JPS63296803A - Condensate purification method - Google Patents
Condensate purification methodInfo
- Publication number
- JPS63296803A JPS63296803A JP62131640A JP13164087A JPS63296803A JP S63296803 A JPS63296803 A JP S63296803A JP 62131640 A JP62131640 A JP 62131640A JP 13164087 A JP13164087 A JP 13164087A JP S63296803 A JPS63296803 A JP S63296803A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- porous membrane
- condensate
- hollow fiber
- hollow filament
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 31
- 238000000746 purification Methods 0.000 title abstract description 8
- 239000012528 membrane Substances 0.000 claims abstract description 89
- 125000000524 functional group Chemical group 0.000 claims abstract description 20
- 238000009835 boiling Methods 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 23
- 239000012510 hollow fiber Substances 0.000 claims description 14
- 239000011148 porous material Substances 0.000 claims description 12
- 238000005341 cation exchange Methods 0.000 claims description 11
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 229920002492 poly(sulfone) Chemical class 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 4
- 239000002033 PVDF binder Chemical class 0.000 claims description 3
- 229920001577 copolymer Polymers 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Chemical class 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 18
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 12
- 229910052742 iron Inorganic materials 0.000 abstract description 10
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 abstract description 8
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 abstract description 8
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 abstract description 5
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 5
- 235000011121 sodium hydroxide Nutrition 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 abstract description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 abstract description 2
- 239000005977 Ethylene Substances 0.000 abstract description 2
- 238000000605 extraction Methods 0.000 abstract description 2
- 239000011347 resin Substances 0.000 abstract description 2
- 229920005989 resin Polymers 0.000 abstract description 2
- 125000002091 cationic group Chemical group 0.000 abstract 2
- 239000000706 filtrate Substances 0.000 abstract 1
- 239000010419 fine particle Substances 0.000 abstract 1
- 230000035699 permeability Effects 0.000 description 11
- 125000000542 sulfonic acid group Chemical group 0.000 description 8
- -1 iron ions Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006277 sulfonation reaction Methods 0.000 description 2
- AKEJUJNQAAGONA-UHFFFAOYSA-N sulfur trioxide Inorganic materials O=S(=O)=O AKEJUJNQAAGONA-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は沸騰水型原子炉で発生したスチームの復水から
、多孔性膜を用いて効率良く鉄コロイド(クラッド)を
除去する方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for efficiently removing iron colloid (crud) from steam condensate generated in a boiling water nuclear reactor using a porous membrane.
沸騰水型原子炉で発生したスチームは、典型的にはター
ビンを回転させて発電させるために使用されたのち、復
水器で復水され、循環使用されるが、この復水中には機
器の腐食生成物が含まれているので、放射性核種の発生
を避けるためにはこれらを除去する必要がある。The steam generated in a boiling water reactor is typically used to rotate a turbine and generate electricity, and then is condensed in a condenser and used for circulation. Since it contains corrosion products, these must be removed to avoid the generation of radionuclides.
この腐食生成物は数flPbの鉄イオンのほか、数ない
し数十pl)bのコロイド状鉄分(クラ・ソド)を含ん
でいる。This corrosion product contains several flPb of iron ions as well as several to several tens of pl)b of colloidal iron (cra-sod).
このクラッドを除去するために、従来は粉末状のイオン
交換樹脂(バウデソクスー商品名)が用いられて来たが
、最近は中空糸状多孔性膜で処理する方法(例えば特開
昭59−87092号公報)が提案されている。In order to remove this crud, a powdered ion exchange resin (trade name Baudesoxu) has traditionally been used, but recently a method using a hollow fiber porous membrane (for example, Japanese Patent Application Laid-Open No. 87092/1983) ) has been proposed.
しかしながら、中空糸状多孔性膜を用いる方法は従来の
バウデソクス法に比らべ多くの利点を有するものの、実
用運転の結果、以下のような問題を有することがあきら
かになってきた。すなわち、復水の精製中、存在する鉄
イオンかが水側膜内面に固型状に付着し、膜の透水能力
を低下させる事があきらかになった。このI水側膜内面
への鉄分の固型状付着と、膜の透水能力の低下が相関性
を有する事は、膜の内面を蓚酸等で洗浄する事により、
はぼ完全に透水能力が回復する事によって明らかである
。逆に、原液側を洗浄しても透水能力はあまり回復しな
い。However, although the method using a hollow fiber porous membrane has many advantages over the conventional Baudesox method, as a result of practical operation, it has become clear that it has the following problems. In other words, it has become clear that during purification of condensate, iron ions present adhere in solid form to the inner surface of the membrane on the water side, reducing the water permeability of the membrane. The fact that there is a correlation between the solid adhesion of iron to the inner surface of the membrane on the I water side and the decrease in the water permeability of the membrane can be seen by cleaning the inner surface of the membrane with oxalic acid, etc.
This is evident by the almost complete recovery of water permeability. Conversely, even if the undiluted solution side is washed, the water permeability does not recover much.
本発明は膜の透水能力の低下をきたさない、より効率的
な復水浄化方法を確立する事を目的としたものである。The object of the present invention is to establish a more efficient condensate purification method that does not cause a decrease in the water permeability of the membrane.
〔問題点を解決するための手段〕
本発明者は前記目的を達成する手段を鋭意研究した結果
、以下の手段によって達成できる事を見出した。[Means for Solving the Problems] As a result of intensive research into means for achieving the above object, the inventor found that the object can be achieved by the following means.
すなわち本発明は、復水を、側鎖にカチオン交換機能を
有する官能基を膜1グラム当り0.05ミリ当量ないし
5ミリ当量有し、平均孔径0.01ミクロンないし5ミ
クロン、空孔率20%ないし80%、膜厚10ミクロン
ないし5ミリである中空糸状多孔性膜に通すことを特徴
とする復水の浄化方法である。That is, in the present invention, the condensate has a functional group having a cation exchange function in the side chain in an amount of 0.05 to 5 milliequivalents per gram of membrane, an average pore diameter of 0.01 to 5 microns, and a porosity of 20. % to 80% and a membrane thickness of 10 microns to 5 mm.
好ましくは、多孔性膜の材質がポリオレフィン、オレフ
ィンとハロゲン化オレフィンの共重合体、ポリフッ化ビ
ニリデンまたはポリスルホンであり、膜の内外表面部お
よび孔の表面部の少なくとも一部分に、カチオン交換機
能を有する官能基が化学的に結合した中空糸状多孔性膜
を用いるのがよく、前記官能基の多孔性膜への結合は、
直接でもよく、また官能基を含有する重合体が結合され
ている場合でもよい。Preferably, the material of the porous membrane is polyolefin, a copolymer of olefin and halogenated olefin, polyvinylidene fluoride, or polysulfone, and at least a portion of the inner and outer surfaces of the membrane and the surface of the pores are provided with a functional material having a cation exchange function. It is preferable to use a hollow fiber porous membrane to which groups are chemically bonded, and the bonding of the functional groups to the porous membrane is as follows:
This may be done directly or may be bonded to a polymer containing a functional group.
更に好ましくは、多孔性膜の膜の材質がポリオレフィン
であり、かつ膜構造が三次元網目構造をなし、膜の内外
両表面部および孔の表面部の少なくとも一部分または全
面にわたってカチオン交換機能を有する官能基、または
官能基を有する重合体が化学的に結合している中空糸状
多孔性膜を用いて処理精製するのがよい。More preferably, the membrane material of the porous membrane is polyolefin, the membrane structure has a three-dimensional network structure, and the membrane has a functional material having a cation exchange function over at least a portion or the entire surface of both the inside and outside of the membrane and the surface of the pores. It is preferable to carry out treatment and purification using a hollow fiber porous membrane to which a polymer having groups or functional groups is chemically bonded.
以下、本発明についてさらに具体的に説明する。The present invention will be explained in more detail below.
本発明においてカチオン交換機能を有する官能基として
は、スルホン酸基、カルボン酸基、リン酸基のH”タイ
プまたは金属塩タイプが使用される。In the present invention, H'' type or metal salt type of sulfonic acid group, carboxylic acid group, and phosphoric acid group are used as the functional group having a cation exchange function.
これらの官能基は膜1グラム当り0.05ミリ当量ない
し5ミリ当量含有されていなければならない。These functional groups should be present in an amount of 0.05 to 5 milliequivalents per gram of membrane.
この範囲以下では膜の透水能力の低下を招き、またこの
範囲を超えると膜のほかの性質、例えば機械的性質等の
低下を招く。Below this range, the water permeability of the membrane will be reduced, and above this range, other properties of the membrane, such as mechanical properties, will be reduced.
多孔性膜の平均孔径は0.01ミクロンないし5ミクロ
ンの範囲になければならない。この範囲より小さい場合
は透水能力が実用性能上充分でなく、またこれより大き
いとクラッドのリークが生じ、問題となる。The average pore size of the porous membrane should be in the range of 0.01 microns to 5 microns. If it is smaller than this range, the water permeability will not be sufficient for practical performance, and if it is larger than this range, leakage of the cladding will occur, which poses a problem.
平均孔径の測定には多くの方法があるが、本発明におい
ては、AsTM F316−70に記載されている、通
常エアーフロー法と呼ばれる空気圧を変えた場合の乾燥
膜と湿潤膜の空気透過流束から測定する方法に準拠する
。There are many methods for measuring the average pore diameter, but in the present invention, we use the air permeation flux of dry membrane and wet membrane when changing the air pressure, which is usually called the air flow method, which is described in AsTM F316-70. Comply with the method of measurement from
多孔膜の空孔率は20%ないし80%の範囲にあるもの
が用いられる。ここで空孔率とは、あらかじめ膜を水等
の液体に浸漬し、そののち乾燥させて、その前後の重量
変化から測定したものである。空孔率が上記範囲以外に
おいては、それぞれ透過速度、機械的性質の点で好まし
くない。The porous membrane used has a porosity in the range of 20% to 80%. Here, the porosity is measured by immersing the membrane in a liquid such as water in advance, then drying it, and measuring the weight change before and after that. Porosity values outside the above range are unfavorable in terms of permeation rate and mechanical properties.
本発明に使用される膜の材質としては、現在市販されて
いる材質のほとんどが使用できるが、例えばセルロース
(ジまたはトリ)アセテート、ポリスルホン、ポリフッ
化ビニリデン、ポリアミド。As the material for the membrane used in the present invention, most of the materials currently on the market can be used, such as cellulose (di or tri) acetate, polysulfone, polyvinylidene fluoride, and polyamide.
ポリエチレン、ポリプロピレン、エチレン−4フン化工
チレン共重合体等があげられる。カチオン交換機能含有
効果が大きいのは、ポリスルホン。Examples include polyethylene, polypropylene, ethylene-4-modified tyrene copolymer, and the like. Polysulfone has the greatest effect of containing a cation exchange function.
ポリオレフィン等、比較的疎水性膜を使用した場合であ
る。This is the case when a relatively hydrophobic membrane such as polyolefin is used.
多孔膜の孔構造は、成型加工方法によって種々形成でき
る。例えば、ポリスルホンは溶剤等を用6一
いて混合溶液とした後、中空糸状にノズルから吐出し、
凝固剤等で成型するいわゆる湿式法等を採用することに
より三次元綱目構造膜とすることができる。ポリオレフ
ィンの場合はいわゆる延伸法や、電子線照射後化学処理
で作られたエツチング法等により多孔膜とすることが可
能であるが、孔構造としては延伸法やエツチング法など
により得られた直孔貫通型の孔構造よりも、たとえば特
公昭59−37292号公報、特公昭40−957号公
報および特公昭47−17460号公報に示されたミク
ロ相分離法や混合抽出法などにより形成される三次元網
目構造を有するものが実用性能上好ましいがこの方法に
限定されるべきでない。特に特開昭55−1.3102
8号公報に示された構造を有する多孔性膜を用いること
により、従来技術では得られない優れた浄化方法を達成
することができた。The pore structure of the porous membrane can be formed in various ways depending on the molding method. For example, polysulfone is prepared by making a mixed solution using a solvent, etc., and then discharging it from a nozzle in the form of a hollow fiber.
A film with a three-dimensional mesh structure can be obtained by employing a so-called wet method of molding with a coagulant or the like. In the case of polyolefin, it is possible to make a porous membrane by a so-called stretching method or an etching method created by chemical treatment after electron beam irradiation. Rather than a through-hole structure, a tertiary pore structure formed by a microphase separation method or a mixed extraction method as shown in, for example, Japanese Patent Publication No. 59-37292, Japanese Patent Publication No. 40-957, and Japanese Patent Publication No. 47-17460, etc. Although a material having an original network structure is preferable in terms of practical performance, the method should not be limited to this method. Especially JP-A-55-1.3102
By using a porous membrane having the structure shown in Publication No. 8, it was possible to achieve an excellent purification method that could not be obtained using conventional techniques.
膜を構成する重合体の側鎖にカチオン交換機能を有する
官能基を導入する方法としては、公知の方法が採用され
る。例えばポリエチレンの側鎖にスルホン酸基を導入す
る方法としては、非反応性の溶媒中または硫酸中で無水
硫酸と反応させるか、ガス状で無水硫酸を反応させる方
法がとられる。A known method can be used to introduce a functional group having a cation exchange function into the side chain of the polymer constituting the membrane. For example, methods for introducing sulfonic acid groups into the side chains of polyethylene include reacting with sulfuric anhydride in a non-reactive solvent or sulfuric acid, or reacting with sulfuric anhydride in a gaseous state.
また、スチレンを電子線等で放射したのち、グラフトさ
せ、その後前記のスルホン化を行う方法でもよい。Alternatively, a method may be used in which styrene is irradiated with an electron beam or the like, then grafted, and then the above-mentioned sulfonation is performed.
また、カルボン酸基を導入する場合は、あらかじめ電子
線等で膜を照射後、アクリル酸を気相中でグラフトさせ
る方法がとられる。Further, when introducing a carboxylic acid group, a method is used in which the film is irradiated with an electron beam or the like in advance, and then acrylic acid is grafted in the gas phase.
前記官能基を膜を構成する重合体の側鎖へ導入するには
、膜に成型する前に導入する事もできるが、膜に成型し
たのち膜の内外面および孔の表面部の少なくとも一部分
に、化学的に付加結合させる方法が好ましい。官能基は
できるだけ均一に、膜の各表面に付加されるのが望まし
いが、膜の内面に優先的に付加した方が良い場合もある
。In order to introduce the functional groups into the side chains of the polymer constituting the membrane, it is possible to introduce them before forming the membrane, but after forming the membrane, it is possible to introduce the functional groups into the side chains of the polymer constituting the membrane. , a method of chemically adding bonding is preferred. Although it is desirable that the functional groups be added to each surface of the membrane as uniformly as possible, there are cases where it is better to preferentially add the functional groups to the inner surface of the membrane.
本発明におけるカチオン交換機能を有する官能基の量は
、膜1グラム当りのミリ当量をさすが、ここで膜1グラ
ムとは、膜のかなりマクロ的な重量を基準にした値のこ
とであり、例えば膜表面一部、又は内部一部だけをとり
出した重量の事ではない。膜のすぐれた機械的性質を保
持したままカチオン交換機能を有する官能基を付加する
には、出来るだけ膜の孔の表面に均一に、より優先的に
官能基を存在させた方が好ましいので、当然部分的な不
均質性は許容される。従って、ここで云う膜1グラムと
云う意味は、膜の全面にわたって平等に加味測定された
値を示しており、極く微視的な観点での重量を意味して
いない。The amount of functional groups having a cation exchange function in the present invention refers to milliequivalents per gram of membrane, and 1 gram of membrane here is a value based on the fairly macroscopic weight of the membrane, for example. It does not refer to the weight of only a portion of the surface or inside of the membrane. In order to add a functional group having a cation exchange function while maintaining the membrane's excellent mechanical properties, it is preferable to have the functional group present as uniformly and preferentially as possible on the surface of the pores of the membrane. Naturally, partial heterogeneity is allowed. Therefore, the meaning of 1 gram of membrane here refers to the value measured evenly over the entire surface of the membrane, and does not mean the weight from an extremely microscopic point of view.
復水を前記中空糸状多孔性膜に通す運転条件は、公知の
範囲で行われる。復水処理の場合は、通常外圧法と呼ば
れる濾過方法がとられているので、原水側とが法例の差
圧は5kg/cut以下である。濾過中、膜の透水能力
の経時的低下を防ぐため、すなわち中空糸状多孔性膜の
外面側に付着するクラッドを脱落させるために、空気に
よる逆洗または振動操作を行う事ができる。The operating conditions for passing the condensate through the hollow fiber porous membrane are within a known range. In the case of condensate treatment, a filtration method called an external pressure method is usually used, so the pressure difference between the raw water side and the method is 5 kg/cut or less. During filtration, in order to prevent the water permeability of the membrane from decreasing over time, that is, to remove the crud that adheres to the outer surface of the hollow fiber porous membrane, backwashing with air or vibration operation can be performed.
以下に本発明を実施例によって説明するが、それらは本
発明を限定するものではない。EXAMPLES The present invention will be explained below with reference to examples, but they are not intended to limit the invention.
実施例1.2及び比較例1
微粉硅酸くニブシルVN 3 L P) 22.1重量
部、ジオクチルフタレート(DOP)55.0重量部、
ポリエチレン樹脂粉末〔旭化成S−360グレード〕2
3.0重量部の組成物を予備混合した後、30ミリ2軸
押出機で内径0.7m、厚み0.25++nの中空糸状
に押出した後、1,1. I −)リクロルエタン〔ク
ロロセンVG(商品名)〕中に60分間浸漬し、DOP
を押出した。更に温度60℃の苛性ソーダ40%水溶液
中に約20分浸漬して微粉硅酸を押出したあと、水洗、
乾燥した。得られた中空糸状多孔性膜をエチレンジクロ
ライド−無水硫酸溶液(濃度8.9%)に浸漬し、40
℃で反応させ、第1表に示されるような性状を有する実
施例膜−1,2を得た。なお、あわせてスルホン化処理
をしない比較例膜1の性状を示す。Example 1.2 and Comparative Example 1 22.1 parts by weight of finely divided nibucyl silicate VN3LP), 55.0 parts by weight of dioctyl phthalate (DOP),
Polyethylene resin powder [Asahi Kasei S-360 grade] 2
After premixing 3.0 parts by weight of the composition, it was extruded into a hollow fiber shape with an inner diameter of 0.7 m and a thickness of 0.25++n using a 30 mm twin-screw extruder. I-) DOP
Extruded. Furthermore, after extruding the fine powder of silicic acid by immersing it in a 40% aqueous solution of caustic soda at a temperature of 60°C for about 20 minutes, washing with water,
Dry. The obtained hollow fiber porous membrane was immersed in an ethylene dichloride-anhydrous sulfuric acid solution (concentration 8.9%).
The reaction was carried out at .degree. C. to obtain Example membranes 1 and 2 having properties as shown in Table 1. In addition, the properties of Comparative Example Membrane 1 without sulfonation treatment are also shown.
(以下余白)
第1表
■) 水道水を分画分子量6,000の限外〆p過膜で
処理したのちの初期の透水量(差圧1kg/c+J)2
) スルホン酸(−3OJ)型の多孔膜を塩化カルシウ
ム(IN)水溶液中に入れて平衡とし、その溶液中に生
した塩化水素を0.INの苛性ソーダ水溶液(力値f)
で指示薬としてフェノールフタレインを用いて滴定し、
その値X (cc)をカルシウム塩状態での乾燥時重量
得られた3種の膜について、下記条件でI過テストを行
なった。(Margins below) Table 1 ■) Initial water permeability after treating tap water with an ultrafiltration membrane with a molecular weight cut off of 6,000 (differential pressure 1 kg/c + J)2
) A sulfonic acid (-3OJ) type porous membrane is placed in an aqueous calcium chloride (IN) solution to achieve equilibrium, and the hydrogen chloride produced in the solution is reduced to 0. IN caustic soda aqueous solution (force value f)
titrate using phenolphthalein as an indicator,
The value X (cc) of the dry weight in the calcium salt state was obtained for the three types of membranes, and an I-passage test was conducted under the following conditions.
第2表 (操作条件)
が過速度(外圧法) 0.62 ″′/+1温
度 25℃
使用膜の長さくm)1
上記条件下で220011R通水後、膜の性状は下表に
示されるとおりであった。Table 2 (Operating conditions) Overspeed (external pressure method) 0.62 ″'/+1 Temperature 25°C Length of membrane used (m) 1 After passing water through 220011R under the above conditions, the properties of the membrane are shown in the table below. That's right.
第3表 (テスト後の膜性状)
γp過速度保持率2)85 95 96
65I)蓚酸で洗浄前後の膜の乾燥重量より計算。Table 3 (Membrane properties after test) γp overspeed retention rate 2) 85 95 96
65I) Calculated from the dry weight of the membrane before and after washing with oxalic acid.
なお、この付着試料は99%鉄分である事を確認してい
る。It has been confirmed that this adhered sample is 99% iron.
2)操作運転前後の初期透水量の比率
3) 実施例膜2−Aは一8O3Hタイプ4) 実施例
膜2−Bは−3O3Naタイプ表に示されるように、膜
表面がスルホン化処理された実施例膜はいずれも比較例
膜に比らべて鉄の付着がOであり、膜の透水能ノ〕保持
率も格段にすくれている。2) Ratio of initial water permeability before and after operation 3) Example membrane 2-A is -8O3H type 4) Example membrane 2-B is -3O3Na type As shown in the table, the membrane surface was sulfonated. All of the example membranes had less iron adhesion than the comparative example membranes, and the retention rate of water permeability of the membranes was also much lower.
実施例3及び比較例2
微粉硅酸にブシルVN 3 L P) 22.1重量部
、ジオクチルフタレート(DOP)55.4重量部、ポ
リプロピレン樹脂粉末〔住友化学製、A S−171A
)22.5重量部の組成物を予備混合した後、30ミリ
2軸押出機で内径0.7mm、厚み0.25mmの中空
糸状に押出した後、1,1.1− トリクロルエタン〔
クロロセンVG(商品名)〕中に60分間浸漬し、DO
Pを押出した。更に温度60℃の苛性ソーダ40%水溶
液中に約20分浸漬して微粉硅酸を押出したあと、水洗
、乾燥した。得られた三次元網目構造からなるポリエチ
レン多孔膜を、電子加速器(加速電圧1.5MeV、電
子線電流1 mA)を用いて窒素雰囲気下100KGy
で照射し、あらかじめ溶存酸素をo、ippm以下にし
た50%アクリル酸水溶液(0,2511t%のモール
塩を含有)に浸漬して25°Cで1時間反応させ=13
〜
た。これにより、陽イオン交換容量は3.7ミリ当量/
グラム膜を有する実施例3を得た。Example 3 and Comparative Example 2 Finely powdered silicic acid, 22.1 parts by weight of butyl VN 3 LP), 55.4 parts by weight of dioctyl phthalate (DOP), polypropylene resin powder [manufactured by Sumitomo Chemical, A S-171A]
) After premixing 22.5 parts by weight of the composition, it was extruded into a hollow fiber shape with an inner diameter of 0.7 mm and a thickness of 0.25 mm using a 30 mm twin screw extruder, and then 1,1.1-trichloroethane [
chlorocene VG (trade name)] for 60 minutes, and then
P was extruded. Further, the product was immersed in a 40% aqueous solution of caustic soda at a temperature of 60° C. for about 20 minutes to extrude the fine powder of silicic acid, followed by washing with water and drying. The obtained porous polyethylene film consisting of a three-dimensional network structure was heated at 100 KGy in a nitrogen atmosphere using an electron accelerator (acceleration voltage 1.5 MeV, electron beam current 1 mA).
and immersed in a 50% aqueous acrylic acid solution (containing 0.2511 t% of Mohr's salt) in which the dissolved oxygen was reduced to below 0.1 ppm and reacted at 25°C for 1 hour = 13
~ Ta. As a result, the cation exchange capacity is 3.7 milliequivalents/
Example 3 having a Gram membrane was obtained.
この実施例膜3−A (−COOHタイプ)および3−
B(−COONaタイプ)と、グラフト処理していない
比較例膜2を用いて、前記の実施例と同じ濾過条件で運
転し、2500時間通水した。膜の性状は下記の値を示
した。This example membrane 3-A (-COOH type) and 3-
B (-COONa type) and Comparative Example Membrane 2 without grafting treatment were operated under the same filtration conditions as in the above example, and water was passed for 2500 hours. The properties of the membrane showed the following values.
第4表
1) 実施例膜3−A、3−B、比較例膜2の物性は以
下のとおりである。Table 4 1) The physical properties of Example Membranes 3-A and 3-B and Comparative Example Membrane 2 are as follows.
外径(m) 1.20 1.20 1.2
0内径(m) 0.72 0.72 0.
71平均孔径(μ) 0.30 0.30 0
.30空孔率(%) 59 59 60
なお、アクリル酸のグラフト化当量は重量法によった。Outer diameter (m) 1.20 1.20 1.2
0 Inner diameter (m) 0.72 0.72 0.
71 Average pore diameter (μ) 0.30 0.30 0
.. 30 Porosity (%) 59 59 60
Note that the grafting equivalent of acrylic acid was determined by the gravimetric method.
原子力復水の浄化に本発明を適用する事により、中空糸
状膜のろ法例に付着する固型状鉄の生成防止が可能にな
り、透水速度の低下が実質的にほとんどなく、長寿命化
がはがれるようになった。By applying the present invention to the purification of nuclear condensate, it is possible to prevent the formation of solid iron that adheres to hollow fiber membrane filtration methods, and there is virtually no decrease in water permeation rate, resulting in a longer service life. It started to peel off.
特許出願人 旭化成工業株式会社
=15−
手続補正書(自発)
昭和62年 7月31日
特許庁長官 小 川 邦 夫 殿
1、事件の表示
昭和62年特許願第13164.0号
2、発明の名称
復水の浄化方法
3、補正をする者
事件との関係 特許出願人
大阪府大阪市北区堂島浜1丁目2番6号(003)旭化
成工業株式会社
4、補正の対象
明細書の[発明の詳細な説明]の欄
5、補正の内容
補正の内容
明細書第9頁第16行と第17行の間に以下の文を挿入
する。Patent applicant: Asahi Kasei Kogyo Co., Ltd. = 15- Procedural amendment (voluntary) July 31, 1985 Director General of the Patent Office Kunio Ogawa 1, Indication of the case 1988 Patent Application No. 13164.0 2, Invention Name Condensate purification method 3, relationship with the case of the person making the amendment Patent applicant Asahi Kasei Kogyo Co., Ltd. 4, 1-2-6 Dojimahama, Kita-ku, Osaka-shi, Osaka (003), Insert the following sentence between lines 16 and 17 on page 9 of the detailed description of the amendment.
「さらに、実際に復水を処理する前に、中空糸状多孔膜
のカチオン交換機能を有する官能基を、あらかしめ鉄な
どの塩タイプに変性しておくことも効果的である。」
以上
手続補正書(自発)
昭和62年 9月l乙日
特許庁長官 小 川 邦 夫 殿
1、事件の表示 昭和62年特許願第1.3164
0号2、 発明の名称
復水の浄化方法
3、補正をする者
事件との関係 特許出願人
大阪府大阪市北区堂島浜1丁目2番6号4、補正の対象
明細書の[発明の詳細な説明jの請
5、補正の内容
(1)明細書第4頁最終行から第5頁1行目の「カチオ
ン交換−−−−−−−官能基を有する」を、「スルホン
酸基またはスルホン酸塩基、またはスルホン酸基または
スルホン酸塩基を有する」と訂正する。"Furthermore, it is also effective to modify the functional group that has a cation exchange function in the hollow fiber porous membrane into a salt type, such as iron, before actually treating the condensate." Letter (spontaneous) September 1, 1986 Kunio Ogawa, Commissioner of the Patent Office 1, Indication of the case Patent Application No. 1.3164 of 1988
0 No. 2, Name of the invention Method for purifying condensate 3, Relationship with the case of the person making the amendment Patent applicant 1-2-6-4 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture [Details of the invention] Explanation j, Request 5, Contents of amendment (1) From the last line of page 4 to the first line of page 5 of the specification, “having a cation-exchanging functional group” has been replaced with “having a sulfonic acid group or "having a sulfonic acid group, or a sulfonic acid group or a sulfonic acid group" is corrected.
(2)同第5頁、8行目の「る。」を、「る。官能基の
含有量が小であρても汚染防止効果が大で、かつその効
果に持続性があるという点から、スルホン酸基、スルホ
ン酸塩基が特に好ましい。」と訂正する。(2) "Ru." in the 8th line of page 5 of the same book has been changed to "Ru." The fact that even if the content of functional groups is small and ρ, the pollution prevention effect is large and the effect is sustainable. Therefore, sulfonic acid groups and sulfonic acid groups are particularly preferred.''
(3)同第8頁、3行目の「放射」を、「照射」と訂正
する。(3) On page 8, line 3, "radiation" is corrected to "irradiation."
(4)同第8頁、6行目の1場合は、」を、「場合は、
例えば」と訂正する。(4) In the 1st case on page 8, line 6 of the same page, replace "in the case" with "in the case,
For example,” he corrected.
(5)同第13頁、最終行の「−ル塩を含有)」を、[
−ル塩およびアクリル酸1モルに対して0.25モルの
トリメチロールプロパントリメタクリレートを含有)」
と訂正する。(5) On page 13 of the same page, in the last line, "contains salts)" was changed to [
(contains 0.25 mol of trimethylolpropane trimethacrylate per 1 mol of trimethylol salt and acrylic acid)
I am corrected.
以上that's all
Claims (3)
水したのち、復水を側鎖にカチオン交換機能を有する官
能基を膜1グラム当り0.05ミリ当量ないし5ミリ当
量有し、平均孔径0.01ミクロンないし5ミクロン、
空孔率20%ないし80%、膜厚10ミクロンないし5
ミリである中空糸状多孔性膜に通すことを特徴とする復
水の浄化方法。(1) After condensing the steam generated in a boiling water reactor in a condenser, 0.05 to 5 milliequivalents of functional groups with a cation exchange function are added to the side chains of the condensate per gram of membrane. and an average pore diameter of 0.01 to 5 microns,
Porosity 20% to 80%, film thickness 10 microns to 5
A method for purifying condensate, which is characterized by passing it through a hollow fiber-like porous membrane having a diameter of 1.5 mm.
とハロゲン化オレフィンの共重合体、ポリフッ化ビニリ
デンまたはポリスルホンの材質からなり、かつ官能基が
膜の内外表面部および孔の表面部の少なくとも一部分に
存在するものである特許請求の範囲第1項記載の復水の
浄化方法。(2) The hollow fiber porous membrane is made of polyolefin, a copolymer of olefin and halogenated olefin, polyvinylidene fluoride, or polysulfone, and the functional group is present on at least a portion of the inner and outer surfaces of the membrane and the surface of the pores. A method for purifying condensate according to claim 1, which comprises:
の孔構造が三次元網目構造からなるものである特許請求
の範囲第2項記載の復水の浄化方法。(3) The method for purifying condensate according to claim 2, wherein the hollow fiber porous membrane is made of polyolefin and its pore structure is a three-dimensional network structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62131640A JPS63296803A (en) | 1987-05-29 | 1987-05-29 | Condensate purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62131640A JPS63296803A (en) | 1987-05-29 | 1987-05-29 | Condensate purification method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63296803A true JPS63296803A (en) | 1988-12-02 |
Family
ID=15062781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62131640A Pending JPS63296803A (en) | 1987-05-29 | 1987-05-29 | Condensate purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63296803A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02233193A (en) * | 1989-03-07 | 1990-09-14 | Asahi Chem Ind Co Ltd | Pure water preparation method |
US8141567B2 (en) * | 2006-01-20 | 2012-03-27 | Kabushiki Kaisha Toshiba | Apparatus and method for photoresist removal processing |
-
1987
- 1987-05-29 JP JP62131640A patent/JPS63296803A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02233193A (en) * | 1989-03-07 | 1990-09-14 | Asahi Chem Ind Co Ltd | Pure water preparation method |
US8141567B2 (en) * | 2006-01-20 | 2012-03-27 | Kabushiki Kaisha Toshiba | Apparatus and method for photoresist removal processing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014192883A1 (en) | Composite semipermeable membrane | |
JP3312634B2 (en) | Chelate-type ion-adsorbing membrane and manufacturing method | |
JP2686949B2 (en) | Selective adsorption functional microfilter and its manufacturing method | |
JPH0321390A (en) | Removal of heavy metal ion in water | |
JPS63296803A (en) | Condensate purification method | |
JPS63240902A (en) | Treating method | |
JP3673452B2 (en) | Pollution-resistant porous filtration membrane | |
JPS62258711A (en) | Production of grafted membrane | |
JPH01224009A (en) | Treatment of graft membrane | |
JPS5938242A (en) | Anion-charged porous polyolefin resin membrane and production thereof | |
JPS6283006A (en) | Manufacturing process for separating functional material | |
JP2733287B2 (en) | Method for simultaneously removing multiple heavy metal ions | |
JPS62210005A (en) | Novel composite functional membrane | |
JP3017244B2 (en) | Method for simultaneously removing multiple heavy metal ions | |
JPH022863A (en) | Production of anion-charged polyolefin resin porous film | |
AU2005312347A1 (en) | Membrane post treatment | |
JP2921763B2 (en) | Ultrapure water production method | |
JPH07106304B2 (en) | Cobalt ion removal method | |
JPS63134005A (en) | Pressure withstanding microporous hollow yarn filter membrane | |
JPH04190837A (en) | Porous membrane of crosslinked sulfonated poly(vinylidene fluoride) resin and manufacture thereof | |
JPS6014984A (en) | Method for removing ion and fine particle | |
JPH02265929A (en) | Bilayer ion exchange membrane | |
JPH06343843A (en) | Fluorinated hydrophilic fine porous membrane and water treating method using the same | |
JPS61101212A (en) | Formation of hollow yarn composite membrane | |
JPH0483585A (en) | Purification of ultra-pure water |