JPH04193908A - Production of high strength reinforcing bar excellent in yield elongation - Google Patents

Production of high strength reinforcing bar excellent in yield elongation

Info

Publication number
JPH04193908A
JPH04193908A JP2322691A JP32269190A JPH04193908A JP H04193908 A JPH04193908 A JP H04193908A JP 2322691 A JP2322691 A JP 2322691A JP 32269190 A JP32269190 A JP 32269190A JP H04193908 A JPH04193908 A JP H04193908A
Authority
JP
Japan
Prior art keywords
weight
yield elongation
rolling
elongation
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2322691A
Other languages
Japanese (ja)
Other versions
JP3031485B2 (en
Inventor
Mitsusane Kawasaki
河崎 充実
Toshiyuki Hoshino
俊幸 星野
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32269190A priority Critical patent/JP3031485B2/en
Priority to CA002056348A priority patent/CA2056348C/en
Publication of JPH04193908A publication Critical patent/JPH04193908A/en
Application granted granted Critical
Publication of JP3031485B2 publication Critical patent/JP3031485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To improve yield elongation by increasing ferritic structure by subjecting a stock of low C steel with a specific composition to rolling at a temp. in the vicinity of the temp. right above the Ar3 point and to air cooling. CONSTITUTION:A stock of a steel having a composition consisting of, by weight, 0.01-0.09% C, 0.04-1.00% Si, 0.10-0.80% Mn, 0.010-0.100% Al, <=0.0100% N, one or more kinds among 0.005-0.300% Ti, 0.005-0.300% Nb, and 0.005-0.400% V, and the balance Fe with inevitable impurities is heated up to >=950 deg.C. This stock is subjected to hot rolling where finish rolling is exerted at a temp. right above the Ar3 point at >=10% reduction of area and then to air cooling, or, after hot rolling, forced cooling at a rate of >=5 deg.C/s is performed and cooling is stopped at >=400 deg.C. The volume percentage of the ferritic structure can be regulated to >=80% by this treatment, and a high strength reinforcing bar increased in yield elongation can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は下降状点が40kgf/mrr?以上の高強度
を有し降伏伸びに優れた鉄筋コンクリート用異形棒鋼の
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention has a descending point of 40 kgf/mrr? The present invention relates to a method for manufacturing a deformed steel bar for reinforced concrete that has high strength and excellent yield elongation.

[従来の技術] 近年、建築物は高層化、長大化する傾向にあり、また、
鉄筋コンクリート造が指向されている。このため、それ
に用いる鉄筋も高強度化、高品質化が要求されるように
なり、高強度化にともない安全性の観点から降伏伸びが
大きいことが要求されている。
[Conventional technology] In recent years, buildings have tended to become taller and longer.
Reinforced concrete construction is preferred. For this reason, the reinforcing bars used therein are required to have higher strength and higher quality, and with higher strength, higher yield elongation is required from the viewpoint of safety.

一般に高降伏伸びを有するには、特公昭63−6449
4号公報に示されるようにオーステナイト未再結晶域の
圧延を十分行い、微細フェライト−゛パーライト組織を
得る方法や特開昭61−124524号公報のように圧
延で得たフェライト−ベイナイト組織をさらに焼き戻し
処理下る方法がとられている。
In general, to have high yield elongation,
As shown in Japanese Patent Publication No. 4, the austenite non-recrystallized region is sufficiently rolled to obtain a fine ferrite-pearlite structure, and as in JP-A-61-124524, the ferrite-bainite structure obtained by rolling is further improved. A method of tempering is used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

特公昭63−64494号公報ではオーステナイト未再
結晶域での圧延を十分行い、中間、仕上圧延を875℃
以下で実施することを特徴としているが、875℃以下
がA r 3変態点以下、つまり、オーストナイト−フ
ェライトの二相域の範囲である場合、処理すると、フェ
ライトが加工され、フェライト粒内での初期可動転位密
度が増加し、降伏伸びは小さくなる。
In Japanese Patent Publication No. 63-64494, rolling is carried out sufficiently in the austenite non-recrystallized region, and intermediate and finishing rolling is carried out at 875°C.
The method is characterized in that it is carried out below, but when the temperature is below 875°C, which is below the A r 3 transformation point, that is, in the austonite-ferrite two-phase region, the ferrite is processed and the inside of the ferrite grains are processed. The initial mobile dislocation density increases and the yield elongation decreases.

また、特開昭61−124524号公報では圧延後さら
に焼き戻し処理により降伏点伸びを増加させており、生
産性が低くコスト高となる。
Furthermore, in JP-A-61-124524, the elongation at yield point is increased by further tempering after rolling, resulting in low productivity and high cost.

本発明は上記問題点に鑑み、降伏点伸びの大きい鉄筋コ
ンクリート用異形棒鋼の製造方法を提供することを目的
とする。
In view of the above-mentioned problems, an object of the present invention is to provide a method for manufacturing a deformed steel bar for reinforced concrete with a large elongation at yield point.

本発明者らは、降伏点伸びに及ぼす化学組成、圧延条件
を種々検討した結果、Ar3変態点までは圧延仕上温度
を低(すればする程、降伏伸びは増大し、Ar3変態点
を下回ると、逆に降伏伸びは著しく減少するという知見
を得たことにより本発明を構成した。
The present inventors investigated various chemical compositions and rolling conditions that affect the elongation at yield point, and found that the finishing temperature of rolling was lowered until the Ar3 transformation point (the lower the elongation at yield, the higher the elongation at yield; The present invention was constructed based on the finding that, on the contrary, the yield elongation is significantly reduced.

[課題を解決するための手段] 上記課題を解決するための本発明の技術手段は次の通り
である。すなわち、 C:0.01〜0.09重量% Si:0.04〜1.00重量% Mn : 0.10〜0.80重量% Af2: 0.010〜0.100重量%N・0.01
00重量%以下を含み、 さらに、 Ti:0.005〜0.300重量% N、b:0.005〜0.300重量%V : 0.0
05〜0.400重量%のうち、1種または2種以上含
有し残部Fe及び不可避的不純物からなる鋼素材を95
0℃以上に加熱し、A 、r 3点直上の温度で圧下率
10%以上で仕上圧延する熱間圧延を施したのち空冷し
、フェライト組織の体積率が80%以上を有するように
したことを特徴とする降伏伸びに優れた高強度鉄筋の製
造方法である。また、上記と同じ組成を有する鋼素材を
、950℃以上に加熱し、Ar3点直上の温度で圧下率
10%以上で仕上圧延する熱間圧延を施したのち、5℃
/s以上の強制冷却を施し、400℃以上で冷却を停止
し、フェライト組織の体積率が80%以上を有するよう
にしてもよい。
[Means for Solving the Problems] The technical means of the present invention for solving the above problems are as follows. That is, C: 0.01-0.09% by weight Si: 0.04-1.00% by weight Mn: 0.10-0.80% by weight Af2: 0.010-0.100% by weight N.0. 01
Furthermore, Ti: 0.005 to 0.300 wt% N, b: 0.005 to 0.300 wt% V: 0.0
A steel material containing one or more of 05 to 0.400% by weight, with the remainder being Fe and unavoidable impurities.
After being heated to 0°C or higher and finish-rolled at a temperature just above 3 points A and r with a reduction rate of 10% or more, it is air cooled so that the volume fraction of the ferrite structure is 80% or more. This is a method for manufacturing high-strength reinforcing bars with excellent yield elongation. In addition, a steel material having the same composition as above is heated to 950°C or higher, finish-rolled at a temperature just above the Ar3 point with a reduction rate of 10% or more, and then 5°C
Forced cooling may be performed at a rate of /s or more, and the cooling may be stopped at a temperature of 400° C. or more, so that the volume fraction of the ferrite structure is 80% or more.

鋼素材が、上記組成にさらに、 Cr : 0.05〜1.20重量% Mo : 0.05〜1.00重量% Cu:0105〜1.50重量% Ni:0.05〜1.50重量% B :0.0005〜0.0050重量%のうち、1種
又は2種以上を含有し、残部Fe及び不可避的不純物か
らなる鋼素材であって、950℃以上に加熱し、Ar3
点直上の温度で圧下率10%以上で仕上圧延する熱間圧
延を施したのち空冷し、フェライト組織の体積率が80
%以上を有するようにするか、又は950℃以上に加熱
し、Ar3点直上の温度で圧下率10%以上で仕上圧延
する熱間圧延を施したのち、5℃/s以上の強制冷却を
施し、400℃以上で冷却を停止し、フェライト組織の
体積率が80%以上を有するようにしたことを特徴とす
る降伏伸びに優れた高強度鉄筋の製造方法である。
The steel material further has the above composition: Cr: 0.05-1.20% by weight Mo: 0.05-1.00% by weight Cu: 0105-1.50% by weight Ni: 0.05-1.50% by weight %B: A steel material containing one or more of 0.0005 to 0.0050% by weight, with the balance consisting of Fe and unavoidable impurities, heated to 950°C or higher, Ar3
After finishing hot rolling at a temperature just above the point and with a reduction rate of 10% or more, air cooling is performed, and the volume fraction of the ferrite structure is 80.
% or more, or after hot rolling by heating to 950°C or more and finish rolling at a temperature just above the Ar3 point with a reduction rate of 10% or more, forced cooling at 5°C/s or more. , a method for producing high-strength reinforcing bars with excellent yield elongation, characterized in that cooling is stopped at 400° C. or higher, and the volume fraction of the ferrite structure is 80% or higher.

降伏伸びとは、第1図に示すような応力歪曲線において
、弾性領域εaから塑性領域に変化するりューダース帯
の伝播部分εbをいう。
The yield elongation refers to the propagation portion εb of the Luders band that changes from the elastic region εa to the plastic region in a stress strain curve as shown in FIG.

[作用1 鋼材を引張った場合にリューダース帯の形成される前の
最高応力が上降伏点であり、リューダース帯の伝播に必
要な応力が下降伏点である。
[Action 1] When a steel material is stretched, the highest stress before the Lüders band is formed is the upper yield point, and the stress required for the propagation of the Lüders band is the lower yield point.

リューダース帯が形成される条件とは隣接結晶にすべり
を伝えるよりは、同一結晶内に一様なすべりを誘起した
方が容易な場合である。
The conditions under which Lüders bands are formed are those where it is easier to induce uniform slip within the same crystal than to transmit slip to adjacent crystals.

結晶粒が小さい方が、リューダース帯つまり同一結晶内
にすべりを誘起しやすい。その時の応力は一般に下記の
ように示される。
Smaller crystal grains are more likely to induce Lüders bands, or slip within the same crystal. The stress at that time is generally expressed as follows.

+ k yd ”2       ・・・(1)σ:上
降伏点、 C1:単結晶の降伏強さ (結晶粒の大きさによらない) △C1:変形速度を10倍にしたときの変形応力の増大 N:変形結晶粒数 d:結晶粒直径 ky:結晶粒の大きさによる係数 上記(1)式により、結晶粒が粗大な程Nd3は1に近
似し、そのとき、リューダース帯は形成されず、降伏点
における応力降下は0に等しい。
+ k yd "2... (1) σ: Upper yield point, C1: Yield strength of single crystal (irrespective of crystal grain size) △C1: Deformation stress when the deformation rate is increased by 10 times Increase N: Number of deformed grains d: Grain diameter ky: Coefficient depending on grain size According to equation (1) above, the coarser the crystal grains, the closer Nd3 approaches 1, and at that time, Lüders bands are formed. First, the stress drop at the yield point is equal to zero.

つまり、 C=σi+kyd          ・・・(2)と
なり、下降伏点応力を示す値となる。
In other words, C=σi+kyd (2), which is a value indicating the lower yield point stress.

また、同一結晶粒径でも加工され、初期可動転位密度が
高い場合、C,Nなどにトラップされている転位が少な
いので、明瞭な降伏点が出現しにくい。同様にベイナイ
トパーライト組織の方が、フェライト組織より、降伏点
が出現しにくい。
Further, when the same crystal grain size is processed and the initial mobile dislocation density is high, there are few dislocations trapped by C, N, etc., so a clear yield point is difficult to appear. Similarly, a yield point is less likely to appear in a bainitic pearlite structure than in a ferrite structure.

以上の観点より降伏伸びの大きな鋼材を製造するには、
下記条件を満足させなければならないことがわかる。
From the above points of view, in order to manufacture steel materials with large yield elongation,
It can be seen that the following conditions must be satisfied.

(1)結晶粒径は小さければ小さいほどよい。(1) The smaller the crystal grain size, the better.

(2)無加工な結晶であること。(2) It must be an unprocessed crystal.

(3)フェライト組織を多く含むこと。(3) Contains a large amount of ferrite structure.

これらを満足させるための成分、圧延条件の理由を下記
に示す。
The reasons for the ingredients and rolling conditions to satisfy these requirements are shown below.

C:フェライト組織を80%以上有するようにするため
、0.09重量%Cを上限とする。また、0.01重量
%より少ないと強度が確保できないのでこれを下限とす
る。
C: In order to have a ferrite structure of 80% or more, the upper limit is 0.09% by weight C. Further, if it is less than 0.01% by weight, strength cannot be ensured, so this is set as the lower limit.

Si:Siはフェライト相安定化元素であり、かつ固溶
硬化としての作用をもつ。1.00重量%を越えると靭
性に悪影響を及ぼす。また、製鋼時脱酸の役目を果たす
ため、0.04重量%以上必要である。
Si: Si is a ferrite phase stabilizing element and has a solid solution hardening effect. If it exceeds 1.00% by weight, toughness will be adversely affected. Further, in order to fulfill the role of deoxidizing during steel manufacturing, 0.04% by weight or more is required.

Mn:固溶強化元素であり、強度上0.10重量%以上
必要である。また、0.80重量%より多く添加すると
変態強化であるベイナイトが生成し、フェライト体積率
が80%を下回り、降伏伸びが下がる。
Mn: A solid solution strengthening element, 0.10% by weight or more is required for strength. Furthermore, if more than 0.80% by weight is added, bainite, which is transformation strengthening, is generated, the ferrite volume fraction becomes less than 80%, and the yield elongation decreases.

Al:脱酸剤として0.100重量%以下添加する。Al: Added as a deoxidizing agent in an amount of 0.100% by weight or less.

Ti:フェライト相での析出強化を目的とし、0.00
5重量%以上添加する必要があり、0、300重量%を
越えると粗大なTiNを作り、靭性を阻害する。
Ti: 0.00 for the purpose of precipitation strengthening in the ferrite phase
It is necessary to add 5% by weight or more, and if it exceeds 0.300% by weight, coarse TiN is formed and the toughness is impaired.

Nb:析出強化を目的とし、最!0.005重量%以上
必要とし、0.300重量%を越えても比例的に強度は
増加しない。
Nb: For the purpose of precipitation strengthening, the highest! 0.005% by weight or more is required, and even if it exceeds 0.300% by weight, the strength will not increase proportionally.

V:Tiと同様にフェライト相での析出強化を目的とし
、最低0.005重量%以上必要とし、0.400重量
%を越えると粗大なVNを形成し、延・靭性を阻害する
V: Like Ti, it aims at precipitation strengthening in the ferrite phase, and requires at least 0.005% by weight. If it exceeds 0.400% by weight, coarse VN is formed, which impedes elongation and toughness.

N:TiN、VpJなどの析出物による強度確保を目的
とし、0.0100重量%より多く含有されると、粗大
なTiN、VN又はAffNを析出し、さらにフリー固
溶Nの増加により、延性、靭性が著しく低下する。
N: The purpose is to ensure strength by precipitates such as TiN and VpJ. If the content exceeds 0.0100% by weight, coarse TiN, VN or AffN will precipitate, and the increase in free solid solution N will reduce ductility and Toughness is significantly reduced.

Cr:固溶強化元素であり、靭性を低下されることな(
強度増加ができ、この効力を発揮するため0.05重量
%以上必要で1.20重量%以上添加すると、熱間加工
性が阻害される。
Cr: Solid solution strengthening element that does not reduce toughness (
It is possible to increase strength, and in order to exhibit this effect, 0.05% by weight or more is required, and if 1.20% by weight or more is added, hot workability is inhibited.

Mo二固溶強化による強度増加に有効な元素で1.0重
量%を越えると、靭性が低下し、さらにコストも高くな
る。
Mo2 is an element effective in increasing strength through solid solution strengthening, and if it exceeds 1.0% by weight, the toughness decreases and the cost also increases.

Cu:固溶強化による強度増加に有効な元素で1.5重
量%以上含有すると、熱間圧延中、表面割れが生じる。
Cu: An element effective in increasing strength through solid solution strengthening, and if it is contained in an amount of 1.5% by weight or more, surface cracks will occur during hot rolling.

N1:靭性を改善するのに有効な元素であり、かつCu
と同時に添加することにより、Cu添加時の熱間圧延で
の割れを防止する作用がある。
N1: An element effective in improving toughness, and Cu
Adding Cu at the same time has the effect of preventing cracking during hot rolling when Cu is added.

多量に添加しても上記効果は比較的に望めないので、上
限を1.5重量%とした。
Even if a large amount is added, the above effect cannot be expected, so the upper limit was set at 1.5% by weight.

B:固溶強化及びBNによる析出強化を目的として添加
し、0.005重量%を越えると、γ粒界に偏析する固
溶B又はBNが増加し、フェライト生成成長の妨げとな
る。
B: Added for the purpose of solid solution strengthening and precipitation strengthening by BN, and if it exceeds 0.005% by weight, solid solution B or BN segregated at the γ grain boundaries increases, which hinders ferrite formation and growth.

圧延における加熱温度は少なくともTiC1NbC1V
Cが固溶される温度に加熱する必要があり、950℃以
上とした。
The heating temperature during rolling is at least TiC1NbC1V
It was necessary to heat to a temperature at which C was dissolved as a solid solution, and the temperature was set at 950°C or higher.

仕上圧延はオーステナイト粒を微細にし、かつ、加工フ
ェライトとならないためにAr3直上で10%以上の圧
下率と定めた。また高強度・高靭化の必要がある場合、
圧延後さらに強制冷却を行い、および粗大防止のため5
℃/s以上で冷却する。冷却停止温度が400”Cを下
回ると、組織において、下部ベイナイト島状マルテンサ
イトの混在が著しくなり、延性、靭性を著しく劣化させ
る。
In order to make the austenite grains fine and to prevent processed ferrite from forming in the finish rolling, a reduction rate of 10% or more was set immediately above Ar3. In addition, if high strength and toughness are required,
After rolling, forced cooling is further performed, and 5
Cool at ℃/s or more. When the cooling stop temperature is lower than 400''C, the presence of lower bainite island martensite becomes significant in the structure, significantly deteriorating ductility and toughness.

フェライト組織は大きな降伏伸び値を得るための必須組
織であり、体Pl!率80%以上であると、明瞭な降伏
機及び降伏伸びを有し、建築設計上の要求を確実に満足
する。80%より少ないと、降伏伸びが明確に現われな
い。
The ferrite structure is an essential structure for obtaining a large yield elongation value, and the body Pl! When the ratio is 80% or more, the yield strength and yield elongation are clear, and architectural design requirements are certainly satisfied. If it is less than 80%, yield elongation will not clearly appear.

[実施例] 第1表に実施例及び比較例の化学成分を示す。[Example] Table 1 shows the chemical components of Examples and Comparative Examples.

第1表中■〜[株]が実施例であり、■〜0は比較例で
ある。
In Table 1, ■ to [stock] are examples, and ■ to 0 are comparative examples.

第2表は各々の鋼種における圧延条件を示すもので、加
熱は950℃以上で行い、仕上温度はArg付近、仕上
圧延速度はおよそ8 m / s〜12m/sで実施し
た。断面150x 150mmの正方形ビレットから公
称径25mmの異形棒鋼を製造した。
Table 2 shows the rolling conditions for each steel type; heating was performed at 950° C. or higher, the finishing temperature was around Arg, and the finishing rolling speed was approximately 8 m/s to 12 m/s. A deformed steel bar with a nominal diameter of 25 mm was produced from a square billet with a cross section of 150 x 150 mm.

第3表に機械的特性値と(降伏伸びE、b ) /(弾
性伸びεa)値及びフェライト体積率を示す。引張試験
はJISG3112に従って、評価した。
Table 3 shows the mechanical property values, (yield elongation E,b)/(elastic elongation εa) values, and ferrite volume fraction. The tensile test was evaluated according to JISG3112.

本発明鋼及び本発明圧延条件を実施すればYS≧40 
(SD40クラス以上)kgf/mm’でがつ(降伏伸
び)/(弾性伸び)の大きい(10,0%以上)の異形
棒鋼を得ることが明らかである。
If the steel of the present invention and the rolling conditions of the present invention are implemented, YS≧40
It is clear that a deformed steel bar with a large (yield elongation)/(elastic elongation) (10.0% or more) in kgf/mm' (SD40 class or higher) can be obtained.

C量を0.07重量%レベルにした成分でTic、Nb
CまたはVCの析出を利用した材料では(微細フェライ
ト)+(析出物)の組織となり、第2図に示すように、
降伏伸びの絶対値が12.0〜14.0と大きい特性が
得られ、また、Ar3を下回る温度で仕上圧延を実施し
た場合(■−C)、Ar3直上の場合(■−B)と比べ
、半分以下の降伏伸びとなっている。これはフェライト
体積がたとえ80%以上となっていても加工フエライト
となっているからである。
Ingredients with C content at the level of 0.07% by weight, Tic, Nb
Materials using precipitation of C or VC have a structure of (fine ferrite) + (precipitates), as shown in Figure 2.
A property with a large absolute value of yield elongation of 12.0 to 14.0 was obtained, and when finish rolling was performed at a temperature below Ar3 (■-C), compared to the case just above Ar3 (■-B). , the yield elongation is less than half. This is because even if the ferrite volume is 80% or more, it is processed ferrite.

[発明の効果] 本発明は低C量(0,01〜0.09重量%)で、A 
r 3直上付近間で加工を加えることにより、微細なフ
ェライトが得られ、降伏伸びが大きい材料が製造可能な
ことを見出した。
[Effect of the invention] The present invention has a low C content (0.01 to 0.09% by weight), and A
It has been found that fine ferrite can be obtained and a material with a large yield elongation can be manufactured by applying processing to the area just above r3.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明鋼において仕上温度とεb/εaの関係
を示すグラフ、第2図は降伏伸びを評価するための弾性
領域をεaと降伏伸びεbの定義を示す応力歪曲線図で
ある。
FIG. 1 is a graph showing the relationship between finishing temperature and εb/εa for the steel of the present invention, and FIG. 2 is a stress strain curve diagram showing the definition of the elastic region εa and yield elongation εb for evaluating yield elongation.

Claims (1)

【特許請求の範囲】 1 C:0.01〜0.09重量% Si:0.04〜1.00重量% Mn:0.10〜0.80重量% Al:0.010〜0.100重量% N:0.0100重量%以下を含み、 さらに、 Ti:0.005〜0.300重量% Nb:0.005〜0.300重量% V:0.005〜0.400重量% のうち、1種または2種以上含有し残部Fe及び不可避
的不純物からなる鋼素材を950℃以上に加熱し、Ar
_3点直上の温度で圧下率10%以上で仕上圧延する熱
間圧延を施したのち空冷し、フェライト組織の体積率が
80%以上を有することを特徴とする降伏伸びに優れた
高強度鉄筋の製造方法。 2 C:0.01〜0.09重量% Si:0.04〜1.00重量% Mn:0.10〜0.80重量% Al:0.010〜0.100重量% N:0.0100重量%以下を含み、 さらに、 Ti:0.005〜0.300重量% Nb:0.005〜0.300重量% V:0.005〜0.400重量% のうち、1種または2種以上を含有し残部Fe及び不可
避的不純物からなる鋼素材を950℃以上に加熱し、A
r_3点直上の温度で圧下率10%以上で仕上圧延する
熱間圧延を施したのち、5℃/s以上の強制冷却を施し
、400℃以上で冷却を停止し、フェライト組織の体積
率が80%以上を有することを特徴とする降伏伸びに優
れた高強度鉄筋の製造方法。 3 鋼素材が、 C:0.01〜0.09重量% Si:0.04〜1.00重量% Mn:0.10〜0.80重量% Al:0.010〜0.100重量% N:0.0100重量%以下を含み、 さらに、 Ti:0.005〜0.300重量% Nb:0.005〜0.300重量% V:0.005〜0.400重量% のうち、1種または2種以上、および Cr:0.05〜1.20重量% Mo:0.05〜1.00重量% Cu:0.05〜1.50重量% Ni:0.05〜1.50重量% B:0.0005〜0.0050重量% のうち、1種又は2種以上を含有し、残部Fe及び不可
避的不純物からなる鋼素材である請求項1または2記載
の降伏伸びに優れた高強度鉄筋の製造方法。
[Claims] 1 C: 0.01-0.09% by weight Si: 0.04-1.00% by weight Mn: 0.10-0.80% by weight Al: 0.010-0.100% by weight %N: 0.0100% by weight or less, furthermore, Ti: 0.005-0.300% by weight, Nb: 0.005-0.300% by weight, V: 0.005-0.400% by weight, A steel material containing one or more types and the remainder being Fe and unavoidable impurities is heated to 950°C or higher and Ar
A high-strength reinforcing bar with excellent yield elongation characterized by having a volume fraction of ferrite structure of 80% or more after being hot-rolled at a temperature just above the 3 point and with a reduction rate of 10% or more and then air-cooled. Production method. 2 C: 0.01-0.09% by weight Si: 0.04-1.00% by weight Mn: 0.10-0.80% by weight Al: 0.010-0.100% by weight N: 0.0100 and one or more of Ti: 0.005 to 0.300 weight %, Nb: 0.005 to 0.300 weight %, and V: 0.005 to 0.400 weight %. A steel material containing Fe and unavoidable impurities is heated to 950°C or higher, and A
After finishing hot rolling at a temperature just above the r_3 point with a reduction rate of 10% or more, forced cooling is performed at a rate of 5°C/s or more, cooling is stopped at 400°C or more, and the volume fraction of the ferrite structure is 80%. % or more, a method for producing high-strength reinforcing bars with excellent yield elongation. 3 The steel material is: C: 0.01-0.09% by weight Si: 0.04-1.00% by weight Mn: 0.10-0.80% by weight Al: 0.010-0.100% by weight N : 0.0100% by weight or less, and further one of Ti: 0.005-0.300% by weight, Nb: 0.005-0.300% by weight, V: 0.005-0.400% by weight. or two or more, and Cr: 0.05-1.20 wt% Mo: 0.05-1.00 wt% Cu: 0.05-1.50 wt% Ni: 0.05-1.50 wt% The high strength steel material with excellent yield elongation according to claim 1 or 2, which is a steel material containing one or more of B: 0.0005 to 0.0050% by weight, with the balance being Fe and unavoidable impurities. Method of manufacturing reinforcing bars.
JP32269190A 1990-11-28 1990-11-28 Method for manufacturing high-strength rebar with excellent yield elongation Expired - Fee Related JP3031485B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32269190A JP3031485B2 (en) 1990-11-28 1990-11-28 Method for manufacturing high-strength rebar with excellent yield elongation
CA002056348A CA2056348C (en) 1990-11-28 1991-11-27 Toner for developing electrostatic image and fixing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32269190A JP3031485B2 (en) 1990-11-28 1990-11-28 Method for manufacturing high-strength rebar with excellent yield elongation

Publications (2)

Publication Number Publication Date
JPH04193908A true JPH04193908A (en) 1992-07-14
JP3031485B2 JP3031485B2 (en) 2000-04-10

Family

ID=18146544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32269190A Expired - Fee Related JP3031485B2 (en) 1990-11-28 1990-11-28 Method for manufacturing high-strength rebar with excellent yield elongation

Country Status (2)

Country Link
JP (1) JP3031485B2 (en)
CA (1) CA2056348C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716464A (en) * 1995-06-15 1998-02-10 Sollac Process for producing a strip of hot rolled steel sheet having a very high yield point and the steel sheet obtained
JP2014009367A (en) * 2012-06-28 2014-01-20 Kyoei Steel Ltd Bar steel for reinforcement used for stud welding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102317641B1 (en) * 2019-11-29 2021-10-26 덴버코리아이엔씨(주) Monitor apparatus for grouting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5716464A (en) * 1995-06-15 1998-02-10 Sollac Process for producing a strip of hot rolled steel sheet having a very high yield point and the steel sheet obtained
JP2014009367A (en) * 2012-06-28 2014-01-20 Kyoei Steel Ltd Bar steel for reinforcement used for stud welding

Also Published As

Publication number Publication date
CA2056348C (en) 1999-10-19
JP3031485B2 (en) 2000-04-10
CA2056348A1 (en) 1992-05-30

Similar Documents

Publication Publication Date Title
EP2423344B1 (en) High strength, high toughness steel wire rod, and method for manufacturing same
US5989366A (en) Method of manufacturing thick steel product of high strength and high toughness having excellent weldability and minimal variation of structure and physical properties
KR20010060760A (en) structural steel having High strength and method for menufactreing it
CN113966404B (en) Non-heat-treated wire rod having excellent drawability and impact toughness and method for manufacturing the same
JP2899128B2 (en) Method of manufacturing rebar having low yield ratio and high yield elongation
KR101518571B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same
JPH09279233A (en) Production of high tension steel excellent in toughness
JP3228986B2 (en) Manufacturing method of high strength steel sheet
KR102252106B1 (en) Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same
JPH04193908A (en) Production of high strength reinforcing bar excellent in yield elongation
JPH06136441A (en) Production of high strength and low yield ratio bar steel for reinforcing bar
JP3218442B2 (en) Manufacturing method of mechanical structural steel with excellent delayed fracture resistance
JPH0726149B2 (en) Method for manufacturing high-strength stainless steel section
EP4063531A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
JPH0813028A (en) Production of precipitation hardening steel material having high tensile strength and high toughness
KR910002941B1 (en) Making method of a hot rolled sheet excellant in tension and in tenacity for oil well-pipes
JPS586937A (en) Production of hot-rolled high-tensile steel plate for working
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPH06340924A (en) Production of low yield ratio high tensile strength steel
JPS6196030A (en) Manufacture of high strength and high toughness hot rolled steel plate having superior resistance to hydrogen induced cracking and stress corrosion cracking
JPH08197105A (en) Manufacture of extremely thick wide-flange steel excellent in strength, toughness and weldability
JPH10317100A (en) Reinforcing bar with high strength and high toughness
JPH01149921A (en) Production of directly hardened high-strength steel having excellent delayed cracking resistance
JP3692565B2 (en) Method for producing B-added high-strength steel
KR101696097B1 (en) Non heat treated wire rod having excellent high strength and impact toughness and method for manafacturing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees