JPH0321390A - Removal of heavy metal ion in water - Google Patents

Removal of heavy metal ion in water

Info

Publication number
JPH0321390A
JPH0321390A JP15241589A JP15241589A JPH0321390A JP H0321390 A JPH0321390 A JP H0321390A JP 15241589 A JP15241589 A JP 15241589A JP 15241589 A JP15241589 A JP 15241589A JP H0321390 A JPH0321390 A JP H0321390A
Authority
JP
Japan
Prior art keywords
heavy metal
water
membrane
metal ions
porous membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15241589A
Other languages
Japanese (ja)
Inventor
Takehiko Ootoyo
武彦 大豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15241589A priority Critical patent/JPH0321390A/en
Priority to US07/493,751 priority patent/US5087372A/en
Priority to FR9003618A priority patent/FR2644772B1/en
Priority to DE4009453A priority patent/DE4009453A1/en
Publication of JPH0321390A publication Critical patent/JPH0321390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently remove heavy metal ions and colloidal substances in water simultaneously by adsorbing and collecting heavy metal ions such as Ni, Co or the like and colloidal substances dissolved in a very small amount in water treatment technique by using a specific porous membrane and holding pH to 3 or more. CONSTITUTION:In simultaneously removing heavy metal ions and colloidal substances contained in water or waste water in various fields of precise electronics, medical treatment, pharmacy or pressurized water atomic power generation, treatment is performed by employing a porous membrane having a chelate group bonding heavy metal ions in its side chain and holding pH of water to be treated to 3 or more. This removing method is especially pref. when the heavy metal ions of water to be treated are nickel and cobalt ions and the porous membrane is composed of a hollow yarn like porous membrane having an iminodiacetate group contained in its side chain in an amount of 3 miliequivalent per/1g of a base membrane or more, an average pore size of 0.01-5mum, a void ratio of 20-90% and a thickness of 10mum-5mm. This method can largely contribute to the purification and effective utilization of waste water related to atomic power.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、精密電子工学、医療、製薬、加圧水型などの
原子力発電などの各分野における用廃水中に含まれる重
金属イオンとコロイド状物質を同時に効率良く除去する
方法である。
Detailed Description of the Invention (Field of Industrial Application) The present invention is intended to reduce heavy metal ions and colloidal substances contained in industrial wastewater in various fields such as precision electronics, medicine, pharmaceuticals, and nuclear power generation such as pressurized water type. At the same time, this is an efficient method for removing.

(従来の技術) 従来の水処理技術においては、コロイド状の微粒子、菌
体などはマイクロフィルターやケーク過などであらかじ
め除去した後に、溶存金属イオンをイオン交換樹脂など
で除去してきた。これらの処理方法は操作が煩雑で、多
量のイオン交換樹脂を必要とし、かつイオン交換樹脂の
寿命が比較的短く、使用済み後の樹脂の廃棄などの問題
があった。マイクロ 過膜へのイオン交換基の導入につ
いて検討が進められているが、低濃度領域でのイオンの
捕集性能の低下が生じるため前記の課題を完全に克服す
ることは困難であった。
(Conventional Technology) In conventional water treatment technology, colloidal particles, bacterial cells, and the like are removed in advance using a microfilter or cake filtration, and then dissolved metal ions are removed using an ion exchange resin or the like. These treatment methods are complicated to operate, require a large amount of ion exchange resin, have a relatively short lifespan, and have problems such as disposal of the used resin. Studies have been underway to introduce ion exchange groups into micro membranes, but it has been difficult to completely overcome the above-mentioned problems because the ion collection performance deteriorates in low concentration regions.

(発明が解決しようとする課題) 本発明は、水処理技術において微量に溶存するニッケル
、コバルト等の重金属イオンとコロイド状物質を吸着捕
集により効率的に除去する事を目的とする。
(Problems to be Solved by the Invention) The present invention aims to efficiently remove trace amounts of heavy metal ions such as nickel and cobalt and colloidal substances dissolved in water treatment technology by adsorption and collection.

(課題を解決するための手段) 本発明者らは、前記目的を達成する為に、鋭意検討した
結果、以下の発明に達した。
(Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention have made extensive studies and have arrived at the following invention.

すなわち、水中の重金属イオンを、除去するにあたり、
処理水のpHを3以上に、好ましくは7以上にせしめ該
重金属イオンと結合するキレート基を側鎖に有する多孔
性膜を用いることにより、処理水中の微量の重金属イオ
ンとコロイド状物質を同時に除去する方法である。
In other words, when removing heavy metal ions from water,
Trace amounts of heavy metal ions and colloidal substances in the treated water are simultaneously removed by raising the pH of the treated water to 3 or higher, preferably 7 or higher, and using a porous membrane that has a chelate group in its side chain that binds to the heavy metal ions. This is the way to do it.

更に、基材膜1グラム当り、3ミリ当量以上のイミノジ
酢酸基を側鎖に含有し、平均孔径0.Olμm〜5μm
1空孔率20%〜90%、膜厚10μm〜5Inff+
である中空糸状多孔膜で以て、処理水中のニッケル、コ
バルトを除去する方法である。
Furthermore, per 1 gram of the base membrane, the side chain contains 3 milliequivalents or more of iminodiacetic acid groups, and the average pore size is 0. Olμm~5μm
1 Porosity 20%~90%, film thickness 10μm~5Inff+
This method uses a hollow fiber porous membrane to remove nickel and cobalt from treated water.

次に、本発明を具体的に説明する。Next, the present invention will be specifically explained.

重金属イオンは、具体的には、鉄、銅、コバルト、ニッ
ケル等であり、コロイド状物質は金属成分クラッド、高
分子有機物、菌などの水不溶性成分である。
Specifically, the heavy metal ions are iron, copper, cobalt, nickel, etc., and the colloidal substances are water-insoluble components such as metal component cladding, polymeric organic matter, and bacteria.

多孔性基材膜は何らかの化学修飾を受けていないベース
膜のことである。
A porous base membrane is a base membrane that has not undergone any chemical modification.

本発明に、使用される重金属と結合するキレート基の例
としては、イミノジ酢酸等が好ましい。
Preferred examples of the chelate group that binds to heavy metals used in the present invention include iminodiacetic acid and the like.

本発明に使用されるキレート基を側鎖に有する多孔性膜
としては、好ましくは基材となる、多孔性膜の材質がポ
リオレフィン、オレフィンとハロゲン化オレフィンの共
重合体、ポリフッ化ビニリデンまたはポリスルホンであ
り、多孔性膜の内外表面部および孔の表面部の少なくと
も一部分に、キレート基を有する官能基が化学的に結合
した中空糸状多孔性膜を用いるのがよく、前記官能基の
多孔性膜への結合は、直接でもよく、また官能基を含有
する重合体が結合されている場合でもよい。
The porous membrane having a chelate group in its side chain used in the present invention is preferably made of a polyolefin, a copolymer of an olefin and a halogenated olefin, polyvinylidene fluoride, or polysulfone. It is preferable to use a hollow fiber porous membrane in which a functional group having a chelate group is chemically bonded to the inner and outer surfaces of the porous membrane and at least a portion of the surface of the pores. The bond may be direct or may be bonded to a polymer containing a functional group.

更に好ましくは、多孔性膜の膜の材質がポリオレフィン
であり、かつ膜構造が三次元網目構造をなし、膜の内外
両表面部および孔の表面部の少なくとも一部分または全
面にわたって、キレート基を有する官能基、または官能
基を有する重合体が化学的に結合している中空糸状多孔
性膜を用いて処理精製するのがよい。
More preferably, the membrane material of the porous membrane is polyolefin, the membrane structure has a three-dimensional network structure, and at least a portion or the entire surface of both the inside and outside surfaces of the membrane and the pores are covered with a functional material having a chelate group. It is preferable to carry out treatment and purification using a hollow fiber porous membrane to which a polymer having groups or functional groups is chemically bonded.

この官能基は基材膜1g当たり3ミリ当量以上のキレー
ト基が含有されていなければならない。
This functional group must contain 3 milliequivalents or more of chelate groups per gram of base film.

この範囲以下では膜のイオン除去能力の低下を招く。尚
、ここでミリ当量は官能基当りの値であり、たとえばイ
ミノジ酢酸1ミリモルが2ミリ当量である。多孔性膜の
平均孔径は0.01μm〜5μmの範囲、好ましくは、
0.Olμm−1μmの範囲から選ばれる。この範囲よ
り小さい場合は透水能力が実用性能上充分でなく、また
これより大きいとイオン除去性の点で問題となる。
Below this range, the ion removal ability of the membrane decreases. Note that the milliequivalent here is a value per functional group, and for example, 1 mmol of iminodiacetic acid is 2 milliequivalent. The average pore size of the porous membrane is in the range of 0.01 μm to 5 μm, preferably
0. It is selected from the range of 1 μm to 1 μm. If it is smaller than this range, the water permeability will not be sufficient for practical performance, and if it is larger than this, problems will arise in terms of ion removal.

平均孔径の測定には多くの方法があるが、本発明におい
ては、ASTM  F−316−70に記載されている
、通常エアーフロー法と呼ばれる空気圧を変えた場合の
乾燥膜と湿潤膜の空気透過流束から測定する方法に準拠
する。
There are many methods for measuring the average pore diameter, but in the present invention, we use the air permeation method between dry and wet membranes when changing the air pressure, which is usually called the air flow method, which is described in ASTM F-316-70. Conforms to the method of measuring from flux.

多孔性膜の空孔率は20%〜90%、好ましくは50%
〜80%の、範囲にあるものが用いられる。
The porosity of the porous membrane is 20% to 90%, preferably 50%
~80% is used.

ここで空孔率とは、あらかじめ膜を水等の液体に浸漬し
、その後乾燥させて、その前後の重量変化から測定した
ものである。空孔率が上記範囲以外においては、それぞ
れ透過速度、機械的性質の点で好ましくない。
Here, the porosity is measured by immersing the membrane in a liquid such as water in advance, then drying it, and measuring the weight change before and after that. Porosity values outside the above range are unfavorable in terms of permeation rate and mechanical properties.

多孔性膜の形状は、平膜状(プリーツ状、スパイラル状
を含む)、チューブ状、中空糸状等が使用されるが、特
に中空糸状のものが好ましい。
The shape of the porous membrane may be a flat membrane (including pleats or spirals), a tube, or a hollow fiber, with hollow fibers being particularly preferred.

基材となる多孔質膜の孔構造は、威形加工方法によって
、種々形成できる。例えば、基材ポリマーがポリスルホ
ンの場合は溶剤等を用いて混合溶液とした後、中空糸状
にノズルから吐出し、凝固剤等で成形するいわゆる湿式
法等を採用することにより三次元網目構造膜とすること
ができる。ポリオレフィンの場合は延伸法や、電子線照
射後化学処理により作られる、いわゆるエッチング法等
により多孔質膜とすることも可能であるが、孔構造とし
ては延伸法やエッチング法などにより得られた直孔貫通
型の孔構造よりも、例えば、特公昭5 9−3 7 2
 9 2号公報、特公昭4 0−9 5 7号公報及び
特公昭47−17460号公報に示されたミクロ相分離
法や混合抽出法などにより形成される三次元網目構造を
有するものが実用性能上好ましい。
The pore structure of the porous membrane serving as the base material can be formed in various ways using shaping methods. For example, if the base polymer is polysulfone, a three-dimensional network structure film can be created by using a so-called wet method, in which a mixed solution is made using a solvent, etc., and then it is discharged from a nozzle in the form of a hollow fiber and shaped with a coagulant, etc. can do. In the case of polyolefin, it is possible to make a porous membrane by a stretching method or a so-called etching method, which is made by chemical treatment after electron beam irradiation. For example, rather than a hole-through type hole structure,
The practical performance of those having a three-dimensional network structure formed by the micro phase separation method, mixed extraction method, etc. shown in Japanese Patent Publication No. 9 2, Japanese Patent Publication No. 40-95-7, and Japanese Patent Publication No. 47-17460 It is preferable.

特に、特開昭55−131028号公報に示された構造
を有する膜を用いるのが好ましい。
In particular, it is preferable to use a film having the structure shown in Japanese Patent Application Laid-Open No. 55-131028.

多孔質膜を構成する重合体の側鎖にキレート基を有する
官能基を導入する方法としては、公知の方法が採用され
る。例えば、ポリエチレンの側鎖にイミノジ酢酸を導入
する方法としては、ポリエチレン膜に電子線等を照射後
、グリシジルメタクリレートを気相中でグラフト反応さ
せ、その後、公知の方法でイミノジ酢酸を付加させる方
法がとられる。
A known method can be used to introduce a functional group having a chelate group into the side chain of the polymer constituting the porous membrane. For example, a method for introducing iminodiacetic acid into the side chain of polyethylene is to irradiate a polyethylene film with an electron beam or the like, perform a graft reaction with glycidyl methacrylate in the gas phase, and then add iminodiacetic acid using a known method. Be taken.

前記官能基を、多孔質膜を構成する重合体の側鎖へ導入
するには、膜に成形する前に導入することもできるが、
膜に成形した後膜の内外面及び孔の表面部の少なくとも
一部分に、化学的に付加結合させる方法が好ましい。官
能基は出来るだけ均一に、膜の各表面に結合させるのが
望ましいが、膜の孔表面に優先的に結合させた方が良い
場合もある。
In order to introduce the functional group into the side chain of the polymer constituting the porous membrane, it can be introduced before forming it into a membrane.
A preferred method is to form the membrane into a membrane and then chemically attach it to at least a portion of the inner and outer surfaces of the membrane and the surface of the pores. Although it is desirable that the functional groups are bonded to each surface of the membrane as uniformly as possible, it may be preferentially bonded to the pore surfaces of the membrane in some cases.

本発明における、官能基の量は、多孔性基材膜1g当た
りのミリ当量を指すが、ここで膜1gとは、膜のかなり
マクロ的な重量を基準にした値のことであり、例えば、
膜表面の一部、又は内部の一部だけを取りだした重量の
ことではない。膜の優れた機械的性質を保持したまま官
能基を結合させるには、出来るだけ膜の孔の表面に均一
に、より優先的に官能基を存在させた方が好ましいので
、当然部分的な不均質性は許容される。従って、ここで
言う膜1gと言う意味は、膜の全面にわたって平等に加
味測定された値を示しており、極く微視的な観点での重
量を意味していない。
In the present invention, the amount of functional groups refers to milliequivalents per gram of porous base membrane, and 1 gram of membrane here refers to a value based on the rather macroscopic weight of the membrane, for example:
It does not refer to the weight of only a part of the membrane surface or the inside. In order to bond functional groups while maintaining the membrane's excellent mechanical properties, it is preferable to make the functional groups exist as uniformly and preferentially as possible on the surface of the pores of the membrane. Homogeneity is acceptable. Therefore, the meaning of 1 g of membrane here indicates the value measured evenly over the entire surface of the membrane, and does not mean the weight from an extremely microscopic viewpoint.

本発明におけるキレート基を有する多孔性膜の役割は非
常に重要である。
The role of the porous membrane having chelate groups in the present invention is very important.

すなわち、前記、キレート基を側鎖に有する多孔性膜を
用いる場合は、イオン交換樹脂を用いる場合に比べ、コ
ロイド状物質が除去できるだけでなく、はるかに優れた
イオン除去特性が得られる。
That is, when using the above-mentioned porous membrane having a chelate group in its side chain, not only can colloidal substances be removed, but also far superior ion removal properties can be obtained compared to when using an ion exchange resin.

また、使用膜量も少なくてすみ、何よりも、再生液量が
画期的に少なくてすみ、かつ完全に再生処理される。こ
の事は、溶出成分を少なくするうえで極めて大きい利点
である。
Furthermore, the amount of membrane used can be reduced, and above all, the amount of regenerating liquid can be dramatically reduced, and the regeneration process can be completed completely. This is a huge advantage in reducing the amount of eluted components.

さらに、前記、キレート基を有する膜は、イオン交換樹
脂に比して比較にならないほど孔径が小さい(樹脂は数
十μから百μであるのに比し、膜は5μ以下)ので、溶
出成分のもれが少なくてすむ。
Furthermore, the aforementioned membranes with chelate groups have incomparably smaller pore diameters than ion exchange resins (resin's pore size is from several tens of microns to 100 microns, whereas membranes are less than 5 microns), so eluted components There is less leakage.

pHを3以上にせしめるには、リチウムのようなアルカ
リ金属の水酸化物を添加して調整する。
To adjust the pH to 3 or more, add an alkali metal hydroxide such as lithium.

(実施例) 実施例および比較例1 本発 に適 するキレート基を  る多旦星黒 微粉珪酸(ニプシルVN 3 L P) 22.1重量
部、ジブチルフタレート(DBP)55.0重量部、ポ
リエチレン樹脂粉末〔旭化成■製、SH−800グレー
ド123.0重量部の組成物を予備混合した後、30ミ
リ2軸押出機で内径Q,7mm,厚み0.25閣の中空
糸状に押出した後、1,1.1−トリクロロエタン〔ク
ロロセンVG(商品名)〕中に60分間浸漬し、DBP
を抽出した。更に温度60℃の苛性ソーダ40%水溶液
中に約20分浸漬して微粉珪酸を抽出した後、水洗、乾
燥した。
(Example) Example and Comparative Example 1 22.1 parts by weight of Tansei black fine powder silicic acid (Nipsil VN3LP) containing a chelate group suitable for the present invention, 55.0 parts by weight of dibutyl phthalate (DBP), polyethylene After premixing a composition of 123.0 parts by weight of resin powder [manufactured by Asahi Kasei ■, SH-800 grade], it was extruded into a hollow fiber shape with an inner diameter of 7 mm and a thickness of 0.25 mm using a 30 mm twin screw extruder. DBP
was extracted. Further, it was immersed in a 40% aqueous solution of caustic soda at a temperature of 60° C. for about 20 minutes to extract fine powder silicic acid, followed by washing with water and drying.

得られた多孔膜に電子加速機(加圧電圧1. 5Mev
、電子線電流1mA)を用いて窒素雰囲気下100KG
yで電子線を照射した後、グリシジルメタクリレートを
気相中でほぼ完全にグラフトさせて洗浄乾燥した。
An electron accelerator (pressure voltage 1.5 Mev) was applied to the obtained porous membrane.
, 100KG under nitrogen atmosphere using electron beam current 1mA)
After irradiation with an electron beam at y, glycidyl methacrylate was almost completely grafted in the gas phase, followed by washing and drying.

グリシジルメタクリレートの付加量は、基材膜tg当り
、Ig(20ミリ当一量)であった。(重量法によった
。) 次に、炭酸ナトリウムでpHを12に調整したイミノジ
酢酸ナトリウムの0.4mo1/1水溶液中に、このグ
ラフト膜を浸して80゜Cで24時間反応させ、イミノ
ジ酢酸基が、基材膜1g当たり1.7ミリモル(3.4
ミリ当量)のキレート形成基を有する複合機能 過膜を
得た。
The amount of glycidyl methacrylate added was Ig (one amount per 20 mm) per tg of the base film. (Based on the gravimetric method.) Next, this graft membrane was immersed in a 0.4 mol 1/1 aqueous solution of sodium iminodiacetate whose pH was adjusted to 12 with sodium carbonate, and reacted at 80°C for 24 hours. group is 1.7 mmol (3.4
A multifunctional membrane with chelate-forming groups (milliequivalents) was obtained.

尚、イミノジ酢酸基の定量は、重量法とコバルト吸着平
衡法の2つから計算した。
The quantitative determination of iminodiacetic acid groups was calculated using two methods: a gravimetric method and a cobalt adsorption equilibrium method.

比較の為に、上記実施例と同じ条件で押出し、DBP、
微粉珪酸を抽出した後の未処理膜を、比較例膜として、
以下の実験で使用した。
For comparison, extrusion, DBP, and
The untreated membrane after extracting the fine silicic acid was used as a comparative example membrane.
It was used in the following experiments.

ここで得られた実施例膜と、比較例膜について、下記の
モデル液を使用して実際に 過テストを行なったところ
、以下の表−1に示される結果を得た。なお、原液性状
を下記に示す。
When the Example membrane and Comparative Example membrane obtained here were actually subjected to an overtest using the following model liquid, the results shown in Table 1 below were obtained. The properties of the stock solution are shown below.

〔原液性状〕[Standard liquid properties]

・原液中の微粒子濃度++  2X104コ/一・コバ
ルトイオン濃度2 1  1  p pm●pH   
       7 1)0.2μmポリカーボネート製平膜での直接顕鏡し
た測定値 2)原子吸光法による測定値 以下 余白 表−1 表−1に示されるように、本発明の水中重金属イオン除
去方法は、その優れた微粒子除去性と併せて、優れたイ
オン除去特性をもっている。
・Fine particle concentration in stock solution ++ 2×104 co/1・Cobalt ion concentration 2 1 1 p pm●pH
7 1) Value measured by direct microscopy using a 0.2 μm polycarbonate flat membrane 2) Value measured by atomic absorption method or less Margin Table-1 As shown in Table-1, the method for removing heavy metal ions in water of the present invention is as follows: In addition to its excellent particle removal properties, it also has excellent ion removal properties.

実施例2 実施例lと同様な方法で得られたイミノジ酢酸基を有す
る中空糸状膜を使用して、下記のモデル液を使用して、
pHを変化させて、実際に 過テストを行なったところ
、以下の表−2に示される結果を得た。なお、原液性状
を下記に示す。
Example 2 Using a hollow fiber membrane having iminodiacetic acid groups obtained in the same manner as in Example 1, using the following model liquid,
When we actually conducted an overtest by changing the pH, we obtained the results shown in Table 2 below. The properties of the stock solution are shown below.

〔原液性状〕[Standard liquid properties]

・原液中の微粒子濃度++  2Xl04コ/一・コバ
ルトイオン濃度2 1  1  p p m1)0.2
μmポリカーボネート製平膜での直接顕鏡した測定値 2)原子吸光法による測定値 表−2 表−2に示されるように、本発明の水中重金属イオン除
去方法は、その優れた微粒子除去性と併せて、処理液の
pH3以上特にpH7以上において優れたイオン除去特
性をもっている。
・Fine particle concentration in the stock solution ++ 2Xl04 co/1 ・Cobalt ion concentration 2 1 1 p p m1) 0.2
Measured values by direct microscopy using a μm polycarbonate flat membrane 2) Measured values by atomic absorption method Table-2 As shown in Table-2, the method for removing heavy metal ions in water of the present invention has excellent fine particle removal properties. In addition, it has excellent ion removal properties when the pH of the treatment liquid is 3 or more, especially at pH 7 or more.

実施例3 ポリプロピレン製微多孔膜(膜厚100μm、平均孔径
0.1μm)を基材として、実施例1と同様な方法で、
グシジルメタクリレートをグラフト重合反応を行ない、
その後、イミノジ酢酸基の固定化反応を行なった結果、
イミノジ酢酸基が、膜1g当たり、1.7ミリモル(3
.4当量)のキレト基を有する複合機能 過膜を得た。
Example 3 Using a polypropylene microporous membrane (film thickness 100 μm, average pore diameter 0.1 μm) as a base material, in the same manner as in Example 1,
Perform a graft polymerization reaction of gucidyl methacrylate,
After that, as a result of immobilization reaction of iminodiacetic acid group,
The iminodiacetic acid group is 1.7 mmol (3
.. A composite functional membrane having a chelate group of 4 equivalents was obtained.

この平膜を用いてpH7で、微粒子濃度2X10’コ/
1nl、ニッケルイオン濃度1 ppmのモデル液を使
用して、過テストを行なったところ、 過液のニッケル
イオン濃度は、0. 02ppm以下であった。また、
微粒子除去率は99.5%であった。これにより、本発
明の水中重金属イオン除去方法は、そのすぐれた微粒子
除去性と併せて、すぐれたニッケルイオン除去特性をも
っている。
Using this flat membrane, at pH 7, a fine particle concentration of 2 x 10' co/
When an overtest was conducted using a model solution with a nickel ion concentration of 1 nl and a nickel ion concentration of 1 ppm, the nickel ion concentration of the overflow solution was 0. It was 0.02 ppm or less. Also,
The particle removal rate was 99.5%. As a result, the method for removing heavy metal ions in water of the present invention has excellent nickel ion removal properties in addition to its excellent ability to remove fine particles.

(発明の効果) 本発明により、従来困難とされて来た水中の重金属イオ
ンとコロイド状物質除去の同時、効率除去が可能になり
、原子力関係用廃水の精製、有効利用に多大な貢献が可
能になった。
(Effects of the invention) The present invention makes it possible to simultaneously and efficiently remove heavy metal ions and colloidal substances from water, which has been considered difficult in the past, and can greatly contribute to the purification and effective use of nuclear wastewater. Became.

Claims (2)

【特許請求の範囲】[Claims] (1)水中の重金属イオンを除去するにあたり、該重金
属イオンと結合するキレート基を側鎖に有する多孔性膜
を用いて、処理水のpHを3以上にせしめ、処理水中の
1種以上の重金属イオンとコロイド状物質を同時除去す
ることを特徴とする新規な重金属イオン除去方法。
(1) When removing heavy metal ions from water, a porous membrane having a chelate group in its side chain that binds to the heavy metal ions is used to raise the pH of the treated water to 3 or more, and remove one or more heavy metals from the treated water. A novel heavy metal ion removal method characterized by simultaneous removal of ions and colloidal substances.
(2)処理水中の重金属イオンがニッケルおよびまたは
コバルトであり、多孔性膜が基材膜1グラム当たり3ミ
リ当量以上のイミノジ酢酸基を側鎖に含有し、平均孔径
0.01μm〜5μm、空孔率20%〜90%、膜厚1
0μm〜5mmである中空糸状多孔膜である請求項(1
)記載の重金属イオン除去方法。
(2) The heavy metal ions in the treated water are nickel and/or cobalt, the porous membrane contains iminodiacetic acid groups in the side chain of 3 milliequivalents or more per gram of the base membrane, has an average pore diameter of 0.01 μm to 5 μm, and has a void. Porosity 20% to 90%, film thickness 1
Claim (1) The membrane is a hollow fiber porous membrane having a diameter of 0 μm to 5 mm.
) Heavy metal ion removal method described.
JP15241589A 1989-03-24 1989-06-16 Removal of heavy metal ion in water Pending JPH0321390A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15241589A JPH0321390A (en) 1989-06-16 1989-06-16 Removal of heavy metal ion in water
US07/493,751 US5087372A (en) 1989-03-24 1990-03-15 Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
FR9003618A FR2644772B1 (en) 1989-03-24 1990-03-21 PROCESS FOR REMOVING HEAVY METAL IONS FROM POLLUTED WATERS AND POROUS MEMBRANE FOR USE THEREFOR
DE4009453A DE4009453A1 (en) 1989-03-24 1990-03-23 METHOD FOR REMOVING HEAVY METAL IONS FROM CONTAMINATED WATER AND A POROESE MEMBRANE SUITABLE FOR THIS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15241589A JPH0321390A (en) 1989-06-16 1989-06-16 Removal of heavy metal ion in water

Publications (1)

Publication Number Publication Date
JPH0321390A true JPH0321390A (en) 1991-01-30

Family

ID=15540013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15241589A Pending JPH0321390A (en) 1989-03-24 1989-06-16 Removal of heavy metal ion in water

Country Status (1)

Country Link
JP (1) JPH0321390A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961648A (en) * 2010-11-05 2011-02-02 天津森诺过滤技术有限公司 Membrane adsorbent for removing heavy metal ions from drinking water effectively and preparation method thereof
CN102309956A (en) * 2011-04-04 2012-01-11 上海丰信环保科技有限公司 Reagent for removing heavy metal Cr (VI) and Pb<2+> in waste water
CN103638909A (en) * 2013-11-07 2014-03-19 青岛文创科技有限公司 Preparation method for crosslinked-starch-polysaccharide-fullerene composite membrane
CN103833102A (en) * 2014-02-26 2014-06-04 中国科学院新疆理化技术研究所 Heavy metal adsorption composite membrane and preparation method thereof
CN104003463A (en) * 2014-06-17 2014-08-27 南京林业大学 Method for removing heavy metal in livestock and poultry breeding wastewater
CN104016434A (en) * 2013-03-01 2014-09-03 北京航空航天大学 Method for purifying sewage containing heavy metal by utilizing calcium metasilicate and recycling heavy metal
CN104437639A (en) * 2014-12-25 2015-03-25 东华大学 Method of preparing green advanced water treatment chemicals with carbon nano-tube compounded tetrasulfophthalocyanine
CN104624156A (en) * 2014-12-12 2015-05-20 康万涛 Turf product and method for treating polluted substances
JP2015167906A (en) * 2014-03-06 2015-09-28 富士通株式会社 Metal ion removal device and liquid cooling device
CN108905639A (en) * 2018-07-12 2018-11-30 中北大学 A kind of function polysulfone millipore filtering membrane preparation method of effectively catching heavy metal ion
WO2024002382A1 (en) * 2022-06-28 2024-01-04 江苏久膜高科技股份有限公司 Preparation method for chelating membrane for purifying wet electronic chemicals

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961648A (en) * 2010-11-05 2011-02-02 天津森诺过滤技术有限公司 Membrane adsorbent for removing heavy metal ions from drinking water effectively and preparation method thereof
CN102309956A (en) * 2011-04-04 2012-01-11 上海丰信环保科技有限公司 Reagent for removing heavy metal Cr (VI) and Pb<2+> in waste water
CN104016434A (en) * 2013-03-01 2014-09-03 北京航空航天大学 Method for purifying sewage containing heavy metal by utilizing calcium metasilicate and recycling heavy metal
CN103638909A (en) * 2013-11-07 2014-03-19 青岛文创科技有限公司 Preparation method for crosslinked-starch-polysaccharide-fullerene composite membrane
CN103638909B (en) * 2013-11-07 2016-01-20 青岛文创科技有限公司 A kind of preparation method of crosslinked-starch-pcompositeride-fullermembrane compositeride-fullermembrane membrane
CN103833102A (en) * 2014-02-26 2014-06-04 中国科学院新疆理化技术研究所 Heavy metal adsorption composite membrane and preparation method thereof
CN103833102B (en) * 2014-02-26 2016-01-27 中国科学院新疆理化技术研究所 A kind of heavy metal adsorption composite membrane and preparation method thereof
JP2015167906A (en) * 2014-03-06 2015-09-28 富士通株式会社 Metal ion removal device and liquid cooling device
CN104003463A (en) * 2014-06-17 2014-08-27 南京林业大学 Method for removing heavy metal in livestock and poultry breeding wastewater
CN104624156A (en) * 2014-12-12 2015-05-20 康万涛 Turf product and method for treating polluted substances
CN104437639A (en) * 2014-12-25 2015-03-25 东华大学 Method of preparing green advanced water treatment chemicals with carbon nano-tube compounded tetrasulfophthalocyanine
CN108905639A (en) * 2018-07-12 2018-11-30 中北大学 A kind of function polysulfone millipore filtering membrane preparation method of effectively catching heavy metal ion
WO2024002382A1 (en) * 2022-06-28 2024-01-04 江苏久膜高科技股份有限公司 Preparation method for chelating membrane for purifying wet electronic chemicals

Similar Documents

Publication Publication Date Title
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
KR100363339B1 (en) Method for producing the separation functional fiber and ion exchange fiber produced therefrom
US7867417B2 (en) Membrane post treatment
US8110289B2 (en) Sintered body, resin particles and method for producing the same
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
WO1982002006A1 (en) Composite adsorbent molding and process for manufacturing same
JPH0321390A (en) Removal of heavy metal ion in water
CN110882631B (en) Polyamide composite nanofiltration membrane and preparation method thereof
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JPH01224004A (en) Permselective microfilter and its production
CN104190264A (en) Preparation method for hollow fiber ultrafiltration membrane with chelation function
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
CN108993172B (en) Preparation method of polyvinylidene fluoride composite separation membrane
JP2610676B2 (en) Method for producing porous separation membrane
KR20100132218A (en) Cation exchange membrane and process for preparing the same
JP3673452B2 (en) Pollution-resistant porous filtration membrane
JPS63240902A (en) Treating method
CN113274890B (en) Porous high-permeability polyethylene sewage treatment membrane and preparation method thereof
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JPS6283006A (en) Manufacturing process for separating functional material
JPS62210005A (en) Novel composite functional membrane
Kim et al. Comparison of BSA adsorption and Fe sorption to the diol group and tannin immobilized onto a microfiltration membrane
JPS62201604A (en) Method for removing cobalt ion