JPS6283006A - Manufacturing process for separating functional material - Google Patents

Manufacturing process for separating functional material

Info

Publication number
JPS6283006A
JPS6283006A JP22282785A JP22282785A JPS6283006A JP S6283006 A JPS6283006 A JP S6283006A JP 22282785 A JP22282785 A JP 22282785A JP 22282785 A JP22282785 A JP 22282785A JP S6283006 A JPS6283006 A JP S6283006A
Authority
JP
Japan
Prior art keywords
monomer
porous
cation exchange
membrane
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22282785A
Other languages
Japanese (ja)
Other versions
JPH07114945B2 (en
Inventor
Morikazu Miura
司和 三浦
Takanobu Sugo
高信 須郷
Kyoichi Saito
斉藤 恭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP60222827A priority Critical patent/JPH07114945B2/en
Publication of JPS6283006A publication Critical patent/JPS6283006A/en
Publication of JPH07114945B2 publication Critical patent/JPH07114945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To offer the cation selective absorptivity to the porous high-molecular membrane without damaging filter function by graft polymerizing the monomer carrying the cation exchange group with the porous base. CONSTITUTION:The porous base made of polyethylene porous membrane and the like are irradiated beforehand by electronic rays coming out of the electronic accelerator, reacted in contact with monomer by dipping into the acrylic acid solution or some other similar process, and graft polymerized with the monomer carrying the cation exchange group or the monomer carrying the functional group convertible to the cation exchange group. Through the said process, the cation in the mixed solution of various liquids is absorbed selectively and effectively, and the separating functional material having a composite function to filter and separate the mixed substance is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は各種液性混合溶液中の陽イオンを選択的に効率
よく吸着し、かつ混合物質を濾過分離する分離機能材料
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a separation functional material that selectively and efficiently adsorbs cations in various liquid mixed solutions and filters and separates mixed substances.

(従来の技術) 従来より、液性混合物の分離精製法は数多く実用化され
、産業の発展に寄与してきた。たとえば、ミクロフィル
ター膜は水性液中から微粒子や細菌を分離精製し、限外
濾過膜はコロイドや発熱性物質などを分離することがで
きる。しかし、−上記いずれの膜も濾過分離性能を有す
るのみで、イオン吸着性能と濾過分離性能の複合機能を
合わせ持つものではない。また、上記複合機能を付与す
るための試みも数多くなされているが、濾過性能をそこ
なうことなく化学的、物理的に安定なイオン吸着性能を
付与することは困難であり、極めて不満足であった。
(Prior Art) Many separation and purification methods for liquid mixtures have been put to practical use and have contributed to the development of industry. For example, microfilter membranes can separate and purify fine particles and bacteria from aqueous liquids, and ultrafiltration membranes can separate colloids and pyrogenic substances. However, - all of the above membranes only have filtration and separation performance, and do not have a combined function of ion adsorption performance and filtration and separation performance. In addition, many attempts have been made to impart the above-mentioned composite functions, but it has been difficult to impart chemically and physically stable ion adsorption performance without impairing filtration performance, and these have been extremely unsatisfactory.

他方、イオン交換樹脂の多孔膜化も試みられているが、
含水性のイオン交換樹脂を皮膜加工する方法では、イオ
ン交換物質の流出、および、寸法安定性、耐熱性、耐薬
品性、特に耐久性や物理的性質の低下などの問題点が生
じ、不充分な点が多い。
On the other hand, attempts have been made to make porous membranes from ion exchange resins;
The method of coating hydrous ion-exchange resins causes problems such as leakage of the ion-exchange material and decreases in dimensional stability, heat resistance, chemical resistance, especially durability, and physical properties, making it unsatisfactory. There are many points.

(発明が解決しようとする問題点) 現代の工業技術の発展に伴なって、分離、精製材料の高
機能化が望まれており、より高度な複合機能材料の開発
が急がれている。
(Problems to be Solved by the Invention) With the development of modern industrial technology, there is a desire for higher functionality in separation and purification materials, and there is an urgent need to develop more advanced composite functional materials.

本発明の目的は、上述の欠点を解消した優れた複合機能
を有する材料の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a material with excellent multifunctionality that eliminates the above-mentioned drawbacks.

(問題を解決するための手段) 本発明は、多孔性基材に、カチオン交換基を含有するモ
ノマーまたはカチオン交換基に交換しうる官能基を有す
るモノマーをグラフト重合、特に放射線でグラフト重合
することを特徴とする分離機能材料の製造方法である。
(Means for Solving the Problems) The present invention involves graft polymerization, particularly radiation graft polymerization, of a monomer containing a cation exchange group or a monomer having a functional group exchangeable to a cation exchange group onto a porous substrate. This is a method for producing a separation functional material characterized by the following.

以下、本発明の構成を詳しく説明する。Hereinafter, the configuration of the present invention will be explained in detail.

本発明を実施するにあたって使用される多孔性基材は、
放射線照射によりモノマーをグラフト重合できるもので
あればよく、たとえば多孔性高分子膜および無機物を含
有する多孔性高分子膜が用いられる。膜の材料としては
、ポリオレフィン類、ハロゲン化ポリオレフィン類、ポ
リエステル類、ポリエーテル類、セルロースおよびこれ
らの共重合体があげられるが、特にオレフィン系重合体
およびハロゲン化オレフィン系重合体が好ましい。
The porous substrate used in carrying out the present invention is
Any material may be used as long as the monomer can be graft-polymerized by radiation irradiation, such as porous polymer membranes and porous polymer membranes containing inorganic substances. Examples of the membrane material include polyolefins, halogenated polyolefins, polyesters, polyethers, cellulose, and copolymers thereof, with olefin polymers and halogenated olefin polymers being particularly preferred.

多孔性基材の形状は、平膜状、チューブ状、中空糸状の
いずれも適用可能である。多孔性基材の空孔構造として
は、延伸法やエツチング法などにより得られた直孔貫通
型の空孔構造よりも、たとえば特公昭59−37292
号公報、特公昭40−957号公報および特公昭47−
17460号公報に示されたミクロ相分離法や混合抽出
法などにより形成される3次元網目構造を有するものが
好ましい。特に、特開昭55−131028号公報Gこ
示された構造体の製造技術が確立することに伴なって、
本発明の意義が明確化し、従来技術では得られない優れ
た性能を有する材料の製造方法を達成することができた
The shape of the porous base material may be a flat membrane, a tube, or a hollow fiber. The pore structure of the porous base material is better than a straight pore structure obtained by a stretching method or an etching method.
Publication No. 40-957 and Special Publication No. 47-
Those having a three-dimensional network structure formed by the microphase separation method, mixed extraction method, etc. disclosed in Japanese Patent No. 17460 are preferred. In particular, with the establishment of the manufacturing technology for the structure shown in Japanese Patent Application Laid-Open No. 55-131028,
The significance of the present invention has been clarified, and a method for manufacturing a material with excellent performance that cannot be obtained with conventional techniques has been achieved.

本発明に使用されるカチオン交換基を含有するモノマー
またはカチオン交換基に変換しうる官能基を有するモノ
マーとしては、スルホン酸基、カルボン酸基、フェノー
ル性水酸基またはこれらのアルカリ金属塩を有する、炭
化水素系または含ハロゲン炭化水素系上ツマ−があげら
れる。具体的には、ビニルスルホン酸、スチレンスルホ
ン酸、アクリル酸、メタクリル酸、バラビニルフェノー
ル、フルオロビニルスルホン酸、フルオロビニルカルボ
ン酸およびスチレンなどの単独または2種以上を混合し
たものが用いられる。
The monomer containing a cation exchange group or the monomer having a functional group convertible into a cation exchange group used in the present invention includes carbonized monomers having a sulfonic acid group, a carboxylic acid group, a phenolic hydroxyl group, or an alkali metal salt thereof. Examples include hydrogen-based or halogen-containing hydrocarbon-based materials. Specifically, vinylsulfonic acid, styrenesulfonic acid, acrylic acid, methacrylic acid, paravinylphenol, fluorovinylsulfonic acid, fluorovinylcarboxylic acid, and styrene may be used alone or in combination of two or more thereof.

多孔性基材にモノマーをグラフト重合させるには放射綿
を用いる。用いられる電離性放射線は、α線、β線、γ
線、加速電子線、X線などであるが、実用的には電子線
またはγ線が好ましい。グラフト重合させる方法として
は、多孔性基材とモノマーの共存下に放射線を照射し、
グラフト重合させる同時照射法と、多孔性基材のみにあ
らかじめ放射線を照射し、そののち多孔性基材にモノマ
ーを接触反応させてグラフト重合させる前照射法がある
が、同時照射法では多孔性基材へのモノマーのグラフト
重合が進行すると同時に、グラフト重合に関与しないモ
ノマーのみが単独重合し、多孔性基材の空孔を閉塞する
という問題が生じるので、前照射法が好ましい。前照射
法では、多孔性基材にモノマーを接触させる以前に基材
にあらかじめ放射線を照射し、モノマーと接触させるま
での間マイナス10“C以下に保ち、50℃以下、好ま
しくは15℃〜50℃の低温でモノマーと接触させてグ
ラフト重合を行う。放射線を照射したのちに多孔性基材
を低温保存しない場合は、生成ラジカルが急速に減衰し
、室温(25℃)で30分経過するとその数は半分にな
る。さらに、それと同時に生成ラジカルが微量の吸着酸
素と反応し、目的物質の耐熱耐薬品性を損なうという欠
陥を生しる。また、グラフト重合温度が60℃以上にな
ると、グラフト重合にあずからないモノマーの単独熱重
合物が生成し、多孔性基材の空孔を閉塞するとか、反応
後の後処理工程では抽出されない単独熱重合物が親水化
の後に流出してきて2次公害の原因となる、といった問
題が生じる。
Radiant cotton is used to graft-polymerize the monomer onto the porous substrate. The ionizing radiation used is alpha rays, beta rays, and γ rays.
rays, accelerated electron beams, X-rays, etc., but electron beams or γ-rays are practically preferred. The method of graft polymerization is to irradiate the porous base material and monomer with radiation,
There is a simultaneous irradiation method in which the porous base material undergoes graft polymerization, and a pre-irradiation method in which only the porous base material is irradiated with radiation in advance, and then the monomer is brought into contact with the porous base material for graft polymerization. The pre-irradiation method is preferable because the problem arises that while the graft polymerization of monomers onto the material progresses, only the monomers that do not participate in the graft polymerization are homopolymerized, thereby clogging the pores of the porous base material. In the pre-irradiation method, the base material is irradiated with radiation before contacting the monomer with the porous base material, and the temperature is maintained at -10"C or less until it comes into contact with the monomer, and the temperature is kept at 50 °C or less, preferably 15 °C to 50 °C. Graft polymerization is carried out by contacting the monomer at a low temperature of 30°C.If the porous substrate is not stored at a low temperature after irradiation, the generated radicals will rapidly decay and will disappear after 30 minutes at room temperature (25°C). The number will be halved.Furthermore, at the same time, the generated radicals will react with a trace amount of adsorbed oxygen, resulting in a defect that impairs the heat and chemical resistance of the target substance.Furthermore, if the graft polymerization temperature exceeds 60°C, the graft Homopolymerized monomers of monomers that do not participate in polymerization may be generated and block the pores of the porous substrate, or homopolymerized monomers that are not extracted in the post-treatment process after the reaction may flow out after hydrophilization and cause secondary Problems such as causing pollution arise.

以下、実施例により本発明の構成および効果を具体的に
述べるが、いずれも本発明を限定するものではない。
Hereinafter, the structure and effects of the present invention will be specifically described with reference to Examples, but these are not intended to limit the present invention.

(実施例) 実施例1 特開昭55−131028号公報に記載された方法で得
た3次元網目構造からなるポリエチレン多孔膜を、電子
加速器(加速電圧1.5MeV、電子線電流1mA)を
用いて窒素雰囲気下1OOKGyで照射し、あらかじめ
溶存酸素を0.1 ppm以下にした50%アクリル酸
水溶液(0,25wt%のモール塩を含有)に浸漬して
25°Cで1時間反応させた。これにより、グラフト率
63%の膜を得た。この膜の陽イオン交換容量は4゜7
ミリ当量/グラム重合体であった。
(Example) Example 1 A porous polyethylene film having a three-dimensional network structure obtained by the method described in JP-A-55-131028 was processed using an electron accelerator (acceleration voltage 1.5 MeV, electron beam current 1 mA). The sample was irradiated with 1 OOKGy under a nitrogen atmosphere, immersed in a 50% aqueous acrylic acid solution (containing 0.25 wt% Mohr's salt) in which dissolved oxygen had been reduced to 0.1 ppm or less, and reacted at 25°C for 1 hour. As a result, a membrane with a graft ratio of 63% was obtained. The cation exchange capacity of this membrane is 4°7
milliequivalents/gram polymer.

この膜を用い、膜面積100cnl、濾過圧力1kg/
Caで原水(0,2u以上の微粒子104″/CC% 
Na’?l’A度50ppm)の濾過テストを行った。
Using this membrane, membrane area 100cnl, filtration pressure 1kg/
Raw water with Ca (fine particles of 0.2 u or more 104″/CC%
Na'? A filtration test was conducted.

その結果、通水8時間において透水’ft9001/r
rr i+r−atm、微粒子およびナトリウムイオン
除去率は100%であった。
As a result, the water permeability was 9001/r after 8 hours of water flow.
rr i+r-atm, the removal rate of fine particles and sodium ions was 100%.

一方、比較のため、反応温度を70℃としたほかは上記
と同じ方法で反応させたところ、反応開始10分後から
反応液の粘度が上昇し、反応終了後には多孔膜の空孔が
閉塞し、膜が透明化した。
On the other hand, for comparison, when the reaction was carried out in the same manner as above except that the reaction temperature was changed to 70°C, the viscosity of the reaction liquid increased 10 minutes after the start of the reaction, and the pores of the porous membrane were blocked after the reaction was completed. The film became transparent.

この膜を前記と同様な方法で濾過テストしたところ、透
水量は前記実施例の1%以下であった。
When this membrane was subjected to a filtration test in the same manner as described above, the amount of water permeation was 1% or less of that in the above example.

実施例2 実施例1と同様な膜を、実施例1と同様に10Mrad
電子線照射し、溶存酸素0.lppm以下のスチレンモ
ノマーに浸漬し、25℃で1時間反応させた。これによ
り、グラフト率67%の膜を得た。
Example 2 The same membrane as in Example 1 was prepared at 10 Mrad in the same manner as in Example 1.
Electron beam irradiation, dissolved oxygen 0. It was immersed in styrene monomer of 1 ppm or less and reacted at 25° C. for 1 hour. As a result, a membrane with a grafting rate of 67% was obtained.

これを無水硫酸のジオキサンとジクロロエタンの飽和溶
液中で5°C18時間反応させ、スルホン化した。得ら
れた膜の陽イオン交換容量は3.5ミリ当量/グラム重
合体であった。この膜を実施例1と同様な方法で濾過テ
ストしたところ、通水8時間で平均透水速度は8001
/m −hr−atm 、 6粒子およびナトリウムイ
オン除去率は100%であった。
This was reacted in a saturated solution of anhydrous sulfuric acid in dioxane and dichloroethane at 5°C for 18 hours to sulfonate it. The resulting membrane had a cation exchange capacity of 3.5 meq/g polymer. When this membrane was subjected to a filtration test in the same manner as in Example 1, the average water permeation rate was 8001 after 8 hours of water flow.
/m-hr-atm, 6 particles and the sodium ion removal rate was 100%.

一方、比較のため、膜として延伸法により得られた多孔
膜(平均孔径0.1ミクロン)を用いたほかは上記と同
じ方法で反応させたところ、グラフト率55%の膜を得
た。この膜を上記と同様な方法でスルホン化したところ
、3.0ミリグラム当量/グラム重合体の陽イオン交換
容量を得た。この膜を実施例1と同様な方法で濾過テス
トしたところ、通水8時間における透水量は501/m
−hr・atmであり、ナトリウムイオン除去率は10
0%、微粒子除去率は80%であった。この膜を走査型
電子顕微鏡で観察した結果、直孔貫通空孔の一部閉塞が
確認され、また、反応時の膨潤による孔径拡大と孔径分
布のひろがりが確認された。
On the other hand, for comparison, the reaction was carried out in the same manner as above except that a porous membrane (average pore diameter: 0.1 micron) obtained by a stretching method was used as the membrane, and a membrane with a graft ratio of 55% was obtained. This membrane was sulfonated in a manner similar to that described above, resulting in a cation exchange capacity of 3.0 milliequivalents/gram polymer. When this membrane was subjected to a filtration test in the same manner as in Example 1, the water permeation rate after 8 hours of water flow was 501/m2.
-hr・atm, and the sodium ion removal rate is 10
The particle removal rate was 80%. As a result of observing this membrane with a scanning electron microscope, it was confirmed that some of the straight pores were blocked, and that the pore size had expanded and the pore size distribution had expanded due to swelling during the reaction.

(発明の効果) 本発明により、多孔性高分子膜に濾過性能を損なうこと
なくイオン選択吸着性能を付与することが可能となり、
化学的および物理的に極めてすぐれた複合機能材料を提
供することができる。
(Effects of the Invention) According to the present invention, it is possible to impart ion selective adsorption performance to a porous polymer membrane without impairing filtration performance,
Composite functional materials with excellent chemical and physical properties can be provided.

Claims (6)

【特許請求の範囲】[Claims] (1)多孔性基材に、カチオン交換基を含有するモノマ
ーまたはカチオン交換基に変換しうる官能基を有するモ
ノマーをグラフト重合することを特徴とする分離機能材
料の製造方法
(1) A method for producing a separation functional material, which comprises graft-polymerizing a monomer containing a cation exchange group or a monomer having a functional group that can be converted into a cation exchange group onto a porous substrate.
(2)多孔性基材が、3次元網目構造の連通孔を有する
多孔性高分子膜であることを特徴とする特許請求の範囲
第1項記載の製造方法
(2) The manufacturing method according to claim 1, wherein the porous base material is a porous polymer membrane having communicating pores with a three-dimensional network structure.
(3)多孔性高分子膜がオレフィン系またはハロゲン化
オレフィン系重合体からなることを特徴とする特許請求
の範囲第2項記載の製造方法
(3) The manufacturing method according to claim 2, wherein the porous polymer membrane is made of an olefin-based or halogenated olefin-based polymer.
(4)モノマーが、スルホン酸基、カルボン酸基、フェ
ノール性水酸基またはこれらのアルカリ金属塩を有する
、炭化水素系または含ハロゲン炭化水素系モノマーであ
ることを特徴とする特許請求の範囲第1項記載の製造方
(4) Claim 1, characterized in that the monomer is a hydrocarbon-based or halogen-containing hydrocarbon-based monomer having a sulfonic acid group, a carboxylic acid group, a phenolic hydroxyl group, or an alkali metal salt thereof. Manufacturing method described
(5)グラフト重合が、電離性放射線を基材に照射する
工程と、それにつづくモノマーを基材に接触反応させる
工程とからなることを特徴とする特許請求の範囲第1項
記載の製造方法
(5) The production method according to claim 1, wherein the graft polymerization comprises a step of irradiating the base material with ionizing radiation, and a subsequent step of causing the monomer to contact and react with the base material.
(6)接触反応が15℃〜50℃の範囲で行われること
を特徴とする特許請求の範囲第5項記載の製造方法
(6) The production method according to claim 5, characterized in that the catalytic reaction is carried out in a range of 15°C to 50°C.
JP60222827A 1985-10-08 1985-10-08 Method for manufacturing separation functional material Expired - Fee Related JPH07114945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60222827A JPH07114945B2 (en) 1985-10-08 1985-10-08 Method for manufacturing separation functional material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60222827A JPH07114945B2 (en) 1985-10-08 1985-10-08 Method for manufacturing separation functional material

Publications (2)

Publication Number Publication Date
JPS6283006A true JPS6283006A (en) 1987-04-16
JPH07114945B2 JPH07114945B2 (en) 1995-12-13

Family

ID=16788530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60222827A Expired - Fee Related JPH07114945B2 (en) 1985-10-08 1985-10-08 Method for manufacturing separation functional material

Country Status (1)

Country Link
JP (1) JPH07114945B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743940A (en) * 1988-04-07 1998-04-28 Japan Atomic Energy Research Institute Process for producing gas adsorbent
US5783608A (en) * 1994-11-22 1998-07-21 Ebara Corporation Process for producing separation functional fibers and ion-exchange fibers produced therefrom
WO1999009091A1 (en) * 1997-08-18 1999-02-25 Pall Corporation Ion exchange membrane
WO2002033135A1 (en) * 2000-10-18 2002-04-25 Johnson Matthey Public Limited Company Precious metal scavenging from a liquid medium with a functionalised polymer fiber
WO2004099297A1 (en) * 2003-05-06 2004-11-18 Organo Corporation Graft-modified organic porous material and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644098A (en) * 1979-09-18 1981-04-23 Ebara Infilco Co Ltd Treating method of hydrazine content waste water
JPS5773027A (en) * 1980-10-24 1982-05-07 Yuasa Battery Co Ltd Production of graft polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644098A (en) * 1979-09-18 1981-04-23 Ebara Infilco Co Ltd Treating method of hydrazine content waste water
JPS5773027A (en) * 1980-10-24 1982-05-07 Yuasa Battery Co Ltd Production of graft polymer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5743940A (en) * 1988-04-07 1998-04-28 Japan Atomic Energy Research Institute Process for producing gas adsorbent
US5783608A (en) * 1994-11-22 1998-07-21 Ebara Corporation Process for producing separation functional fibers and ion-exchange fibers produced therefrom
US6127433A (en) * 1994-11-22 2000-10-03 Ebara Corporation Process for producing separation functional fibers and ion-exchange fibers produced therefrom
WO1999009091A1 (en) * 1997-08-18 1999-02-25 Pall Corporation Ion exchange membrane
WO2002033135A1 (en) * 2000-10-18 2002-04-25 Johnson Matthey Public Limited Company Precious metal scavenging from a liquid medium with a functionalised polymer fiber
WO2004099297A1 (en) * 2003-05-06 2004-11-18 Organo Corporation Graft-modified organic porous material and process for producing the same
CN100348651C (en) * 2003-05-06 2007-11-14 奥加诺株式会社 Graft-modified organic porous material and process for producing the same

Also Published As

Publication number Publication date
JPH07114945B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
EP0204036B1 (en) Anisotropic microporous supports impregnated with polymeric ion-exchange materials
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
JPH06104753B2 (en) Non-adsorbing hydrophilic hollow fiber porous membrane
JPH0829234B2 (en) Hydrophilic microporous membrane
JPH01224004A (en) Permselective microfilter and its production
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
JPS6283006A (en) Manufacturing process for separating functional material
JP2796995B2 (en) Anion-selective adsorptive porous membrane and its production method
JP2610676B2 (en) Method for producing porous separation membrane
JPH0321390A (en) Removal of heavy metal ion in water
JP2504885B2 (en) Ion exchanger manufacturing method
JPH0822374B2 (en) Method for producing graft membrane
JPS63240902A (en) Treating method
JPH08199480A (en) Production of separation functional fiber, and ion exchange fiber and gas adsorbing material produced by using the same
JP3673452B2 (en) Pollution-resistant porous filtration membrane
JPH01224009A (en) Treatment of graft membrane
JPS62201604A (en) Method for removing cobalt ion
JPS62210005A (en) Novel composite functional membrane
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JPH0774289B2 (en) Method for producing hydrophilic tetrafluoroethylene resin porous membrane
JP2921763B2 (en) Ultrapure water production method
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JPS63310602A (en) Novel method for purifying condensate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees