JPS62201604A - Method for removing cobalt ion - Google Patents

Method for removing cobalt ion

Info

Publication number
JPS62201604A
JPS62201604A JP61044178A JP4417886A JPS62201604A JP S62201604 A JPS62201604 A JP S62201604A JP 61044178 A JP61044178 A JP 61044178A JP 4417886 A JP4417886 A JP 4417886A JP S62201604 A JPS62201604 A JP S62201604A
Authority
JP
Japan
Prior art keywords
membrane
porous membrane
wastewater
waste water
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61044178A
Other languages
Japanese (ja)
Other versions
JPH07106304B2 (en
Inventor
Kazuo Toyomoto
豊本 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP61044178A priority Critical patent/JPH07106304B2/en
Publication of JPS62201604A publication Critical patent/JPS62201604A/en
Publication of JPH07106304B2 publication Critical patent/JPH07106304B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization

Abstract

PURPOSE:To simultaneously remove cobalt ion and colloidal substance in waste water by passing the radioactive waste water through a porous membrane obtained by grafting a carboxyl group-contg. side chain on a specified substrate membrane. CONSTITUTION:An electron beam is irradiated on the substrate membrane consisting of polyolefin such as polyethylene or the copolymer of an olefin and a halogenated olefin or polyvinylidene fluoride, the membrane is dipped in a carboxyl group-contg. monomer such as acrylic acid, and a porous membrane having a carboxyl group-contg. side chain is obtained by grafting. Radioactive waste water is passed through the porous membrane thus obtained to adsorb and remove cobalt ion in the radioactive waste water and simultaneously to remove a colloidal substance such as a clad.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子力発電設備で発生する放射性廃水や一般産
業廃水中から、廃水中に同時に微量台まれる鉄やコバル
トイオン等複数の金属イオンを除去し、同時に廃水中の
コロイド状物質を濾過精製するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention extracts multiple metal ions, such as iron and cobalt ions, which are simultaneously present in small amounts in the wastewater, from radioactive wastewater generated in nuclear power generation facilities and general industrial wastewater. At the same time, colloidal substances in wastewater are filtered and purified.

〔従来の技術〕[Conventional technology]

従来、原子力発電設備で発生する放射性廃水中に存在し
ている各種のメタルイオンは、イオン交換樹脂等で除去
され、必要に応じて各種の半透膜又は多孔膜を通して精
製され、処理されて来た。
Conventionally, various metal ions present in radioactive wastewater generated by nuclear power generation facilities have been removed using ion exchange resins, etc., and purified and processed through various semipermeable or porous membranes as necessary. Ta.

これらの処理方法は、概して多量のイオン交換樹脂を必
要とし、かつ寿命が比較的短かく、使用済後の廃棄等の
問題があった。
These treatment methods generally require a large amount of ion exchange resin, have a relatively short lifespan, and have problems such as disposal after use.

特にコバルトイオンは比較的除去される効率が悪く、従
って処理には多量の樹脂を必要とし、経済的にも更に公
害防止上も問題を有していた。これらの問題点を克服す
る為、各種の方法が講じられて来たが、何れの方法もイ
オン吸着機能と廃水中の微粒子除去機能とを同時にもた
せる事が難しく、前記の課題を完全に克服する事は困難
であった。
In particular, cobalt ions are removed relatively inefficiently, and therefore a large amount of resin is required for treatment, which poses problems both economically and in terms of pollution prevention. Various methods have been taken to overcome these problems, but it is difficult for any of these methods to have both the function of adsorbing ions and the function of removing particulates from wastewater, and it is difficult to completely overcome the above problems. Things were difficult.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は、放射性廃水中のコバルトイオンを吸着除去す
ると同時に、多孔膜を通してクラッド等コロイド状物質
を除去し、効率良く廃水を精製すると同時に、多孔膜の
再生操作等を行なう事によって、くり返し使用する事を
可能にし、廃棄処理量を極力少なくする事を目的とした
ものである。
The present invention adsorbs and removes cobalt ions in radioactive wastewater, simultaneously removes colloidal substances such as crud through a porous membrane, efficiently purifies the wastewater, and at the same time performs a regeneration operation of the porous membrane so that it can be used repeatedly. The purpose is to make this possible and to minimize the amount of waste to be disposed of.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは前記目的を達成する手段を鋭意研究した結
果、以下の手段によって達成できる事が判った。
The inventors of the present invention have conducted intensive research on means for achieving the above object, and have found that the object can be achieved by the following means.

すなわち、ポリオレフィン又はオレフィンとハロゲン化
オレフィンとの共重合体、又はポリフッ化ビニリデンで
ある基材膜にカルボキシル基を含有する側鎖がグラフト
されている多孔膜に、放射性Ji水を通し、コバルトイ
オンとコロイド状物質を同時に除去精製する事によって
極めて効果的に課題が達成せられる事が判った。
That is, radioactive Ji water is passed through a porous membrane in which side chains containing carboxyl groups are grafted onto a base membrane of polyolefin, a copolymer of olefin and halogenated olefin, or polyvinylidene fluoride, and cobalt ions and It has been found that the objective can be achieved extremely effectively by removing and purifying colloidal substances at the same time.

以下本発明について更に具体的に詳細説明を行なう。The present invention will be explained in more detail below.

本発明においてグラフト処理される膜としては、ポリオ
レフィン、オレフィンとハロゲン化オレフィン共重合体
、ポリフッ化ビニリデン等の疎水性多孔膜である事が必
要で、これは基材膜として必要な機械的性質の保持に役
立つ。
The membrane to be grafted in the present invention must be a hydrophobic porous membrane made of polyolefin, olefin and halogenated olefin copolymer, polyvinylidene fluoride, etc., and must have the mechanical properties necessary as a base membrane. Helps with retention.

ここで前記述べたポリオレフィン、オレフィンとハロゲ
ン化オレフィン共重合体の具体例としては、ポリオレフ
ィン樹脂、たとえばポリエチレン、ポリプロピレン、ポ
リブチレン又は前記の2種以上の混合物又はエチレン、
プロピレン、ブテン、ヘキセン、テトラフルオロエチレ
ン、クロロトリフルオロエチレンの2種以上の混合物よ
りなる共重合体等又はポリフッ化ビニリデン用脂が採用
される。
Specific examples of the above-mentioned polyolefins, olefin and halogenated olefin copolymers include polyolefin resins such as polyethylene, polypropylene, polybutylene or mixtures of two or more of the above, or ethylene,
A copolymer made of a mixture of two or more of propylene, butene, hexene, tetrafluoroethylene, chlorotrifluoroethylene, or a resin for polyvinylidene fluoride is used.

次にこれらの基材膜にグラフトされるカルボキシル基含
有モノマーの例としては、アクリル酸、メタクリル酸が
一般的である。
Next, acrylic acid and methacrylic acid are common examples of carboxyl group-containing monomers that are grafted onto these base films.

更に、グラフトされるカルボキシル基の含有率は、多孔
膜1グラム当り0.1ないし5ミリ当量含んでいる事が
好ましい。
Further, the content of carboxyl groups to be grafted is preferably 0.1 to 5 milliequivalents per gram of the porous membrane.

ここで膜1グラムとは、膜のかなりマクロ的な重量を基
準にした値の事であり、例えば膜表面1部、又は内部1
部だけをとり出した重量の事ではない。基材膜のすぐれ
た機械的性質を保持したままカルボキシル化処理するに
は、出来るだけ孔の表面に、より優先的にグラフトさせ
た方が目的を達し易い。
Here, 1 gram of membrane is a value based on the macroscopic weight of the membrane, for example, 1 part of the membrane surface or 1 gram of the inside.
It's not just the weight taken out. In order to carry out the carboxylation treatment while maintaining the excellent mechanical properties of the base membrane, it is easier to achieve the objective by preferentially grafting the graft onto the surface of the pores as much as possible.

従って、ここで云う基材膜1グラムと云う意味は、膜の
全面に瓦って平等に加味測定された値を示しており、掻
く微視的な観点での重量を意味していない。
Therefore, the meaning of 1 gram of the base film mentioned here indicates the value measured evenly over the entire surface of the film, and does not mean the weight from a microscopic viewpoint.

本発明によってグラフト処理された多孔膜は、平均孔径
0.01μないし5μの範囲にある事が、コバルトイオ
ン吸着とコロイド状物質除去性及び透過速度の点で好ま
しい。ここで平均孔径とは、ASTMF316−70に
記載されている方法で得られた値を指しており、通常エ
アーフロー法と呼ばれ、空気圧を変えて乾燥膜と湿潤膜
の空気透過流束を測定し、その比から求めるものである
The porous membrane grafted according to the present invention preferably has an average pore diameter in the range of 0.01 μm to 5 μm in terms of cobalt ion adsorption, colloidal substance removal performance, and permeation rate. The average pore size here refers to the value obtained by the method described in ASTM F316-70, which is usually called the air flow method, and measures the air permeation flux through dry membranes and wet membranes by changing the air pressure. It is calculated from that ratio.

本発明における平均孔径の範囲は、実用性能上から設定
されたものであり、これ以外の範囲では、透過速度もし
くは除黴粒子効果等の点で不適当である。
The range of the average pore diameter in the present invention is determined from the viewpoint of practical performance, and any other range is inappropriate in terms of permeation rate, mold removal effect, etc.

次に本発明によって得られた多孔膜の空孔率は、20な
いし80%の範囲にある事が好ましい。ここで空孔率と
は、あらかじめ膜を水等の液体に浸漬し、そののち乾燥
させて、その前後の重量変化から測定したものである。
Next, the porosity of the porous membrane obtained by the present invention is preferably in the range of 20 to 80%. Here, the porosity is measured by immersing the membrane in a liquid such as water in advance, then drying it, and measuring the weight change before and after that.

空孔率が本発明の範囲以外においては、夫々透過速度、
機械的性質等の点で好ましくない。
When the porosity is outside the range of the present invention, the permeation rate and
Unfavorable in terms of mechanical properties, etc.

本発明で得られた多孔膜のベースとなる基材膜の孔構造
は、種々な成型加工によって得る事が出来る。
The pore structure of the base membrane, which is the base of the porous membrane obtained in the present invention, can be obtained by various molding processes.

具体的には、所謂延伸法や、電子線照射後化学処理で作
られたエツチング法等も適用可能であるが、孔構造とし
ては延伸法やエツチング法などにより得られた直孔貫通
型の空孔構造よりも、たとえば特公昭59−37292
号公報、特公昭40−957号公報および特公昭47−
17460号公報に示されたミクロ相分離法や混合抽出
法などにより形成される3次元網目構造を有するものが
好ましい。特に、特開昭55−131028号公報に示
された構造体の製造技術が確立することに伴なって、本
発明の意義が明確化し、従来技術では得られない優れた
性能を有する材料の製造方法を達成することができた。
Specifically, the so-called stretching method and the etching method created by chemical treatment after electron beam irradiation are also applicable, but the pore structure is straight through-holes obtained by the stretching method or etching method. Rather than the pore structure, for example, Japanese Patent Publication No. 59-37292
Publication No. 40-957 and Special Publication No. 47-
Those having a three-dimensional network structure formed by the microphase separation method, mixed extraction method, etc. disclosed in Japanese Patent No. 17460 are preferred. In particular, with the establishment of the manufacturing technology for structures disclosed in JP-A No. 55-131028, the significance of the present invention has become clearer, and the manufacturing of materials with excellent performance that cannot be obtained with conventional techniques has become clear. method was able to be achieved.

多孔膜の形状は、平膜状、チューブ状、中空糸膜状のい
ずれも適用可能であるが、本発明の目的には、内径0.
1ないし10ミリ、厚み0.05ないし5ミリの形状を
有する中空糸タイプのものが好ましい。
The shape of the porous membrane can be flat membrane, tube, or hollow fiber membrane, but for the purpose of the present invention, an inner diameter of 0.
A hollow fiber type having a shape of 1 to 10 mm and a thickness of 0.05 to 5 mm is preferable.

本発明のカルボキシル基含有側鎖を基材膜にグラフトさ
せる方法には、特公昭52−47538号公報、特開昭
55−21833号公報に知られているように、光化学
処理法等の方法もあるが、最も有効的には電離性放射線
を基材膜に照射する方法が良い。
The method of grafting the carboxyl group-containing side chain of the present invention onto the base film includes methods such as photochemical treatment, as known from Japanese Patent Publication No. 52-47538 and Japanese Unexamined Patent Publication No. 55-21833. However, the most effective method is to irradiate the base film with ionizing radiation.

この方法では、基材膜を化学的に劣化させる事が少なく
、フリーの重合体が出来にくい。また、このようにして
製造された多孔膜は、機械的、化学的にすぐれており、
濾過性機能も良い。用いられる電離性放射線は、α線、
β線、γ線、加速電子線、X線などであるが、実用的に
は電子線またはγ線が好ましい。グラフト重合させる方
法としては、多孔性基材とモノマーの共存下に放射線を
照射し、グラフト重合させる同時照射法と、多孔性基材
のみにあらかじめ放射線を照射し、そののち多孔性基材
にモノマーを接触反応させてグラフト重合させる前照射
法があるが、同時照射法では多孔性基材へのモノマーの
グラフト重合が進行すると同時に、グラフト重合に関与
しないモノマーのみが単独重合し、多孔性基材の空孔を
閉塞するという問題が生じるので、前照射法が好ましい
In this method, the base film is less likely to be chemically degraded and free polymer is less likely to be produced. In addition, the porous membrane produced in this way has excellent mechanical and chemical properties.
Good filterability as well. The ionizing radiation used is alpha rays,
Examples include β-rays, γ-rays, accelerated electron beams, and X-rays, but electron beams or γ-rays are practically preferred. There are two methods for graft polymerization: a simultaneous irradiation method in which radiation is irradiated while the porous substrate and the monomer coexist, and graft polymerization occurs, and a simultaneous irradiation method in which only the porous substrate is irradiated with radiation in advance, and then the monomer is applied to the porous substrate. There is a pre-irradiation method in which graft polymerization is carried out by catalytic reaction, but in the simultaneous irradiation method, the graft polymerization of the monomer to the porous substrate progresses, and at the same time, only the monomers that do not participate in the graft polymerization are homopolymerized, and the porous substrate The pre-irradiation method is preferred because of the problem of blocking the pores.

前照射法では一1多孔性基材にモノマーを接触させる以
前に基材にあらかじめ放射線を照射し、モノマーと接触
させるまでの間マイナスlθ℃以下ニ保ち、50℃以下
、好ましくは15℃〜50℃の低温でモノマーと接触さ
せてグラフト重合を行う。
In the pre-irradiation method, the base material is irradiated with radiation before contacting the monomer with the porous base material, and the temperature is kept below -1θ°C until it comes into contact with the monomer, and below 50°C, preferably between 15°C and 50°C. Graft polymerization is carried out by contacting with monomers at a low temperature of ℃.

放射線を照射したのちに多孔性基材を低温保存しない場
合は、生成ラジカルが急速に減衰し、室温(25℃)で
30分経過するとその数は半分になる。さらに、それと
同時に生成ラジカルが微量の吸着酸素と反応し、目的物
質の耐熱耐薬品性を損なうという欠陥を生じる。またグ
ラフト重合温度が60℃以上になると、グラフト重合に
あずからないモノマーの単独熱重合物が生成し、多孔性
基材の空孔を閉塞するとか、反応後の後処理工程では抽
出されない単独熱重合物が親水化の後に流出してきて2
次公害の原因となる、といった問題が生じる。
If the porous substrate is not stored at a low temperature after irradiation with radiation, the generated radicals will rapidly decay, and the number will be halved after 30 minutes at room temperature (25° C.). Furthermore, at the same time, the generated radicals react with a trace amount of adsorbed oxygen, resulting in a defect that impairs the heat and chemical resistance of the target substance. Furthermore, if the graft polymerization temperature exceeds 60°C, a homopolymer of monomers that do not participate in the graft polymerization will be generated, which may block the pores of the porous base material, or a homopolymer of monomers that will not be extracted in the post-treatment process after the reaction. The polymer flows out after becoming hydrophilic.2
Problems arise, such as causing secondary pollution.

以下、実施例により本発明の構成および効果を具体的に
述べるが、いずれも本発明を限定するものではない。
Hereinafter, the structure and effects of the present invention will be specifically described with reference to Examples, but these are not intended to limit the present invention.

実施例及び比較例 微粉硅酸にプシルvN3LP)23.1重量部、ジオク
チルフタレート(DOP)55.4重量部、ポリエチレ
ン樹脂粉末〔旭化成5H−800グレード)21.5重
量部の組成物を予備混合した後、30ミリ2軸押出機で
内径0.7鰭、厚み0.25 鰭の中空糸状に押出した
後、1.1.1−トリクロルエタン〔クロロセンVC(
商品名)〕中に60分間浸漬し、DOPを抽出した。更
に温度60℃の苛性ソーダ40%水溶液中に約20分浸
漬して微粉硅酸を抽出したあと、水洗、乾燥した。
Examples and Comparative Examples A composition of 23.1 parts by weight of Psil vN3LP), 55.4 parts by weight of dioctyl phthalate (DOP), and 21.5 parts by weight of polyethylene resin powder (Asahi Kasei 5H-800 grade) was premixed with finely powdered silicic acid. After that, it was extruded using a 30 mm twin-screw extruder into hollow fibers with an inner diameter of 0.7 fins and a thickness of 0.25 fins.
(trade name)] for 60 minutes to extract DOP. The sample was further immersed in a 40% aqueous solution of caustic soda at a temperature of 60° C. for about 20 minutes to extract the fine powder of silicic acid, followed by washing with water and drying.

得られた多孔膜に電子加速器(加圧電圧1.5MeV、
電子線電流1 mA)を用いて窒素雰囲気下100KG
yで電子線を照射したのち、あらかじめ溶存酸素を0、
1 ppn+以下にしたアクリル酸に浸漬し、グラフト
させて平均孔径0.15μ、空孔率62%、カルボキシ
ル基2.5ミリ当量/1グラム膜の膜(実施例膜)を得
た。
The obtained porous membrane was subjected to an electron accelerator (pressure voltage 1.5 MeV,
100KG under nitrogen atmosphere using electron beam current 1mA)
After irradiating with an electron beam at y, the dissolved oxygen was reduced to 0,
It was immersed in acrylic acid adjusted to 1 ppn+ or less and grafted to obtain a membrane (example membrane) with an average pore diameter of 0.15 μ, a porosity of 62%, and a membrane of 2.5 milliequivalents of carboxyl groups/1 gram of membrane.

比較の為に、実施例と同じ条件で押出、抽出された未処
理ポリエチレン中空糸膜を、特開昭56−57836号
公報の実施例6と同じような方法でスルホン化を行ない
、スルホン基0.5ミリ当量/グラム膜(平均孔径0.
16μ、空孔率65%)の比較例膜(A)を得た。
For comparison, an untreated polyethylene hollow fiber membrane extruded and extracted under the same conditions as in the example was sulfonated in the same manner as in Example 6 of JP-A No. 56-57836 to remove sulfone groups. .5 meq/g membrane (average pore size 0.5 meq/g membrane)
A comparative example membrane (A) having a diameter of 16 μm and a porosity of 65% was obtained.

更に実施例膜において、DOP、無水珪酸を抽出したの
ち未処理膜を比較例膜(B)として、以下の実験で使用
した。
Furthermore, after extracting DOP and silicic anhydride from the example membrane, the untreated membrane was used as a comparative example membrane (B) in the following experiment.

なお、ここで実施例膜のカルボキシル基、及び比較例膜
のスルホン基の定量は、以下によった。
Note that the carboxyl groups in the Example membrane and the sulfone groups in the Comparative Example membrane were determined as follows.

〔カルボキシル基の定量〕[Quantification of carboxyl group]

グラフト照射された多孔膜を、アルカリ水洗浄ののち、
何度も水洗をくり返し、乾燥後水洗によって重量減がな
い事を確認したのち、乾燥膜と基材膜の重量差から、含
有カルボキシル基を逆算した。なお、使用前に塩酸によ
ってHタイプにした。
After washing the graft-irradiated porous membrane with alkaline water,
After repeating water washing many times and confirming that there was no weight loss due to water washing after drying, the carboxyl group content was calculated backward from the weight difference between the dried film and the base film. In addition, before use, it was made into H type with hydrochloric acid.

〔スルホン基の定量〕[Quantification of sulfone group]

スルホン化多孔膜をIN  HCffi ag、に浸漬
し、H型とした後、水洗し、次にI N CaCj! 
、 ag、 ヘ浸漬し、遊離したHClを0. I N
 NaOHag、を用い、フェノールフタレインを指示
薬として滴定した。
The sulfonated porous membrane was immersed in IN HCffi ag to form H type, washed with water, and then immersed in IN CaCj!
, ag, and immerse the liberated HCl in 0. IN
Titration was carried out using NaOHag and phenolphthalein as an indicator.

あらかじめ、濾過テストを行なう前に、3種の膜の最大
吸着量を測定した所、以下に示される結果を得た。なお
、吸着に使用した液中のコバルトイオン濃度は2ミリモ
ル/lであり、液のpHは5.5に調整した。コバルト
吸着量は、原子吸光法により測定した。
Before conducting the filtration test, the maximum adsorption amounts of the three types of membranes were measured and the results shown below were obtained. The cobalt ion concentration in the liquid used for adsorption was 2 mmol/l, and the pH of the liquid was adjusted to 5.5. The amount of cobalt adsorption was measured by atomic absorption spectrometry.

以下余白 表−1 上表は明らかにカルボキシル基が最大効率良くコバルト
イオンを吸着する事を示すものである。
Margin Table 1 below: The above table clearly shows that carboxyl groups adsorb cobalt ions with maximum efficiency.

次に表−1のテストに使用したモデル液を使用して、実
際に濾過テストを行ったところ、以下の表−2に示され
る結果を得た。なお、原液性状を下記に示す。
Next, an actual filtration test was conducted using the model liquid used in the test in Table 1, and the results shown in Table 2 below were obtained. The properties of the stock solution are shown below.

〔原液性状〕[Standard liquid properties]

原液中の微粒子濃度1)  2X104ケ/c、cバク
テリヤ濃度t)       10″ケ/c、cコバル
トイオン濃度=a>  1.Bミリモル/11)0.2
μポリカーボネート製平膜での直接顕鏡した測定値 2)ブロカ染色法によって染色後、顕微鏡によって直接
測定した値 3)原子吸光法による測定値 表−2 微粒子除去率   99.5  99,4  99.0
(%) 表−2に示されるように、本発明のコバルトイオン除去
方法は、そのすぐれた微粒子除去性と併せてすぐれた特
性をもっている。
Concentration of fine particles in stock solution 1) 2 x 104 ke/c, c Bacterial concentration t) 10'' ke/c, c Cobalt ion concentration = a> 1.B mmol/11) 0.2
2) Values directly measured using a microscope after staining with a μ polycarbonate flat membrane 3) Measured values using atomic absorption method Table 2 Particulate removal rate 99.5 99,4 99. 0
(%) As shown in Table 2, the cobalt ion removal method of the present invention has excellent properties in addition to its excellent ability to remove fine particles.

尚、表−2に示された実施例を約5時間濾過テストを行
なわせたのち、強塩酸々性液に浸漬して再生した後、再
度コバルトイオンの除去率を測定した所、初期に比して
約95%の保持率を示した。
In addition, after conducting a filtration test for the example shown in Table 2 for about 5 hours, after regenerating it by immersing it in a strong hydrochloric acid solution, we measured the cobalt ion removal rate again. The retention rate was approximately 95%.

〔本発明の効果〕[Effects of the present invention]

本発明により、従来困難とされて来たコバルトイオンと
微粒子除去の同時効率除去が可能になり、原子力関係諸
廃水の精製、有効利用に多大の貢献が可能になった。
The present invention has made it possible to efficiently remove cobalt ions and particulates at the same time, which has been considered difficult in the past, and has made a significant contribution to the purification and effective use of nuclear power-related wastewater.

Claims (2)

【特許請求の範囲】[Claims] (1)放射性廃水中のコバルトイオンを除去、精製する
に際し、ポリオレフィン又はオレフィンとハロゲン化オ
レフィン共重合体、又はポリフッ化ビニリデンよりなる
基材膜にカルボキシル基を含有する側鎖がグラフトされ
ている多孔膜に、該廃水を通して、コバルトイオンを吸
着除去すると同時に、廃水中のコロイド状物質を除去す
る方法。
(1) When removing and purifying cobalt ions in radioactive wastewater, a porous membrane in which side chains containing carboxyl groups are grafted onto a base film made of polyolefin, olefin and halogenated olefin copolymer, or polyvinylidene fluoride A method of passing the wastewater through a membrane to adsorb and remove cobalt ions and simultaneously removing colloidal substances in the wastewater.
(2)多孔膜の孔構造が、実質的に3次元網目構造であ
り、平均孔径0.01μないし5μ、空孔率20ないし
80%であることを特徴とする特許請求の範囲第1項記
載の方法。
(2) The pore structure of the porous membrane is substantially a three-dimensional network structure, with an average pore diameter of 0.01μ to 5μ and a porosity of 20 to 80%. the method of.
JP61044178A 1986-03-03 1986-03-03 Cobalt ion removal method Expired - Fee Related JPH07106304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61044178A JPH07106304B2 (en) 1986-03-03 1986-03-03 Cobalt ion removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61044178A JPH07106304B2 (en) 1986-03-03 1986-03-03 Cobalt ion removal method

Publications (2)

Publication Number Publication Date
JPS62201604A true JPS62201604A (en) 1987-09-05
JPH07106304B2 JPH07106304B2 (en) 1995-11-15

Family

ID=12684323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61044178A Expired - Fee Related JPH07106304B2 (en) 1986-03-03 1986-03-03 Cobalt ion removal method

Country Status (1)

Country Link
JP (1) JPH07106304B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002303A1 (en) * 1987-09-11 1989-03-23 Japan As Represented By Director General, Agency O Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
JP2501891B2 (en) * 1987-09-11 1996-05-29 工業技術院長 Hydrophilic polypropylene porous membrane and plasma separation device
US5773536A (en) * 1995-03-29 1998-06-30 Cosmo Research Institute Resin composition to be plated

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002303A1 (en) * 1987-09-11 1989-03-23 Japan As Represented By Director General, Agency O Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
AU611950B2 (en) * 1987-09-11 1991-06-27 Japan As Represented By Director General Of Agency Of Industrial Science And Technology Hydrophilic polypropylene porous membrane, process for its production, and apparatus for separating blood plasma
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
JP2501891B2 (en) * 1987-09-11 1996-05-29 工業技術院長 Hydrophilic polypropylene porous membrane and plasma separation device
US5773536A (en) * 1995-03-29 1998-06-30 Cosmo Research Institute Resin composition to be plated

Also Published As

Publication number Publication date
JPH07106304B2 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
KR100363339B1 (en) Method for producing the separation functional fiber and ion exchange fiber produced therefrom
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
US20070007196A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
JPH06104753B2 (en) Non-adsorbing hydrophilic hollow fiber porous membrane
JP2686949B2 (en) Selective adsorption functional microfilter and its manufacturing method
JPS63240902A (en) Treating method
JP3386929B2 (en) Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same
JPH0580941B2 (en)
JPS62201604A (en) Method for removing cobalt ion
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
JPH0321390A (en) Removal of heavy metal ion in water
JPS62210005A (en) Novel composite functional membrane
JP3673452B2 (en) Pollution-resistant porous filtration membrane
JPH01224009A (en) Treatment of graft membrane
JPH0710925A (en) Chelating resin and its production
JPS6283006A (en) Manufacturing process for separating functional material
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JPS63310602A (en) Novel method for purifying condensate
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2921763B2 (en) Ultrapure water production method
JPH01313544A (en) Modification of porous fluororesin tube
JPH0290991A (en) Ion removing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees