JPH04190837A - Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof - Google Patents
Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereofInfo
- Publication number
- JPH04190837A JPH04190837A JP31877990A JP31877990A JPH04190837A JP H04190837 A JPH04190837 A JP H04190837A JP 31877990 A JP31877990 A JP 31877990A JP 31877990 A JP31877990 A JP 31877990A JP H04190837 A JPH04190837 A JP H04190837A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- porous membrane
- vinylidene fluoride
- polyvinylidene fluoride
- sulfuric acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 71
- 229920002981 polyvinylidene fluoride Polymers 0.000 title claims abstract description 28
- 239000011347 resin Substances 0.000 title claims abstract description 24
- 229920005989 resin Polymers 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- -1 poly(vinylidene fluoride) Polymers 0.000 title abstract description 9
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 18
- 239000011261 inert gas Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 5
- 239000002033 PVDF binder Substances 0.000 claims description 24
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 13
- 238000004132 cross linking Methods 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 10
- 239000012510 hollow fiber Substances 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 15
- 238000006243 chemical reaction Methods 0.000 abstract description 10
- 238000005341 cation exchange Methods 0.000 abstract description 7
- 229920000642 polymer Polymers 0.000 abstract description 6
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical compound OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 abstract description 5
- 238000011437 continuous method Methods 0.000 abstract description 4
- 230000035484 reaction time Effects 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000155 melt Substances 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 12
- 239000010419 fine particle Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000004793 Polystyrene Substances 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 238000006277 sulfonation reaction Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は架橋スルホン化ポリフッ化ビニリデン樹脂多孔
質膜およびその製造法に関する。さらに詳しくは、水処
理分野などにおいて、イオン性物質やコロイド・微粒子
などを一度に除去する架橋スルホン化ポリフッ化ビニリ
デン樹脂多孔質膜およびその製造法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a crosslinked sulfonated polyvinylidene fluoride resin porous membrane and a method for producing the same. More specifically, the present invention relates to a crosslinked sulfonated polyvinylidene fluoride resin porous membrane that removes ionic substances, colloids, fine particles, etc. at once in the water treatment field and a method for producing the same.
[従来の技術]
従来イオン交換体は各種イオン性物質の吸着剤や、化学
反応の触媒などとし、て広範囲に用いられて来た。特に
、膜状のイオン交換体は電気分解反応の隔膜、廃水の電
解処理、金属イオンの酸化処理、還元処理、燃料電池の
隔膜、更に通常の透析、電気透析などに適用でき、その
応用範囲も広がって来ている。その中でもスルホン酸基
を有する強酸型カチオン交換膜は特に重要である。[Prior Art] Conventionally, ion exchangers have been widely used as adsorbents for various ionic substances, catalysts for chemical reactions, and the like. In particular, membrane-like ion exchangers can be applied to diaphragms for electrolysis reactions, electrolytic treatment of wastewater, oxidation treatment and reduction treatment of metal ions, diaphragms for fuel cells, as well as regular dialysis, electrodialysis, etc. It's spreading. Among these, strong acid type cation exchange membranes having sulfonic acid groups are particularly important.
かかるスルホン酸基を有する強酸型ポリフッ化ビニリデ
ン樹脂カチオン交換膜としては、特開昭56−5783
6号公報や特開昭57−141.432号公報があるが
、これらはスルホン化剤として発煙硫酸を用いているた
め、得られた多孔質膜は−302−などの架橋基推持た
す、カチオン交換に十分なスルホン酸基を導入するとポ
リマが水溶性になり実用に供することが困難になる。ま
た1、スルホン化の際の副反応によって劣化が激しい上
、得られた多孔質膜に付着した硫酸や、使用後の廃硫酸
を段階的に希釈する必要かあるため製造プロセスが複雑
になり、コストが高くなる。A strong acid type polyvinylidene fluoride resin cation exchange membrane having such a sulfonic acid group is disclosed in Japanese Patent Application Laid-Open No. 56-5783.
6 and JP-A No. 57-141.432, these use fuming sulfuric acid as a sulfonating agent, so the resulting porous membranes contain cations that support crosslinking groups such as -302-. If enough sulfonic acid groups are introduced for exchange, the polymer becomes water-soluble and becomes difficult to put into practical use. In addition, 1. In addition to severe deterioration due to side reactions during sulfonation, the manufacturing process is complicated because it is necessary to dilute the sulfuric acid attached to the obtained porous membrane and the waste sulfuric acid after use in stages. Cost increases.
[発明か解決しようとする課題]
本発明は、カチオン交換に十分なスルホン酸基を有する
多孔質膜を提供すること、および架橋スルホン化多孔質
膜の簡略な製造法を提供することを目的とするものであ
る。[Problem to be solved by the invention] The purpose of the present invention is to provide a porous membrane having sufficient sulfonic acid groups for cation exchange, and to provide a simple method for producing a crosslinked sulfonated porous membrane. It is something to do.
[課題を解決するための手段]
本発明者らは、この課題を解決するために鋭意検討した
結果、ポリフッ化ビニリデン樹脂多孔質膜を無水硫酸と
、乾燥空気または不活性ガスとの混合気体で処理するこ
とによって、架橋基とスルホン酸基の両方を導入できる
ことを見い出し、本発明をするに至った。[Means for Solving the Problem] As a result of intensive studies to solve this problem, the present inventors have developed a polyvinylidene fluoride resin porous membrane using a mixed gas of sulfuric anhydride and dry air or inert gas. It was discovered that both a crosslinking group and a sulfonic acid group can be introduced by treatment, and the present invention was completed.
本発明は次の構成を有する。The present invention has the following configuration.
(1)ポリフッ化ビニリデン樹脂よりなる多孔質膜であ
って、該樹脂がスルホン酸基と架橋基として−502−
とを含むことを特徴とする架橋スルホン化ポリフッ化ビ
ニリデン樹脂多孔質膜。(1) A porous membrane made of polyvinylidene fluoride resin, in which the resin has -502- as a sulfonic acid group and a crosslinking group.
A cross-linked sulfonated polyvinylidene fluoride resin porous membrane comprising:
(2)ポリフッ化ビニリデン樹脂多孔質膜を無水硫酸と
、乾燥空気または不活性気体との混合気体で処理するこ
とを特徴とする、架橋スルホン化ポリフッ化ビニリデン
樹脂多孔質膜の製造法。(2) A method for producing a crosslinked sulfonated polyvinylidene fluoride resin porous membrane, which comprises treating the polyvinylidene fluoride resin porous membrane with a gas mixture of anhydrous sulfuric acid and dry air or an inert gas.
以下本発明の詳細な説明する。The present invention will be explained in detail below.
本発明で言うポリフッ化ビニリデン樹脂とは、フッ化ビ
ニリデンのホモポリマ、フッ化ビニリデンとフッ化ビニ
ルとの共重合体、これらの混合物を示す。The polyvinylidene fluoride resin referred to in the present invention refers to a homopolymer of vinylidene fluoride, a copolymer of vinylidene fluoride and vinyl fluoride, and a mixture thereof.
本発明のポリフッ化ビニリデン樹脂多孔質膜の形状は平
膜であっても中空糸膜であっても良く、平膜は通常膜厚
が1−μmから2万μm1好ましくは5μmから1万μ
mであり、中空糸膜は、通常膜内径が5μmから1万μ
m1膜厚が1μmから1万μm1好ましくは、内径が1
0μmから1万μm1膜厚が5μmから5千μmである
。The shape of the polyvinylidene fluoride resin porous membrane of the present invention may be a flat membrane or a hollow fiber membrane, and the flat membrane usually has a thickness of 1-20,000 μm, preferably 5 μm to 10,000 μm.
m, and hollow fiber membranes usually have an inner diameter of 5 μm to 10,000 μm.
m1 Film thickness is 1 μm to 10,000 μm1 Preferably, inner diameter is 1
The film thickness is 0 μm to 10,000 μm and 5 μm to 5,000 μm.
多孔質膜は、壁膜に内部から外部に貫通する多数の連続
した微細空孔を有しており、微細空孔の平均孔径は通常
1nmから5千nm、好ましくは、2万mから1千nm
の範囲で選択される。The porous membrane has a large number of continuous micropores penetrating the wall membrane from the inside to the outside, and the average diameter of the micropores is usually 1 nm to 5,000 nm, preferably 20,000 to 1,000 nm. nm
selected within the range.
本発明のポリフッ化ビニリデン樹脂多孔質膜は、スルホ
ン酸基と架橋基を含むことか特徴である。The polyvinylidene fluoride resin porous membrane of the present invention is characterized by containing a sulfonic acid group and a crosslinking group.
架橋基か存在しない場合は、イオン交換に十分な量のス
ルホン酸基を導入すると水に膨潤しすぎたりポリマか溶
出したりしてしまう。本発明のスルホン酸基とは一8O
3I」や−3O−、M(MはLi。If a crosslinking group is not present, introducing a sufficient amount of sulfonic acid groups for ion exchange will result in excessive swelling in water or elution of the polymer. The sulfonic acid group of the present invention is -8O
3I", -3O-, M (M is Li.
Na5K、Mg、Ca、NH,イオンなどのように塩を
形成するもの)で表わされるものを言う。Refers to substances that form salts such as Na5K, Mg, Ca, NH, ions, etc.
スルホン酸基はポリフッ化ビニリデンの主鎖の炭素に結
合した水素を置換し、炭素に直接共有結合する。スルホ
ン酸基の量は、乾燥樹脂1g当り通常0.1ミリ当量か
ら5ミリ当量、好ましくは0゜5ミリ当量から4ミリ当
量である。本発明の架橋基は一8O2−で表わせるか、
それぞれ主鎖の炭素に直接共有結合する。The sulfonic acid group replaces the hydrogen bonded to carbon in the main chain of polyvinylidene fluoride and is directly covalently bonded to the carbon. The amount of sulfonic acid groups is usually 0.1 to 5 milliequivalents, preferably 0.5 to 4 milliequivalents, per gram of dry resin. The crosslinking group of the present invention can be represented by -8O2-, or
Each is covalently bonded directly to a carbon in the main chain.
本発明のポリフッ化ヒニリデン多孔質膜は、公知の方法
で得られる。例えば、溶融製膜法としては、溶融したポ
リマを平膜状または中空糸膜状に吐出し、延伸すること
によって多孔構造を形成する方法や、溶融したポリマに
ボア形成剤として無機微粒子や有機液状体を混ぜ、平膜
状または中空糸膜状に吐出した後ボア形成剤を溶出させ
る方法などを挙げることかできる。溶液製膜法としては
、ポリマ溶液をそのまま、またはボア形成剤を添加した
ものを空気中または凝固性の液体中に平膜状または中空
糸膜状に吐出し、溶媒およびボア形成剤を溶出させる方
法などを挙げることかできる。The polyhynylidene fluoride porous membrane of the present invention can be obtained by a known method. For example, melt film forming methods include a method in which a porous structure is formed by discharging a molten polymer in the form of a flat film or a hollow fiber film and stretching it; Examples include a method in which the material is mixed, discharged into a flat membrane or hollow fiber membrane, and then the bore forming agent is eluted. In the solution casting method, a polymer solution as it is or with a bore forming agent added thereto is discharged into the air or into a coagulable liquid in the form of a flat membrane or hollow fiber membrane, and the solvent and bore forming agent are eluted. I can list methods etc.
本発明の無水硫酸は、α型、β型、γ型いずれでも良い
が、室温で液体であるγ型か好ましい。The sulfuric anhydride of the present invention may be of the α type, β type, or γ type, but the γ type, which is liquid at room temperature, is preferable.
本発明では、無水硫酸を乾燥空気または不活性気体で希
釈して用いる。架橋スルホン化反応は、無水硫酸の濃度
、反応温度、反応時間によって影響されるが、これらを
コントロールすることによって、目的とする架橋スルホ
ン化多孔質膜を製造できる。無水硫酸の濃度は、高すぎ
ると膜の劣化が激しく、低すぎると架橋スルホン化の速
度が遅くなるので、通常0. 1から50%、好ましく
はO15から20%の範囲で選択される。反応温度は無
水硫酸の濃度に依存するが、高すぎると膜の劣化が激し
く、低すぎるとスルホン化の速度が遅(なるだけでなく
架橋反応が起こらなくなるので、通常20から120°
C1好ましくは40から100℃、さらに好ましくは5
0から90°Cの範囲で選択される。反応時間は、無水
硫酸の濃度および温度に大きく左右されるが、通常10
秒から2時間、好ましくは30秒から1時間の範囲で選
択される。In the present invention, sulfuric anhydride is used after being diluted with dry air or an inert gas. The crosslinking sulfonation reaction is influenced by the concentration of sulfuric anhydride, reaction temperature, and reaction time, but by controlling these, the desired crosslinked sulfonation porous membrane can be produced. If the concentration of sulfuric anhydride is too high, the membrane will be severely degraded, and if it is too low, the rate of crosslinking and sulfonation will be slow, so it is usually 0. It is selected in the range of 1 to 50%, preferably O15 to 20%. The reaction temperature depends on the concentration of sulfuric anhydride, but if it is too high, the membrane will deteriorate rapidly, and if it is too low, the rate of sulfonation will be slow (not only will the crosslinking reaction not occur, so the temperature is usually 20 to 120°).
C1 preferably 40 to 100°C, more preferably 5
The temperature range is selected from 0 to 90°C. The reaction time largely depends on the concentration of sulfuric anhydride and temperature, but is usually 10
The time period is selected in the range of seconds to 2 hours, preferably 30 seconds to 1 hour.
無水硫酸を希釈する気体には乾燥空気または不活性気体
を用いるが、水分が存在すると直ちに硫酸が生成しミス
トとなり、膜に付着して副反応の原因となるからであり
、混合気体中の水分量は重要な条件の−っである。水分
濃度は、通常0. 5%以下、好ましくは0. 2%以
下、さらに好ましくは0.1%以下である。不活性気体
としては、窒素ガス、ヘリウムガス、アルゴンガスなど
を例示することができるが、取り扱い易さ、価格の面か
ら窒素ガスが好ましく選択される。Dry air or an inert gas is used as the gas to dilute sulfuric anhydride, but if moisture is present, sulfuric acid will immediately form and become a mist, which will adhere to the membrane and cause side reactions. Quantity is an important condition. The water concentration is usually 0. 5% or less, preferably 0. It is 2% or less, more preferably 0.1% or less. Examples of the inert gas include nitrogen gas, helium gas, and argon gas, but nitrogen gas is preferably selected from the viewpoint of ease of handling and cost.
本発明の架橋スルホン化多孔質膜を製造する方法として
は、バッチ法、連続法などを挙げることができる。バッ
チ法としては、反応装置に多孔質膜を入れた後減圧にし
希釈した無水硫酸ガスを封入する減圧法や、多孔質膜を
入れた反応装置に希釈した無水硫酸ガスを連続して供給
する流通法などが例示できる。連続法としては、希釈し
た無水硫酸ガスを入れた装置の中に多孔質膜を供給し、
装置内を移動させ連続的に取り出す方法などを挙げるこ
とができる。しかし、十分な量のスルホン酸基をむら無
く導入するには、減圧法や連続法が好ましく用いられる
。Examples of the method for producing the crosslinked sulfonated porous membrane of the present invention include a batch method and a continuous method. Batch methods include a reduced pressure method in which a porous membrane is placed in a reactor, the pressure is reduced and diluted sulfuric acid anhydride gas is sealed in, and a distribution method in which diluted sulfuric acid anhydride gas is continuously supplied to a reactor containing a porous membrane. An example is the law. As a continuous method, a porous membrane is fed into a device containing diluted anhydrous sulfuric acid gas,
Examples include a method of moving the material within the device and continuously taking it out. However, in order to uniformly introduce a sufficient amount of sulfonic acid groups, a reduced pressure method or a continuous method is preferably used.
本発明の製造法は、気相で反応を行なうため、反応後の
余分な無水硫酸は減圧下で除いたり、乾燥空気や窒素ガ
スを流すことによって除くことが出来る。また、反応に
よって生成するものは、スルホン酸基と架橋基の生成の
際に発生する微量の水だけであるため、発煙硫酸などで
反応した時のように、反応生成物に付着した硫酸を段階
的に希釈する必要がない。さらに、廃硫酸の発生も無い
ので製造プロセスを大幅に簡略化できる。Since the production method of the present invention performs the reaction in the gas phase, excess sulfuric anhydride after the reaction can be removed under reduced pressure or by flowing dry air or nitrogen gas. In addition, since the only thing produced by the reaction is a trace amount of water that is generated during the formation of sulfonic acid groups and crosslinking groups, it is necessary to remove the sulfuric acid attached to the reaction product in a stepwise manner, as in the case of reacting with fuming sulfuric acid. No need to dilute. Furthermore, since no waste sulfuric acid is generated, the manufacturing process can be greatly simplified.
以下、特に中空糸膜について実施例を述べるが、これに
よって何ら限定されるものではない。Examples will be described below, particularly regarding hollow fiber membranes, but the present invention is not limited thereto.
実施例
多孔質膜の活性表面の孔径の指標としては、粒径か均一
なポリスチレン微粒子のラテックス(ダウケミカル社製
の“Dow Uniform Latex Pa
rticles”)の排除率を用いた。ポリスチレン微
粒子の200ppm分散液を用いて、濾過前後の光線透
過量から排除率を算出した。Example As an indicator of the pore size of the active surface of the porous membrane, a latex of polystyrene fine particles with a uniform particle size (Dow Uniform Latex Pa manufactured by Dow Chemical Company) was used.
Using a 200 ppm dispersion of polystyrene fine particles, the rejection rate was calculated from the amount of light transmitted before and after filtration.
多孔質膜の引っ張り破断強度(kg/M2)、引っ張り
破断伸度(%)は、テンシロン型引っ張り試験機を用い
て測定した。The tensile strength at break (kg/M2) and tensile elongation at break (%) of the porous membrane were measured using a Tensilon type tensile tester.
透過水量は、純水を25°Cにおいて外圧全濾過で供給
し測定した。単位はml / hr−mmHg−ポで表
わした。The amount of permeated water was measured by supplying pure water by external pressure total filtration at 25°C. The unit was expressed in ml/hr-mmHg-po.
スルホン酸基の量の指標としては、交換容量(ミリ当量
/g)を用いた。0.5g相当の膜を0.1規定水酸化
ナトリウム水溶液50m1に浸漬し、2時間振とうした
後5 ml正確に採り、滴定によって求めた。Exchange capacity (milliequivalents/g) was used as an indicator of the amount of sulfonic acid groups. A membrane equivalent to 0.5 g was immersed in 50 ml of a 0.1N aqueous sodium hydroxide solution, shaken for 2 hours, and then exactly 5 ml was taken and determined by titration.
多孔質膜からの有機物の溶出の指標としては、総有機炭
素量(TOC)を用いた。0.5g相当の膜をTOCが
既知の純水(1ooppb)5゜Omlに浸漬し、60
℃で12時間放置した後、浸漬水のTOCを東しエンシ
ニアリング(株)製自動分析計TOC710型で測定し
た。Total organic carbon content (TOC) was used as an index of elution of organic matter from the porous membrane. A membrane equivalent to 0.5 g was immersed in 5° Oml of pure water (1ooppb) with a known TOC, and
After being left for 12 hours at ℃, the TOC of the immersion water was measured using an automatic analyzer model TOC710 manufactured by Enciniaring Co., Ltd.
(実施例1)
ポリフッ化ビニリデン(Pennwalt社製“Kyn
ar 460”)2重量部をジメチルスルホキシド8
重量部に溶解して紡糸原液を調製した。これを、内部注
入液としてジメチルスルホキシドSO%水溶液を用いて
、中空糸製造用口金で紡糸し、ポリフッ化ビニリデン多
孔質中空糸膜を得た。(Example 1) Polyvinylidene fluoride (“Kyn” manufactured by Pennwalt)
ar 460”) 2 parts by weight of dimethyl sulfoxide
A spinning stock solution was prepared by dissolving in parts by weight. This was spun using a hollow fiber production spinneret using a dimethyl sulfoxide SO% aqueous solution as an internal injection liquid to obtain a polyvinylidene fluoride porous hollow fiber membrane.
得られたポリフッ化ビニリデン多孔質中空糸膜は、内径
/膜厚−335/SOμm1ポリスチレン微粒子の排除
率は、粒径0.085μmで99%、0.038μmで
65%であった。強度は0゜85kg/mm2、伸度は
60%、透水量は350 ml/hr−胴Hg・dであ
った。The polyvinylidene fluoride porous hollow fiber membrane obtained had an inner diameter/membrane thickness of -335/SO .mu.m1.The rejection rate of polystyrene fine particles was 99% at a particle size of 0.085 .mu.m and 65% at a particle size of 0.038 .mu.m. The strength was 0°85 kg/mm2, the elongation was 60%, and the water permeability was 350 ml/hr-body Hg·d.
乾燥したポリフッ化ビニリデン多孔質中空糸膜約10g
(50cmx500本)をガラスカラムに充填し、水
分濃度0.08%の乾燥窒素ガスを流通して中空糸膜の
水分を十分除き、同様の窒素ガスで5%に希釈した無水
硫酸ガスを、流速12ONl1分、温度70’Cで、ア
ップ’70−で30分間供給した。無水硫酸の供給量は
320gに達した。反応後、窒素ガスで余分な無水硫酸
を除き、さらに水洗して、本発明の架橋スルホン化ポリ
フッ化ビニリデン多孔質中空糸膜を得た。Approximately 10g of dried polyvinylidene fluoride porous hollow fiber membrane
(50 cm x 500 tubes) was packed in a glass column, and dry nitrogen gas with a water concentration of 0.08% was passed through the hollow fiber membrane to remove moisture from the hollow fiber membrane. 12ONl 1 minute, temperature 70'C, up'70- for 30 minutes. The amount of sulfuric anhydride fed reached 320 g. After the reaction, excess sulfuric anhydride was removed with nitrogen gas and further washed with water to obtain a crosslinked sulfonated polyvinylidene fluoride porous hollow fiber membrane of the present invention.
得られた架橋スルホン化中空糸膜は、内径/膜厚−35
0795μm、ポリスチレン微粒子の排除率は、粒径0
. 085 μrnテ99%、0.038μmで70%
であり、強度は0.90kg/nun2、伸度は45%
、透水量は3SOm1/hr−IIImHg・イ、交換
容量は2.5ミリ当量/gであった。さらに、溶出物試
験を行なったところ、TOCは150ppbであり、は
とんど溶出はながった。The obtained crosslinked sulfonated hollow fiber membrane had an inner diameter/membrane thickness of −35
0795 μm, the rejection rate of polystyrene fine particles is
.. 085μrn 99%, 0.038μm 70%
The strength is 0.90kg/nun2 and the elongation is 45%.
The water permeability was 3SOm1/hr-IIImHg·i, and the exchange capacity was 2.5 milliequivalents/g. Furthermore, when an eluate test was conducted, the TOC was 150 ppb, and the elution was almost negligible.
このように本発明の架橋スルホン化ポリフッ化ビニリデ
ン樹脂多孔質膜は、十分なカチオン交換基を持ち、溶出
物も無い実用性の高いものである。As described above, the crosslinked sulfonated polyvinylidene fluoride resin porous membrane of the present invention has sufficient cation exchange groups and has no eluate, making it highly practical.
さらに、本発明の製造法で得た膜は、表面の孔径や強度
・伸度、透水量にも大きな変化が無く、優れた製造法で
あることがわかる。Furthermore, the membrane obtained by the production method of the present invention shows no major changes in surface pore size, strength/elongation, or water permeability, indicating that it is an excellent production method.
(比較例1)
実施例1で得たポリフッ化ビニリデン多孔質中空糸膜約
10g (50cmX500本)を25%の遊離の無水
硫酸を含む発煙硫酸中でSO℃×2時間反応させた。得
られたスルホン化中空糸膜は、内径/膜厚=350/1
00μm1ポリスチレン微粒子の排除率は、粒径0.0
85μmで99%、0.038μmでSO%であり、強
度は0.40kg/mm2、伸度は30%、透水量は3
00m1/h「・mmHg−rr?、交換容量は2.5
ミリ当量/gであり、非常に脆いものであった。さらに
、溶出物試験を行なったところ、TOCはlppmと大
きく増加し、スルホン化されたポリマが溶出しているこ
とがわかった。(Comparative Example 1) Approximately 10 g (50 cm x 500 pieces) of the polyvinylidene fluoride porous hollow fiber membrane obtained in Example 1 was reacted at SO° C. for 2 hours in fuming sulfuric acid containing 25% free sulfuric anhydride. The obtained sulfonated hollow fiber membrane had an inner diameter/membrane thickness of 350/1.
The rejection rate of 00μm1 polystyrene fine particles is
99% at 85μm, SO% at 0.038μm, strength 0.40kg/mm2, elongation 30%, water permeability 3
00m1/h "・mmHg-rr?, exchange capacity is 2.5
milliequivalent/g, and was extremely brittle. Furthermore, when an eluate test was conducted, the TOC significantly increased to 1 ppm, indicating that the sulfonated polymer was eluted.
[発明の効果]
本発明の架橋スルホン化ポリフッ化ビニリデン樹脂多孔
質膜は、カチオン交換に十分なスルホン酸基を有してい
ても、架橋構造を取るため、機械的強度に優れ、溶出物
も無く水または薬液の透過量が高い。そのため、従来カ
チオン交換体が用いられていた分野、例えば電子工業・
原子力発電所などにおける水処理、廃水などからの有用
または不用な金属の捕集、薬品精製などにおいて、イオ
ン性物質と微粒子を一度に分離することができる。[Effects of the Invention] Even though the crosslinked sulfonated polyvinylidene fluoride resin porous membrane of the present invention has sufficient sulfonic acid groups for cation exchange, it has a crosslinked structure, so it has excellent mechanical strength and no eluates. High permeation rate of water or chemical solution. Therefore, cation exchangers have been used in fields such as the electronics industry, etc.
Ionic substances and fine particles can be separated at the same time in water treatment at nuclear power plants, collection of useful or unnecessary metals from wastewater, purification of chemicals, etc.
本発明の製造法は、スルホン酸基の量の制御が容易であ
り、その上製造プロセスを大幅に簡略化できるので、用
途に応じたカチオン交換多孔質膜を効率良く得ることが
できる。In the production method of the present invention, the amount of sulfonic acid groups can be easily controlled and the production process can be greatly simplified, so that a cation exchange porous membrane suitable for the purpose can be efficiently obtained.
Claims (2)
って、該樹脂がスルホン酸基と架橋基として−SO_2
−とを含むことを特徴とする架橋スルホン化ポリフッ化
ビニリデン樹脂多孔質膜。(1) A porous membrane made of polyvinylidene fluoride resin, in which the resin has -SO_2 as a sulfonic acid group and a crosslinking group.
- A cross-linked sulfonated polyvinylidene fluoride resin porous membrane comprising:
、乾燥空気または不活性気体との混合気体で処理するこ
とを特徴とする、架橋スルホン化ポリフッ化ビニリデン
樹脂多孔質膜の製造法。(2) A method for producing a crosslinked sulfonated polyvinylidene fluoride resin porous membrane, which comprises treating the polyvinylidene fluoride resin porous membrane with a gas mixture of anhydrous sulfuric acid and dry air or an inert gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31877990A JPH04190837A (en) | 1990-11-22 | 1990-11-22 | Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31877990A JPH04190837A (en) | 1990-11-22 | 1990-11-22 | Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04190837A true JPH04190837A (en) | 1992-07-09 |
Family
ID=18102852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31877990A Pending JPH04190837A (en) | 1990-11-22 | 1990-11-22 | Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04190837A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1398331A1 (en) * | 2002-09-13 | 2004-03-17 | Organo Corporation | Method for preparing sulfonated organic porous material |
JP2008023415A (en) * | 2006-07-18 | 2008-02-07 | Kurita Water Ind Ltd | Spiral membrane module and water treatment method |
JP2011157488A (en) * | 2010-02-01 | 2011-08-18 | Kaneka Corp | Process for producing sulfonated polymer solution and usage thereof |
CN104084059A (en) * | 2014-07-28 | 2014-10-08 | 陈雄 | Preparation method for hydrophobic modified nano-calcium carbonate filled silicone rubber composite membrane |
-
1990
- 1990-11-22 JP JP31877990A patent/JPH04190837A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1398331A1 (en) * | 2002-09-13 | 2004-03-17 | Organo Corporation | Method for preparing sulfonated organic porous material |
JP2008023415A (en) * | 2006-07-18 | 2008-02-07 | Kurita Water Ind Ltd | Spiral membrane module and water treatment method |
JP4730236B2 (en) * | 2006-07-18 | 2011-07-20 | 栗田工業株式会社 | Spiral membrane module and water treatment method |
JP2011157488A (en) * | 2010-02-01 | 2011-08-18 | Kaneka Corp | Process for producing sulfonated polymer solution and usage thereof |
CN104084059A (en) * | 2014-07-28 | 2014-10-08 | 陈雄 | Preparation method for hydrophobic modified nano-calcium carbonate filled silicone rubber composite membrane |
CN104084059B (en) * | 2014-07-28 | 2016-08-24 | 陈雄 | A kind of preparation method of hydrophobically modified nanon calcium carbonatefilled composite silicone rubber membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3930105A (en) | Hollow fibres | |
CA1280262C (en) | Asymmetric semi-permeable membrane having high salt rejection | |
US5401410A (en) | Membrane and process for the production thereof | |
US4265959A (en) | Process for producing semipermeable membranes | |
JPH0829234B2 (en) | Hydrophilic microporous membrane | |
CN110743392A (en) | PVDF hollow fiber membrane material with anticoagulation property for hemodialysis and preparation method thereof | |
JPS61133143A (en) | Heavy metal adsorbent | |
CN112619438B (en) | Methanol-resistant polyamide reverse osmosis membrane and preparation method thereof | |
JPH04190837A (en) | Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof | |
JP3216910B2 (en) | Porous hollow fiber membrane | |
JP2519831B2 (en) | Method for producing charged separation membrane | |
JP2006257397A (en) | Aromatic polyamide porous film | |
US4268662A (en) | Process for improving semipermeable membranes by treating with protic acids or inorganic salts | |
JPH01224004A (en) | Permselective microfilter and its production | |
JP2001515113A (en) | Ion exchange membrane | |
US4283359A (en) | Process for producing polyacrylonitrile reverse osmotic membranes | |
JPS63240902A (en) | Treating method | |
JPS5938242A (en) | Anion-charged porous polyolefin resin membrane and production thereof | |
JP3169404B2 (en) | Method for producing semipermeable membrane with high water permeability | |
US4614586A (en) | Semipermeable polymeric film membrane | |
JPS6283006A (en) | Manufacturing process for separating functional material | |
JPS62168503A (en) | Separation membrane | |
EP0860199B1 (en) | Method of producing a membrane | |
JPS62210005A (en) | Novel composite functional membrane | |
JPH0316691A (en) | Method for simultaneously removing plural kinds of heavy metal ions |