thin film hafnium oxide, or by adhering a mixture of a hafnium oxide precursor and an oxide forming thin film material to the inner wall of the gas flow path of the monolith molded body and then firing. The method can be performed by a method of fixing an oxide thin film doped with hafnium oxide. Examples of the precursor of hafnium oxide include tetramethoxyhafnium, tetraethoxyhafnium, tetra-i-propoxyhafnium, tetra-t-butoxyhafnium, tetrakis (dipivaloylmethanato) hafnium, tetrakis (dimethylamino) hafnium, halogen Volatile compounds such as hafnium halide can be used. The firing temperature of the thin film-like intermediate is usually a temperature from several hundred degrees Celsius to 1000 degrees Celsius.

本発明の触媒に異なる機能をもつ助触媒的成分を添加することによってシナジー効果による触媒性能の向上をはかることもできる。このような成分として、例えば、白金、パラジウム、ロジウム、ルテニウム、イリジウム、レニウム、金、銀、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、バリウム、スカンジウム、イットリウム、ランタン、セリウム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム、チタン、ジルコニウム、ニオブ、タンタル、モリブデン、タングステン、ホウ素、アルミニウム、ガリウム、インジウム、シリコン、ゲルマニウム、スズ、マグネシウム、カルシウム、ストロンチウム、バリウム、及びこれらの化合物、ホウ化ハフニウム、炭化ハフニウム、窒化ハフニウム、ケイ化ハフニウム、等をあげることができる。これらの中で、不動態化膜になるクロム、鉄、コバルト、ニッケル、NOx吸蔵性がある酸化バリウム、中程度の酸化力をもつ酸化セリウム、三二酸化マンガン、及び四三酸化コバルト、SOx被毒防止に有効な銅-亜鉛、鉄-クロム、酸化モリブデン、硫化モリブデン、等は好ましい。この成分の添加量は、通常、本発明触媒と同質量程度から100倍程度であるが、必要に応じて1/10倍程度から1/100倍程度であってもよい。
本発明のNOx浄化用触媒及びこの触媒を用いたNOx浄化方法は、ディーゼル車に搭載することによって、リーンバーン排NOxを80〜700℃、好ましくは80〜300℃の広い温
度範囲において極めて効果的に浄化することができる。また、リーンバーンガソリン車が排出する排NOx処理に用いることもできる。
By adding a co-catalytic component having a different function to the catalyst of the present invention, the catalyst performance can be improved by the synergy effect. Examples of such components include platinum, palladium, rhodium, ruthenium, iridium, rhenium, gold, silver, chromium, manganese, iron, cobalt, nickel, copper, zinc, barium, scandium, yttrium, lanthanum, cerium, neodymium, Samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, titanium, zirconium, niobium, tantalum, molybdenum, tungsten, boron, aluminum, gallium, indium, silicon, germanium, tin, magnesium, calcium, Strontium, barium, and compounds thereof, hafnium boride, hafnium carbide, hafnium nitride, hafnium silicide, and the like can be given. Among them, chromium, iron, cobalt, nickel, NOx occlusion barium oxide, cerium oxide with moderate oxidizing power, manganese sesquioxide, and cobalt trioxide, SOx poison Copper-zinc, iron-chromium, molybdenum oxide, molybdenum sulfide, etc. effective for prevention are preferred. The addition amount of this component is usually about the same mass to about 100 times as the catalyst of the present invention, but may be about 1/10 times to about 1/100 times as necessary.
The NOx purification catalyst of the present invention and the NOx purification method using this catalyst are extremely effective in a wide temperature range of lean burn exhaust NOx of 80 to 700 ° C., preferably 80 to 300 ° C., by being mounted on a diesel vehicle. Can be purified. Moreover, it can also be used for exhaust NOx treatment discharged by lean burn gasoline vehicles.

以下に実施例などを挙げて本発明を具体的に説明する。
自動車排NOxのモデルガスとして、ヘリウム希釈の一酸化窒素及び酸素の混合ガスを用いた。必要に応じて還元性ガス(エチレン又はアンモニア)をモデルガスに供給した。一酸化窒素の処理率は、減圧式化学発光法NOx分析計(日本サーモ株式会社製造:モデル42C)によって処理後のガスに含まれるNOxを測定し、以下の式(1)に従って算出した。
The present invention will be specifically described below with reference to examples.
As a model gas for automobile exhaust NOx, a mixed gas of nitrogen monoxide and oxygen diluted with helium was used. A reducing gas (ethylene or ammonia) was supplied to the model gas as needed. The treatment rate of nitric oxide was calculated according to the following equation (1) by measuring NOx contained in the treated gas with a reduced pressure chemiluminescence NOx analyzer (manufactured by Nippon Thermo Co., Ltd .: model 42C).

Figure 2007222843
Figure 2007222843

「比較例1」比較サンプルとしての三元触媒類似触媒の合成及びNOx処理
PtCl4・5H2O(0.215g)、PdCl2・2H2O(0.106g)、及びRh(NO3)3・2H2O(0.162g)を20 mlの蒸留水に溶解し、蒸発皿に入れる。これに10gのγ-アルミナ(日揮化学株式会社製造:粒径2〜3μmの微粒子)を入れ、スチームバスで蒸発乾固した後、真空乾燥機に入れ100℃で3時間真空乾燥を行った。この試料を石英管に入れヘリウム希釈水素ガス(10%v/v)気流下500℃で3時間還元し、貴金属の含有量が約2重量%の触媒を合成した。この触媒600mgを海砂13gに分散し、石英製の連続流通式反応管に充填し、ヘリウムで濃度調整した一酸化窒素を流通処理した。被処理ガスの成分モル濃度を、一酸化窒素0.1%、酸素14%、水蒸気10%、及びエチレン0.3%とした。反応管へ導入した混合ガスの流量を毎分100 ml、処理温度を80℃〜300℃とした。排ガスをサンプリングし、一酸化窒素の処理率を求めた。結果を表1に示した。
"Comparative Example 1" Synthesis and NOx treatment of a three-way catalyst-like catalyst as a comparative sample
PtCl 4 · 5H 2 O (0.215 g), PdCl 2 · 2H 2 O (0.106 g), and Rh (NO 3 ) 3 · 2H 2 O (0.162 g) are dissolved in 20 ml of distilled water and placed in an evaporating dish. Put in. 10 g of γ-alumina (manufactured by JGC Chemical Co., Ltd .: fine particles with a particle size of 2 to 3 μm) was added thereto, evaporated to dryness with a steam bath, and then vacuum dried at 100 ° C. for 3 hours. This sample was placed in a quartz tube and reduced at 500 ° C. for 3 hours under a helium-diluted hydrogen gas (10% v / v) stream to synthesize a catalyst having a precious metal content of about 2% by weight. 600 mg of this catalyst was dispersed in 13 g of sea sand, filled in a continuous flow reaction tube made of quartz, and nitrogen monoxide adjusted in concentration with helium was flow-treated. The component molar concentrations of the gas to be treated were 0.1% nitric oxide, 14% oxygen, 10% water vapor, and 0.3% ethylene. The flow rate of the mixed gas introduced into the reaction tube was 100 ml / min, and the treatment temperature was 80 ° C to 300 ° C. The exhaust gas was sampled and the treatment rate of nitric oxide was determined. The results are shown in Table 1.

「実施例1」酸化ハフニウム触媒の合成及びNOx処理
市販の酸化ハフニウムの粉末(関東化学株式会社製造:高純度酸化ハフニウム)1gを海砂13gに分散し、石英製の連続流通式反応管に充填し、ヘリウムで濃度調整した一酸化窒素を流通処理した。被処理ガスの成分モル濃度を、一酸化窒素0.1%、酸素14%、水蒸気10%、及びエチレン0.3%とした。反応管へ導入した混合ガスの流量を毎分100 ml、処理温度を80℃〜300℃とした。排ガスをサンプリングし、一酸化窒素の浄化処理率を求めた。結果を表1に示した。
[Example 1] Synthesis of hafnium oxide catalyst and NOx treatment 1 g of commercially available hafnium oxide powder (manufactured by Kanto Chemical Co., Ltd .: high-purity hafnium oxide) is dispersed in 13 g of sea sand and filled into a quartz continuous-flow reaction tube. Then, nitrogen monoxide whose concentration was adjusted with helium was flow-treated. The component molar concentrations of the gas to be treated were 0.1% nitric oxide, 14% oxygen, 10% water vapor, and 0.3% ethylene. The flow rate of the mixed gas introduced into the reaction tube was 100 ml / min, and the treatment temperature was 80 ° C to 300 ° C. The exhaust gas was sampled and the purification rate of nitric oxide was determined. The results are shown in Table 1.

「実施例2」酸化ハフニウム触媒の合成及びNOx処理
市販の酸化ハフニウムの粉末(関東化学株式会社製造:高純度酸化ハフニウム)1gを海砂13gに分散し、石英製の連続流通式反応管に充填し、ヘリウムで濃度調整した一酸化窒素を流通処理した。被処理ガスの成分モル濃度を、一酸化窒素0.1%、酸素14%、水蒸気10%とした。反応管へ導入した混合ガスの流量を毎分100 ml、処理温度を80℃〜300℃とした。排ガスをサンプリングし、一酸化窒素の浄化処理率を求めた。結果を表1に示した。
[Example 2] Synthesis of hafnium oxide catalyst and NOx treatment 1 g of commercially available hafnium oxide powder (manufactured by Kanto Chemical Co., Ltd .: high-purity hafnium oxide) was dispersed in 13 g of sea sand and filled into a quartz continuous-flow reaction tube. Then, nitrogen monoxide whose concentration was adjusted with helium was flow-treated. The component molar concentration of the gas to be treated was 0.1% nitric oxide, 14% oxygen, and 10% water vapor. The flow rate of the mixed gas introduced into the reaction tube was 100 ml / min, and the treatment temperature was 80 ° C to 300 ° C. The exhaust gas was sampled and the purification rate of nitric oxide was determined. The results are shown in Table 1.

「実施例3」モノリス触媒の合成及びNOx処理
容積100mlのビーカーに、蒸留水30g、エタノール24g、ドデシルアミン0.3g、及び硫酸0.5gを入れ、攪拌し、均一な水溶液を調整した。これに市販のコージェライト製モノリス成形体(日本ガイシ株式会社製造、400セル/in2、直径118mm×長さ50mm、重量243g)から切り出したミニ成形体(21セル、直径8mm×長さ9mm、重量0.15g)を10個
入れ10分間静置した後、ミニ成形体を取り出し風乾した。これを、2gのテトラ-i-プロポキシハフニウムを入れた容積200mlの耐熱ガラス製デシケータの中に、テトラ-i-プロポキシハフニウムに触れないように水平に置き、乾燥機に入れ、200℃で1時間処理した。試料を取り出し500℃で5時間焼成した。得られた試料の切片を走査型電子顕微鏡で観察した結果、薄膜状の酸化ハフニウムがミニ成形体のガス流路内壁に形成されていることが確認された。該酸化ハフニウムの厚みは約200nmであり、BET法によって測定した比表面積は350m2/g、BJH法によって測定した細孔径は3.0nmであった。次に、この成形体10個を石英製の連続流通式反応管に充填し、ヘリウムで濃度調整した一酸化窒素を流通処理した。被処理ガスの成分モル濃度を、一酸化窒素0.1%、酸素14%、水蒸気10%とした。反応管へ導入した混合ガスの流量を毎分100 ml、処理温度を80℃〜300℃とした。排ガスをサンプリングし、一酸化窒素の浄化処理率を求めた。結果を表1に示した。
Example 3 Synthesis of Monolith Catalyst and NOx Treatment 30 g of distilled water, 24 g of ethanol, 0.3 g of dodecylamine and 0.5 g of sulfuric acid were placed in a beaker having a volume of 100 ml and stirred to prepare a uniform aqueous solution. A mini-molded body (21 cells, diameter 8 mm × length 9 mm) cut from a commercially available cordierite monolith molded body (manufactured by NGK, 400 cells / in 2 , diameter 118 mm × length 50 mm, weight 243 g), 10 pieces (weight 0.15 g) were added and allowed to stand for 10 minutes. Place this in a 200 ml heat-resistant glass desiccator containing 2 g of tetra-i-propoxyhafnium in a horizontal position so that it does not touch tetra-i-propoxyhafnium, and place it in a dryer for 1 hour at 200 ° C. Processed. A sample was taken out and baked at 500 ° C. for 5 hours. As a result of observing a section of the obtained sample with a scanning electron microscope, it was confirmed that thin hafnium oxide was formed on the inner wall of the gas channel of the mini-molded body. The thickness of the hafnium oxide was about 200 nm, the specific surface area measured by the BET method was 350 m 2 / g, and the pore diameter measured by the BJH method was 3.0 nm. Next, 10 compacts were filled into a continuous flow reaction tube made of quartz, and nitrogen monoxide whose concentration was adjusted with helium was flow-treated. The component molar concentration of the gas to be treated was 0.1% nitric oxide, 14% oxygen, and 10% water vapor. The flow rate of the mixed gas introduced into the reaction tube was 100 ml / min, and the treatment temperature was 80 ° C to 300 ° C. The exhaust gas was sampled and the purification rate of nitric oxide was determined. The results are shown in Table 1.

Figure 2007222843
Figure 2007222843

表1から、本発明の触媒は、還元剤の有無にかかわらず高濃度酸素と水分の共存下でNOxを低温領域でも効率よく浄化できることがわかる。したがって、ディーゼル車及びガソリン車のリーンバーン排NOx処理に適していることがわかる。   From Table 1, it can be seen that the catalyst of the present invention can efficiently purify NOx even in a low temperature region in the presence of high concentration oxygen and moisture regardless of the presence or absence of a reducing agent. Therefore, it turns out that it is suitable for the lean burn exhaust NOx processing of a diesel vehicle and a gasoline vehicle.

本発明のNOx浄化用触媒及び浄化方法は、ディーゼル排NOx浄化用触媒として有用である。   The NOx purification catalyst and purification method of the present invention are useful as a diesel exhaust NOx purification catalyst.

Claims (2)

触媒の活性成分が酸化ハフニウムであることを特徴とするNOx浄化用触媒。   A catalyst for purifying NOx, wherein the active component of the catalyst is hafnium oxide. 酸素と水分の共存下、酸化ハフニウムを含有する触媒によってNOxを分解することを特徴とするNOx浄化方法。
A NOx purification method comprising decomposing NOx with a catalyst containing hafnium oxide in the presence of oxygen and moisture.
JP2006049810A 2006-02-27 2006-02-27 CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD Pending JP2007222843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049810A JP2007222843A (en) 2006-02-27 2006-02-27 CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049810A JP2007222843A (en) 2006-02-27 2006-02-27 CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD

Publications (1)

Publication Number Publication Date
JP2007222843A true JP2007222843A (en) 2007-09-06

Family

ID=38545140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049810A Pending JP2007222843A (en) 2006-02-27 2006-02-27 CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD

Country Status (1)

Country Link
JP (1) JP2007222843A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118050A (en) * 1990-09-07 1992-04-20 Nippon Shokubai Co Ltd Catalyst for decomposing nox
JPH04210241A (en) * 1990-12-04 1992-07-31 Toyota Motor Corp Catalyst for cleaning exhaust gas
JPH05245370A (en) * 1992-03-09 1993-09-24 Osaka Gas Co Ltd Agent and method for removing nitrogen oxides
JPH08224445A (en) * 1994-12-20 1996-09-03 Hitachi Ltd Catalyst-containing heat shielding member and gas turbine using the same
JPH09215921A (en) * 1996-02-09 1997-08-19 Isuzu Ceramics Kenkyusho:Kk Nox decomposition catalyst
JP2002159860A (en) * 2000-11-27 2002-06-04 Koji Takamura Exhaust gas cleaning catalyst and method for producing the same
WO2004096436A1 (en) * 2003-05-02 2004-11-11 National Institute Of Advanced Industrial Science And Technology Catalyst material comprising transition metal oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118050A (en) * 1990-09-07 1992-04-20 Nippon Shokubai Co Ltd Catalyst for decomposing nox
JPH04210241A (en) * 1990-12-04 1992-07-31 Toyota Motor Corp Catalyst for cleaning exhaust gas
JPH05245370A (en) * 1992-03-09 1993-09-24 Osaka Gas Co Ltd Agent and method for removing nitrogen oxides
JPH08224445A (en) * 1994-12-20 1996-09-03 Hitachi Ltd Catalyst-containing heat shielding member and gas turbine using the same
JPH09215921A (en) * 1996-02-09 1997-08-19 Isuzu Ceramics Kenkyusho:Kk Nox decomposition catalyst
JP2002159860A (en) * 2000-11-27 2002-06-04 Koji Takamura Exhaust gas cleaning catalyst and method for producing the same
WO2004096436A1 (en) * 2003-05-02 2004-11-11 National Institute Of Advanced Industrial Science And Technology Catalyst material comprising transition metal oxide

Similar Documents

Publication Publication Date Title
JP3741303B2 (en) Exhaust gas purification catalyst
JP2010184238A (en) Method of removing nitrogen oxides in exhaust gas
WO2013111457A1 (en) Alumina material containing barium sulfate and exhaust gas purifying catalyst using same
JP2004512162A (en) Catalyst for eliminating CO, VOC and halogenated organic emissions
JP5754691B2 (en) Exhaust gas purification three-way catalyst
KR20140011312A (en) Denitration catalyst composition and method of denitration using same
JP5865110B2 (en) Methane oxidation catalyst and production method thereof
JP2008018418A (en) Catalyst for cleaning exhaust gas
US20090011932A1 (en) Exhaust Gas-Purifying Catalyst and Method of Manufacturing the Same
EP2954950B1 (en) Catalyst for purifying nox occlusion reduction-type exhaust gas and exhaust gas purification method using said catalyst
JP2007090331A (en) Catalyst for oxidizing and removing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas
JP2011224428A (en) Porous catalyst, and method of producing the same
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
JP6401740B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2010125373A (en) Silver catalyst for oxidation
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP5112966B2 (en) Lean burn exhaust gas purification catalyst
JP4656361B2 (en) Diesel exhaust gas purification device and exhaust gas purification method
JP2007330879A (en) Catalyst for cleaning exhaust gas
JP2007222843A (en) CATALYST FOR NOx PURIFICATION, AND NOx PURIFICATION METHOD
JP2005081250A (en) Exhaust emission control device
JP2016043310A (en) Nitrogen oxide occlusion material and catalyst for exhaust gas purification
JP5036300B2 (en) Automobile exhaust NOx purification catalyst and exhaust NOx purification method
JP2008086987A (en) Method and apparatus for oxidation and reduction of gas and vapor by catalyst of crystalline compound of heavy metal and rare earth element
JP2006043637A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703