JPH04208553A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04208553A
JPH04208553A JP40015290A JP40015290A JPH04208553A JP H04208553 A JPH04208553 A JP H04208553A JP 40015290 A JP40015290 A JP 40015290A JP 40015290 A JP40015290 A JP 40015290A JP H04208553 A JPH04208553 A JP H04208553A
Authority
JP
Japan
Prior art keywords
film
conductive film
polysilicon
contact hole
over
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40015290A
Other languages
Japanese (ja)
Other versions
JP3052375B2 (en
Inventor
Hiroyuki Hamada
濱田 弘幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2400152A priority Critical patent/JP3052375B2/en
Publication of JPH04208553A publication Critical patent/JPH04208553A/en
Application granted granted Critical
Publication of JP3052375B2 publication Critical patent/JP3052375B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the occurrence of a leak current by accumulating the first conductive film, which is thinner than the radius of the contact hole opened in an interlayer insulating film, and accumulating as second film all over the surface, and etching back it, and then accumulating the third conductive film all over the surface, and patterning the third conductive film and first conductive film at the same time. CONSTITUTION:A gate oxide film 2, a gate electrode 3, and an n-type diffusion layer 4 are made on a p-type substrate 1, and next an interlayer insulating film 5 is accumulated, and a contact hole 6 is opened. By accumulating nondoped polysilicon 8 all over the surface, after accumulating polysilicon doped with phosphorus all over the surface, and etching back it, the polysilicon 7 is exposed, whereby it gets in the condition that the polysilicon is filled up in the contact hole 6. Next, by thermal diffusion, the polysilicon 8 is doped with phosphorus, and aluminum 9 is accumulated all over the surface, and then the aluminum 9 and the polysilicon 7 are patterned to form wiring consisting of aluminum 9. Hereby, the diffusion layer 4 of the contact hole 16 is etched, where the element can be gotten at high yield rate without occurrence of leak currents.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は半導体装置の製造方法に
関し、特に配線用のコンタクトの製造方法に関するもの
である。 [0002] 【従来の技術】半導体集積回路などにおいては層間絶縁
膜にコンタクトを開口したのち、直接アルミニウム配線
を形成してきた。 [0003]高集積化につれてコンタクトサイズの微細
化や断面構造の複雑化により、コンタクトのアスペクト
比が大きくなっている。コンタクト開口側面でのアルミ
ニウム配線の段切れが問題となってきた。 [0004]その対策としてコンタクトにポリシリコン
を埋め込んでコンタクト周辺を平坦化し、配線の段切れ
を防止するようになった。 [0005]その一例について、図12〜図14を参照
して説明する。 [0006]はじめに図12に示すように、P型基板l
に熱酸化によるゲート酸化膜2を形成し、ポリシリコン
からなるゲート電極3を形成する。 [0007]つぎにゲート電極3をマスクとしてイオン
注入することによりソース−ドレインとなるN型拡散層
4を形成し、層間絶縁膜5を堆積して直径IILmのコ
ンタクトを開口する。 [0008]つぎにCVD法によりコンタクトの半径よ
り厚い1μmの燐ドープポリシリコン7を堆積する。 [0009]つぎに図13に示すように、塩素ガスプラ
ズマを用いたRIE法により燐ドープポリシリコン7を
エッチバックすることにより、層間絶縁膜5の表面を露
出しコンタクトにポリシリコン7を残す。このときのエ
ツチング速度は約1000八/分であるが、層間絶縁膜
の表面に燐ドープポリシリコン7が残ると配線ショート
の原因になるので、膜厚やエツチング速度のばらつきを
考慮して20%程度のオーバーエツチングが必要になる
。 [00101つぎに全面にアルミニウム9を堆積する。 [00111つぎに図14に示すように、アルミニウム
9をパターニングすることにより素子部が完成する。 [0012]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a contact for wiring. [0002] In semiconductor integrated circuits and the like, aluminum wiring has been formed directly after contacts are opened in an interlayer insulating film. [0003] As integration becomes higher, the aspect ratio of contacts becomes larger due to smaller contact sizes and more complex cross-sectional structures. Breaking of the aluminum wiring on the side of the contact opening has become a problem. [0004] As a countermeasure to this problem, polysilicon is buried in the contact to flatten the area around the contact to prevent the wiring from breaking. [0005] An example thereof will be described with reference to FIGS. 12 to 14. [0006] First, as shown in FIG.
A gate oxide film 2 is formed by thermal oxidation, and a gate electrode 3 made of polysilicon is formed. [0007]Next, by performing ion implantation using the gate electrode 3 as a mask, an N-type diffusion layer 4 serving as a source-drain is formed, an interlayer insulating film 5 is deposited, and a contact having a diameter IILm is opened. [0008] Next, phosphorus-doped polysilicon 7 is deposited by CVD to a thickness of 1 μm, which is thicker than the radius of the contact. [0009] Next, as shown in FIG. 13, the phosphorus-doped polysilicon 7 is etched back by RIE using chlorine gas plasma to expose the surface of the interlayer insulating film 5 and leave the polysilicon 7 in the contact. The etching rate at this time is approximately 1008/min, but if phosphorus-doped polysilicon 7 remains on the surface of the interlayer insulating film, it will cause a wiring short, so taking into account variations in film thickness and etching rate, the etching rate should be reduced by 20%. Some degree of over-etching is required. [00101 Next, aluminum 9 is deposited on the entire surface. [00111 Next, as shown in FIG. 14, the element portion is completed by patterning the aluminum 9. [0012]

【発明が解決しようとする課題】従来技術においてエッ
チバック制御により、製品歩留りが大きく左右されてい
た。 [0013]燐ドープポリシリコンをエッチバックする
工程で、層間絶縁膜の一部が露出し始めると、燐ドープ
ポリシリコンの表面積が急速に減少してエツチング速度
が数倍に加速するというローディング効果が生じる。 [0014]ローデイング効果によりコンタクト開口の
燐ドープポリシリコンが過剰にエツチングされる。 [0015]最悪の場合は図15に示すように、燐ドー
プポリシリコン7が薄くなったところからコンタクト開
口の一部が露出してエツチング損傷領域14が形成され
る。エツチングが基板にまで達すると、プラズマ照射に
よる表面損傷のためリーク電流が増加して製品不良にな
る。 [0016]このようにエツチング不足によるポリシリ
コン残りと、エツチング過剰による基板表面損傷との制
約から、エッチバックの微妙な制御性によって歩留りが
左右されるという問題があった。 [0017]
[Problems to be Solved by the Invention] In the prior art, the product yield was greatly affected by etchback control. [0013] In the process of etching back phosphorus-doped polysilicon, when a part of the interlayer insulating film begins to be exposed, a loading effect occurs in which the surface area of the phosphorus-doped polysilicon rapidly decreases and the etching rate accelerates several times. arise. [0014] The loading effect causes excessive etching of the phosphorus-doped polysilicon in the contact opening. [0015] In the worst case, as shown in FIG. 15, a part of the contact opening is exposed from where the phosphorus-doped polysilicon 7 becomes thin, forming an etching damage region 14. When etching reaches the substrate, leakage current increases due to surface damage caused by plasma irradiation, resulting in product defects. [0016] Due to the limitations of polysilicon residue due to insufficient etching and damage to the substrate surface due to excessive etching, there has been a problem in that the yield is influenced by delicate controllability of etchback. [0017]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に絶縁膜を形成する工程と、前
記絶縁膜の所定領域にコンタクトを開口する工程と、全
面に前記コンタクト孔の半径より薄い第1導電膜を堆積
する工程と、全面に第2の膜を堆積する工程と、前記第
1導電膜のエツチング速度よりも前記第2の膜のエツチ
ング速度の方が大きい条件でエッチバックして前記コン
タクト内に前記第2の膜の少なくとも一部を残し前記絶
縁膜上に前記第1導電膜の少なくとも一部を残す工程と
、全面に第3導電膜を形成する工程と、前記第3導電膜
および前記第1導電膜を同時にパターニングする工程と
を有するものである。 [0018]
[Means for Solving the Problems] A method for manufacturing a semiconductor device according to the present invention includes the steps of forming an insulating film on a semiconductor substrate, opening a contact in a predetermined region of the insulating film, and opening the contact hole in the entire surface. a step of depositing a first conductive film thinner than a radius of , a step of depositing a second film over the entire surface, and an etching rate of the second film is higher than an etching rate of the first conductive film. etching back to leave at least a portion of the second film within the contact and leaving at least a portion of the first conductive film on the insulating film; and forming a third conductive film on the entire surface; and a step of patterning the third conductive film and the first conductive film at the same time. [0018]

【実施例】本発明の第1の実施例について、図1〜図5
を参照して説明する。 [0019]はしめに図1に示すように、P型基板1上
にゲート酸化膜2、ゲート電極3、N型拡散層4を形成
する。 [00201つぎに層間絶縁膜5を堆積し、直径1μm
のコンタクト孔6を開口する。 [00211つぎに図2に示すように、CVD法により
全面に厚さ2000への燐ドープポリシリコン7を堆積
してから、全面に厚さ6000人のノンドープポリシリ
コン8を堆積する。 [0022]つぎに図3に示すように、CBrF3ガス
プラズマを用いてエッチバックすることにより、層間絶
縁膜5上面の燐ドープポリシリコン7を露出し、コンタ
クト孔6内にノンドープポリシリコン8が埋め込まれた
状態になる。 [0023] このときガスの種類と圧力によりノンド
ープポリシリコン8のエツチング速度が燐ドープポリシ
リコン7のエツチング速度よりも速い条件を選ぶことが
できる。上層のノンドープポリシリコン8をオーバーエ
ツチングしても下層の燐ドープポリシリコン7がストッ
パとなって、基板1へのエツチングをくい止めることが
できる。 [0024]また全面に燐ドープポリシリコン7が存在
しているので、ローディング効果による過剰エツチング
の恐れはない。 [0025]つぎに図4に示すように、熱拡散によりノ
ンドープポリシリコン8に燐をドープし、全面にアルミ
ニウム9を堆積する。 [0026]つぎに図5に示すように、フォトレジスト
(図示せず)をマスクとしてアルミニウム9および燐ド
ープポリシリコン7をパターニングすることにより、ア
ルミニウム9からなる配線を形成して素子部が完成する
。 [00271本実施例では下層の燐ドープポリシリコン
7が上層のノンドープポリシリコン8のエツチングスト
ッパとして働くので、エツチング時間が多少長くなって
も、コンタクト孔6の拡散層4がエツチングされること
によるリーク電流の発生もなく、高歩留りで素子を製造
することができるようになった。 [0028)つぎに本発明の第2の実施例について、図
6〜図11を参照して説明する。 [0029]は゛じめに図6に示すように、P型基板1
にNウェル10、フィールド酸化膜11、ゲート酸化膜
2、ゲート電極3、N型拡散層4、P型拡散層12、層
間絶縁膜5、直径1μmのコンタクト孔6を形成する。 [00301つぎに図7に示すように、厚さ200OA
のシリサイド15を堆積してから、厚さ6000人のノ
ンドープポリシリコン8を堆積する。 [00311つぎに図8に示すように、ノンドープポリ
シリコン8をエッチバックして、層間絶縁膜5表面のシ
リサイド15を露出して、コンタクト孔6内にノンドー
プポリシリコン8を残す。 [0032]つぎにレジスト13でN型拡散層4上のコ
ンタクト孔6をマスクしてから、ノンドープポリシリコ
ン8に選択的に硼素をイオン注入する。 [0033]つぎに図9に示すように、いったんレジス
トを除去したのち新たにパターニングしたレジスト13
でP型拡散層12上のコンタクト孔6をマスクしてから
、ノンドープポリシリコン8に選択的に燐をイオン注入
する。 [0034]つぎに図10に示すように、レジスト13
を除去したのち、全面にアルミニウム9を堆積する。 [00351つぎに図11に示すように、アルミニウム
9およびシリサイド15をボタ−ユングして配線を形成
することによりCMO8−ICの素子部が完成する。 [00361本実施例では第1導電膜として燐拡散に対
してマスク機能があるシリサイドを用いることにより、
CJiO5−ICに対しても第2導電膜8として燐ドー
プポリシリコンを用いることができる。燐ドープポリシ
リコン8からP型拡散層12へ燐が拡散することなく、
良好なオーミックコンタクトを形成することができる。 [0037]コンタクト孔がソース−ドレイン拡散層4
.12からはみ出したときのリーク対策としては、第1
導電膜15堆積のあとイオン注入して対処することがで
きる。層間絶縁膜5に形成されたコンタクト孔6に直接
イオン注入するときに発生するチャージアップが第1導
電膜15で緩和され、コンタクト孔周辺の放電破壊を防
止する効果がある。 [0038]またサブミクロンサイズのコンタクト孔6
に対してアルミニウム9を厚く堆積すると、オーバーハ
ングとなってコンタクト孔6内部に空洞が生じる。本発
明の製造方法においては第2導電膜8の代りにSOG膜
を用いてリフロー平坦化することにより空洞の発生を防
ぐことができる。この場合はソース−ドレイン拡散層4
.12から第1の導電膜15を通してアルミニウム配線
9に接続されることになる。 [0039]
[Example] Regarding the first example of the present invention, FIGS. 1 to 5
Explain with reference to. [0019] Finally, as shown in FIG. 1, a gate oxide film 2, a gate electrode 3, and an N-type diffusion layer 4 are formed on a P-type substrate 1. [00201 Next, an interlayer insulating film 5 is deposited with a diameter of 1 μm.
The contact hole 6 is opened. [00211] Next, as shown in FIG. 2, phosphorus-doped polysilicon 7 is deposited on the entire surface to a thickness of 2000 nm, and then undoped polysilicon 8 is deposited on the entire surface to a thickness of 6000 nm. [0022] Next, as shown in FIG. 3, by etching back using CBrF3 gas plasma, the phosphorus-doped polysilicon 7 on the upper surface of the interlayer insulating film 5 is exposed, and the contact hole 6 is filled with non-doped polysilicon 8. It will be in a depressed state. [0023] At this time, conditions can be selected in which the etching rate of non-doped polysilicon 8 is faster than the etching rate of phosphorus-doped polysilicon 7, depending on the type and pressure of the gas. Even if the upper layer non-doped polysilicon 8 is over-etched, the lower layer phosphorus-doped polysilicon 7 acts as a stopper and can prevent the substrate 1 from being etched. [0024] Furthermore, since the phosphorus-doped polysilicon 7 is present on the entire surface, there is no fear of excessive etching due to the loading effect. [0025] Next, as shown in FIG. 4, the non-doped polysilicon 8 is doped with phosphorus by thermal diffusion, and aluminum 9 is deposited on the entire surface. [0026] Next, as shown in FIG. 5, aluminum 9 and phosphorus-doped polysilicon 7 are patterned using a photoresist (not shown) as a mask to form wiring made of aluminum 9 and complete the element section. . [00271 In this embodiment, the lower layer phosphorus-doped polysilicon 7 acts as an etching stopper for the upper layer non-doped polysilicon 8, so even if the etching time is somewhat longer, leakage due to etching of the diffusion layer 4 of the contact hole 6 is prevented. It has become possible to manufacture devices with high yield without the generation of current. [0028] Next, a second embodiment of the present invention will be described with reference to FIGS. 6 to 11. [0029] First, as shown in FIG.
An N-well 10, a field oxide film 11, a gate oxide film 2, a gate electrode 3, an N-type diffusion layer 4, a P-type diffusion layer 12, an interlayer insulating film 5, and a contact hole 6 with a diameter of 1 μm are formed. [00301 Next, as shown in FIG.
silicide 15 is deposited, and then non-doped polysilicon 8 is deposited to a thickness of 6,000 yen. [00311] Next, as shown in FIG. 8, the non-doped polysilicon 8 is etched back to expose the silicide 15 on the surface of the interlayer insulating film 5, leaving the non-doped polysilicon 8 in the contact hole 6. [0032] Next, after masking the contact hole 6 on the N-type diffusion layer 4 with a resist 13, boron ions are selectively implanted into the non-doped polysilicon 8. [0033] Next, as shown in FIG. 9, the resist 13 is newly patterned after the resist is removed.
After masking the contact hole 6 on the P-type diffusion layer 12, phosphorus ions are selectively implanted into the non-doped polysilicon 8. [0034] Next, as shown in FIG.
After removing, aluminum 9 is deposited on the entire surface. [00351] Next, as shown in FIG. 11, the aluminum 9 and silicide 15 are buttoned to form wiring, thereby completing the element section of the CMO8-IC. [00361 In this example, by using silicide, which has a masking function against phosphorus diffusion, as the first conductive film,
Phosphorus-doped polysilicon can also be used as the second conductive film 8 for the CJiO5-IC. Without phosphorus diffusing from the phosphorus-doped polysilicon 8 to the P-type diffusion layer 12,
A good ohmic contact can be formed. [0037] The contact hole is in the source-drain diffusion layer 4
.. As a measure against leakage when it exceeds 12,
This can be dealt with by ion implantation after the conductive film 15 is deposited. The charge-up that occurs when ions are directly implanted into the contact hole 6 formed in the interlayer insulating film 5 is alleviated by the first conductive film 15, which has the effect of preventing discharge breakdown around the contact hole. [0038] Also, submicron size contact hole 6
If the aluminum 9 is deposited thickly, an overhang will occur and a cavity will be created inside the contact hole 6. In the manufacturing method of the present invention, the generation of cavities can be prevented by using an SOG film instead of the second conductive film 8 and performing reflow flattening. In this case, the source-drain diffusion layer 4
.. 12 to the aluminum wiring 9 through the first conductive film 15. [0039]

【発明の効果】層間絶縁膜に開口したコンタク1へ孔の
半径よりも薄い第1導電膜を堆積し、全面に厚い第2の
膜を堆積し、第1導電膜のエツチング速度よりも第2の
膜のエツチング速度の方が大きい条件でエッチバックし
てコンタクト内に第2の膜の少なくとも一部を残し絶縁
膜上に第1導電膜の少なくとも一部を残して、全面に第
3導電膜を堆積し、第3導電膜および第1導電膜を同時
にパターニングするものである。 [00401そのためエッチバック時間が最適値よりも
長くなっても第1導電膜がエツチングストッパとなる。 基板へのエツチング損傷によるリーク電流の発生を防止
し、高歩留りで素子の製造ができるという効果がある。
Effects of the Invention: A first conductive film thinner than the radius of the hole is deposited on the contact 1 opened in the interlayer insulating film, a second thick film is deposited on the entire surface, and the second conductive film is etched at a rate lower than the etching rate of the first conductive film. Etch back under conditions where the etching rate of the film is higher than that of the first conductive film, leaving at least a portion of the second film within the contact, leaving at least a portion of the first conductive film on the insulating film, and forming a third conductive film over the entire surface. The third conductive film and the first conductive film are simultaneously patterned. [00401 Therefore, even if the etchback time becomes longer than the optimum value, the first conductive film serves as an etching stopper. This has the effect of preventing the occurrence of leakage current due to etching damage to the substrate, and making it possible to manufacture devices at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例を工程順に示す断面図で
ある。
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention in order of steps.

【図2】本発明の第1の実施例を工程順に示す断面図で
ある。
FIG. 2 is a cross-sectional view showing the first embodiment of the present invention in order of steps.

【図3】本発明の第1の実施例を工程順に示す断面図で
ある。
FIG. 3 is a cross-sectional view showing the first embodiment of the present invention in order of steps.

Claims (1)

【特許請求の範囲】 【請求項1】半導体基板上に絶縁膜を形成する工程と、
前記絶縁膜の所定領域にコンタントを開口する工程と、
全面に前記コンタクト孔の半径より薄い第1導電膜を堆
積する工程と、全面に第2の膜を堆積する工程と、前記
第1導電膜のエッチング速度よりも前記第2の膜のエッ
チング速度の方が大きい条件でエッチバックして前記コ
ンタクト内に前記第2の膜の少なくとも一部を残し前記
絶縁膜上に前記第1導電膜の少なくとも一部を残す工程
と、全面に第3導電膜を堆積する工程と、前記第3導電
膜および前記第1導電膜を同時にパターニングする工程
とを有することを特徴とする半導体装置の製造方法。【
請求項2】第1導電膜および第2の膜はポリシリコンか
らなり、それぞれの燐ドープ濃度が異なる請求項1記載
の半導体装置の製造方法。 【請求項3】第2の膜が導電膜である請求項1記載の半
導体装置の製造方法。 【請求項4】第2の膜が絶縁膜である請求項1記載の半
導体装置の製造方法。
[Scope of Claims] [Claim 1] A step of forming an insulating film on a semiconductor substrate;
opening a contact in a predetermined region of the insulating film;
a step of depositing a first conductive film thinner than the radius of the contact hole over the entire surface; a step of depositing a second film over the entire surface; and an etching rate of the second film that is lower than the etching rate of the first conductive film. a third conductive film on the entire surface; A method of manufacturing a semiconductor device, comprising a step of depositing the third conductive film and a step of patterning the first conductive film at the same time. [
2. The method of manufacturing a semiconductor device according to claim 1, wherein the first conductive film and the second film are made of polysilicon and have different phosphorus doping concentrations. 3. The method of manufacturing a semiconductor device according to claim 1, wherein the second film is a conductive film. 4. The method of manufacturing a semiconductor device according to claim 1, wherein the second film is an insulating film.
JP2400152A 1990-12-03 1990-12-03 Method for manufacturing semiconductor device Expired - Fee Related JP3052375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2400152A JP3052375B2 (en) 1990-12-03 1990-12-03 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2400152A JP3052375B2 (en) 1990-12-03 1990-12-03 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04208553A true JPH04208553A (en) 1992-07-30
JP3052375B2 JP3052375B2 (en) 2000-06-12

Family

ID=18510069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2400152A Expired - Fee Related JP3052375B2 (en) 1990-12-03 1990-12-03 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3052375B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001642A (en) * 2001-06-25 2003-01-08 주식회사 하이닉스반도체 Method for forming the contact plug of semiconductor device
KR100467018B1 (en) * 2002-06-27 2005-01-24 삼성전자주식회사 Method of forming semiconductor device having contact holes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030001642A (en) * 2001-06-25 2003-01-08 주식회사 하이닉스반도체 Method for forming the contact plug of semiconductor device
KR100467018B1 (en) * 2002-06-27 2005-01-24 삼성전자주식회사 Method of forming semiconductor device having contact holes

Also Published As

Publication number Publication date
JP3052375B2 (en) 2000-06-12

Similar Documents

Publication Publication Date Title
KR950011983B1 (en) Fabricating method of semiconductor device
US6770555B2 (en) Process for fabricating semiconductor integrated circuit device having polycide line and impurity region respectively exposed to contact holes different in depth
CN110211921B (en) Method for manufacturing contact hole
JPH02192723A (en) Manufacture of semiconductor device
US11664227B2 (en) Semiconductor structure and fabrication method thereof
US4397076A (en) Method for making low leakage polycrystalline silicon-to-substrate contacts
JPH04208553A (en) Manufacture of semiconductor device
KR20010004978A (en) Mothod of manufacturing a CMOS transistor
JPH06333944A (en) Semiconductor device
KR100480894B1 (en) A method for manufacturing of merged memory logic in semiconductor device
JPH06216325A (en) Direct contact formasion inside high density mos/cmos process
KR100195234B1 (en) Method of fabricating semiconductor device
KR100268943B1 (en) Method for fabricating semiconductor device
KR100672683B1 (en) Method for manufacturing a bipolar transistor
KR100213203B1 (en) Semiconductor device with contact hole and process for fabricating the same
KR100215871B1 (en) Method for fabricating semiconductor device
KR950006342B1 (en) Metal wire structure and manufacturing method thereof
KR100248510B1 (en) Method for manufacturing a semiconductor device
KR100342823B1 (en) Method of manufacturing a flash memory device
KR100292052B1 (en) Method for manufacturing semiconductor device
KR100209590B1 (en) Semiconductor device and manufacture thereof
JPH04348039A (en) Semiconductor device and manufacture thereof
KR20010011002A (en) Forming method for transistor of semiconductor device
KR20020049934A (en) Method of manufacturing a transistor in a semiconductor device
KR20000051805A (en) Manufacturing method for semiconductor memory

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000307

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080407

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees