JPH0580941B2 - - Google Patents

Info

Publication number
JPH0580941B2
JPH0580941B2 JP61281189A JP28118986A JPH0580941B2 JP H0580941 B2 JPH0580941 B2 JP H0580941B2 JP 61281189 A JP61281189 A JP 61281189A JP 28118986 A JP28118986 A JP 28118986A JP H0580941 B2 JPH0580941 B2 JP H0580941B2
Authority
JP
Japan
Prior art keywords
base material
fibrous
exchange group
solution
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61281189A
Other languages
Japanese (ja)
Other versions
JPS63135432A (en
Inventor
Takanobu Sugo
Jiro Okamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP61281189A priority Critical patent/JPS63135432A/en
Publication of JPS63135432A publication Critical patent/JPS63135432A/en
Publication of JPH0580941B2 publication Critical patent/JPH0580941B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は原子力、医療、電子および精密工業用
水の精製、工業廃水の有害および有用な溶存イオ
ンとコロイド状物質の吸着と過精製を同時に行
なう目的に利用される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention simultaneously purifies nuclear power, medical, electronic and precision industrial water, and simultaneously adsorbs and overpurifies harmful and useful dissolved ions and colloidal substances in industrial wastewater. used for a purpose.

[従来の技術] 従来、水処理設備においては、粒状イオン交換
樹脂等で溶存イオンが除去される。しかし、解離
度の低い化合物や、コロイド状無機微粒子の除去
機能を持たないため、過膜や過床を組合わせ
る必要があり、処理能力および経済的にも問題が
ある。これらの問題を克服するため、粉末イオン
交換床等の応用があるが、多量のイオン交換樹脂
を必要としたり、流動抵抗が大きい事や再生操作
時に陰イオンと陽イオン交換樹脂の分離性が悪い
など前記の課題を克服する事が困難であつた。
[Prior Art] Conventionally, in water treatment equipment, dissolved ions are removed using a granular ion exchange resin or the like. However, since it does not have the ability to remove compounds with a low degree of dissociation or colloidal inorganic particles, it is necessary to combine a membrane or a membrane, which poses problems in terms of processing capacity and economy. To overcome these problems, powdered ion exchange beds have been applied, but they require a large amount of ion exchange resin, have high flow resistance, and have poor separation of anions and cation exchange resins during regeneration operations. It was difficult to overcome the above-mentioned problems.

[発明が解決しようとする問題点] 本発明によつて、溶存イオンを吸着除去すると
同時に、コロイド状微粒子を除去することを可能
にし、処理水の流動抵抗が少なく効率良く精製す
ることが出来る。比重の異なつた材質の繊維に、
陰イオン交換基と陽イオン交換基をそれぞれ導入
することにより、従来樹脂よりも比重差を大きく
出来るため、分離性に優れた長所を持つ。また官
能基は基材の主鎖でなくグラフト鎖のみに導入さ
れるため、架橋構造が不用であり、廃棄処理する
際に燃焼しやすい特性を有し、水処理技術による
問題点が解決される。
[Problems to be Solved by the Invention] According to the present invention, it is possible to adsorb and remove dissolved ions and at the same time remove colloidal fine particles, and it is possible to efficiently purify treated water with less flow resistance. Fibers made of materials with different specific gravity,
By introducing an anion exchange group and a cation exchange group, the difference in specific gravity can be made larger than that of conventional resins, so it has the advantage of excellent separation properties. In addition, since the functional group is introduced only into the graft chain rather than the main chain of the base material, a cross-linked structure is not required, and it has the property of being easily combustible during disposal, which solves problems with water treatment technology. .

[問題点を解決するための手段] 本発明により前記問題点を解決する手段を検討
した結果、以下の手段によつて達成できる事が判
明した。
[Means for Solving the Problems] As a result of examining means for solving the above-mentioned problems according to the present invention, it has been found that the problems can be achieved by the following means.

すなわち、比重の異なる繊維状基材に、電離性
放射線照射技術を使用して、イオン交換能を有す
る重合性単量体又はイオン交換基に交換し得る官
能基を有する重合体単量体をグラフト重合させる
ことにより、陰イオン交換基と陽イオン交換基と
を、それぞれ、繊維状基材の主鎖でなくグラフト
鎖に導入させて比重差の大きい繊維状のイオン交
換体とすることにより、溶液中の溶存イオンを吸
着除去すると同時に、該溶液中に分散するコロイ
ド状微粒糸をも除去精製することが可能なとなつ
た。
That is, a polymerizable monomer having ion exchange ability or a polymer monomer having a functional group that can be exchanged with an ion exchange group is grafted onto fibrous base materials having different specific gravity using ionizing radiation irradiation technology. By polymerizing, an anion exchange group and a cation exchange group are respectively introduced into the graft chain instead of the main chain of the fibrous base material to form a fibrous ion exchanger with a large difference in specific gravity. It became possible to remove and purify the colloidal fine particles dispersed in the solution at the same time as adsorbing and removing dissolved ions in the solution.

更に、このような比重差の大きな繊維状イオン
交換体とすることにより、焼却処理に当たつて比
重差に基づいてイオン交換体を分別分離すること
ができるので、使用済の廃樹脂が分別焼却できて
容積減少が可能となつた。
Furthermore, by using a fibrous ion exchanger with such a large difference in specific gravity, it is possible to separate the ion exchanger based on the difference in specific gravity during incineration, so that used waste resin can be separated and incinerated. This made it possible to reduce the volume.

以下に本発明について、更に具体的に詳細な説
明を行う。
The present invention will be explained in more detail below.

本発明を実施するにあたつて、作用される繊維
基材としては、放射性照射により、イオン交換能
を有するか、又はイオン交換基に変換し得る官能
基を有する重合性単量体をグラフト重合し得るも
のであれば材質を問うものではないが、例えばポ
リオレフイン、オレフインとハロゲン化オレフイ
ン共重合体および活性炭素繊維などが用いられ
る。
In carrying out the present invention, the fiber base material to be treated is graft-polymerized with a polymerizable monomer having an ion exchange ability or a functional group that can be converted into an ion exchange group by radioactive irradiation. The material is not limited as long as it can be used, but for example, polyolefin, a copolymer of olefin and halogenated olefin, and activated carbon fiber can be used.

本発明に使用されるイオン交換能を有する重合
性単量体としては、ビニルスルホン酸、スチレン
スルホン酸、アクリル酸、メタクリル酸、パラビ
ニルフエノール、フルオロビニルスルホン酸、フ
ルオロビニルカルボン酸、メタクリル酸グリシジ
ル、ビニルピリジン、クロルメチルスチレン等で
ある。
Examples of polymerizable monomers having ion exchange ability used in the present invention include vinyl sulfonic acid, styrene sulfonic acid, acrylic acid, methacrylic acid, paravinylphenol, fluorovinyl sulfonic acid, fluorovinyl carboxylic acid, and glycidyl methacrylate. , vinylpyridine, chloromethylstyrene, etc.

本発明のグラフト重合に際して用いる電離性放
射線源としては、α線、β線、γ線、加速電子
線、X線などであるが、実用的には電子線または
γ線が好ましい。
Ionizing radiation sources used in the graft polymerization of the present invention include alpha rays, beta rays, gamma rays, accelerated electron beams, and X-rays, but electron beams or gamma rays are practically preferred.

本発明のグラフト重合方法としては、基材と重
合性単量体とを共存下に放射線を照射する同時照
射グラフト重合法、または基材のみをあらかじめ
放射線を照射したのち、これを重合性単量体と接
触させる前照射グラフト重合法のいずれでも可能
である。
The graft polymerization method of the present invention includes a simultaneous irradiation graft polymerization method in which radiation is irradiated while the base material and the polymerizable monomer coexist, or a simultaneous irradiation graft polymerization method in which only the base material is irradiated with radiation in advance and then the polymerizable monomer is Any pre-irradiation graft polymerization method with contact with the body is possible.

[実施例] 以下、実施例により本発明の構成および効果を
具体的に述べるが、いずれも本発明を限定するも
のではない。
[Examples] Hereinafter, the configuration and effects of the present invention will be specifically described using Examples, but these examples are not intended to limit the present invention.

実施例 1 直径が40μφ、長さ10mmのアフロン(商標名)
製カツト繊維に電子加速器(加速電圧1.5MeV、
電子線電流1mA)を用いて、窒素雰囲気下で
100KGy)を照射した後、あらかじめ溶液中の酸
素濃度を0.1ppm以下にしたスチレン単量体液に
浸漬して40℃で4時間反応させ、アセトンで充分
洗浄し、乾燥させた。これにより、グラフト率70
%を得た。このグラフト繊維を濃硫酸90%の
DMF溶液中で40℃、30分間スルホン化すること
により、4.2meq/gの陽イオン交換繊維を得た。
Example 1 Aflon (trade name) with a diameter of 40μφ and a length of 10mm
Electron accelerator (acceleration voltage 1.5 MeV,
under a nitrogen atmosphere using an electron beam current of 1 mA)
After irradiating with 100 KGy), the sample was immersed in a styrene monomer solution in which the oxygen concentration in the solution had been lowered to 0.1 ppm or less, reacted at 40°C for 4 hours, thoroughly washed with acetone, and dried. This results in a graft rate of 70
I got %. This graft fiber was treated with 90% concentrated sulfuric acid.
A 4.2 meq/g cation exchange fiber was obtained by sulfonation in a DMF solution at 40°C for 30 minutes.

他方、直径40μφ、長さ10mmのポリプロピレン
製カツト繊維に上記と同様100KGy照射した後、
クロルメチルスチレン単量体液に50℃で6時間反
応させた結果120%のグラフト率を得た。このグ
ラフト繊維をトリメチルアミン10%DMF溶液、
50℃で2時間、4級アンモニウム化を行なつた結
果、4.5meq/gの陰イオン交換繊維を得た。
On the other hand, after irradiating a cut polypropylene fiber with a diameter of 40μφ and a length of 10mm with 100KGy as above,
As a result of reacting with chloromethylstyrene monomer solution at 50°C for 6 hours, a grafting rate of 120% was obtained. This grafted fiber was added to trimethylamine in 10% DMF solution.
As a result of performing quaternary ammonium conversion at 50° C. for 2 hours, an anion exchange fiber of 4.5 meq/g was obtained.

得られた陽イオン交換繊維と陰イオン交換繊維
を1gづつを30mmφガラスカラム入れ、水中で撹
拌し、自然沈降させ、10Kgで圧縮充填したのち、
2ミリモルの食塩と2×104個/mlの微粒子濃度
の原液1を流通させた過液の電気伝導度は
0.4μs/cm-であり、微粒子除去率は99%であつ
た。
1 g each of the obtained cation exchange fiber and anion exchange fiber was placed in a 30 mmφ glass column, stirred in water, allowed to settle naturally, and compressed and packed at 10 kg.
The electrical conductivity of the liquid in which 2 mmol of common salt and stock solution 1 with a particle concentration of 2 × 10 4 particles/ml are passed is
The particle removal rate was 0.4 μs/cm - and the particle removal rate was 99%.

比較のため、ダイヤイオンSK1AとSA10Aを
1gづつを用いて、上記と同様な過試験を行な
つた結果過液の電気伝導度は6μs/cm-であり、
微粒子除去率は20%であつた。
For comparison, we conducted an overtest similar to the above using 1g each of Diaion SK1A and SA10A, and found that the electrical conductivity of the overflow liquid was 6μs/cm - .
The particle removal rate was 20%.

他方、両イオン交換樹脂を風乾したのち、200
メツシユのステンレス金網上に乗せて、アルコー
ルランプで燃焼試験を行なつた結果、実施例1の
樹脂は赤色炎を上げて燃焼したのに比べて比較例
の樹脂は多量の黒炎を上げ溶隔収縮し、不完全燃
焼をして炭化し、一部は液化して床面に落下し
た。
On the other hand, after air drying both ion exchange resins,
As a result of a combustion test with an alcohol lamp placed on a mesh stainless steel wire mesh, the resin of Example 1 burned with a red flame, while the resin of the comparative example produced a large amount of black flame and burned. It shrunk, burned incompletely and became carbonized, and some of it liquefied and fell to the floor.

[発明の効果] 本発明により、従来困難とされて来た。イオン
と微粒子の同時効率除去が可能になるとともに、
使用済、廃樹脂の焼却減容が可能になり、原子
力、医療、精密工業用水の精製、有効利用に多大
な貢献が可能になつた。
[Effects of the Invention] The present invention makes it possible to solve problems that have conventionally been considered difficult. Simultaneous and efficient removal of ions and particulates becomes possible, and
It has become possible to reduce the volume of used and waste resin by incineration, making it possible to make a significant contribution to the purification and effective use of water for nuclear power, medical care, and precision industrial uses.

Claims (1)

【特許請求の範囲】 1 溶液中の溶存イオンを吸着除去すると同時
に、該溶液中に分散するコロイド状物質をも除去
することが可能な繊維状イオン交換体を製造する
方法であつて、比重の異なる繊維状基材に、電離
性放射線照射技術を使用して、イオン交換能を有
する重合性単量体又はイオン交換基に交換し得る
官能基を有する重合性単量体をグラフト重合させ
ることにより、陰イオン交換基と陽イオン交換基
とを、それぞれ、繊維状基材の主鎖でなくグラフ
ト鎖に導入させて比重差の大きい繊維状イオン交
換体を製造する方法。 2 繊維状基材が紡糸された長繊維及びこの加工
品、短繊維の集合体の撚糸及びこの加工品、中空
糸及び多孔性中空糸、並びにこれらの切断短体か
ら選択される特許請求の範囲第1項記載の方法。
[Claims] 1. A method for producing a fibrous ion exchanger capable of adsorbing and removing dissolved ions in a solution and also removing colloidal substances dispersed in the solution, the method comprising: By graft polymerizing a polymerizable monomer having ion exchange ability or a polymerizable monomer having a functional group that can be exchanged with an ion exchange group onto a different fibrous base material using ionizing radiation irradiation technology. A method for manufacturing a fibrous ion exchanger having a large difference in specific gravity by introducing an anion exchange group and a cation exchange group into the graft chain instead of the main chain of the fibrous base material. 2. Claims selected from long fibers spun from a fibrous base material and processed products thereof, twisted yarns of aggregates of short fibers and processed products thereof, hollow fibers and porous hollow fibers, and cut short pieces thereof. The method described in paragraph 1.
JP61281189A 1986-11-26 1986-11-26 Material for simultaneous removal of ion and microparticle Granted JPS63135432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281189A JPS63135432A (en) 1986-11-26 1986-11-26 Material for simultaneous removal of ion and microparticle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281189A JPS63135432A (en) 1986-11-26 1986-11-26 Material for simultaneous removal of ion and microparticle

Publications (2)

Publication Number Publication Date
JPS63135432A JPS63135432A (en) 1988-06-07
JPH0580941B2 true JPH0580941B2 (en) 1993-11-10

Family

ID=17635584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281189A Granted JPS63135432A (en) 1986-11-26 1986-11-26 Material for simultaneous removal of ion and microparticle

Country Status (1)

Country Link
JP (1) JPS63135432A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169771A (en) * 1988-12-16 1990-06-29 Kuraray Trading Kk Ultrafine conjugated fiber assembly and production thereof
JP3152931B2 (en) * 1991-07-09 2001-04-03 サイマット リミテッド Method for producing polymer sheet
JP3485234B2 (en) * 1997-04-04 2004-01-13 株式会社荏原製作所 Anion exchanger, method for producing the same, and chemical filter
JP3708398B2 (en) 1999-10-21 2005-10-19 株式会社荏原製作所 Functional separation material
JP4064046B2 (en) * 1999-10-21 2008-03-19 株式会社荏原製作所 Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP2002088132A (en) * 2000-09-12 2002-03-27 Japan Atom Energy Res Inst Method for radiation graft polymerization
GB0025502D0 (en) * 2000-10-18 2000-11-29 Johnson Matthey Plc Metal scavenging
JP4753062B2 (en) * 2001-05-08 2011-08-17 独立行政法人 日本原子力研究開発機構 Method and apparatus for radiation graft polymerization of fiber material
JP4659266B2 (en) * 2001-05-08 2011-03-30 株式会社 環境浄化研究所 Articles comprising radiation-grafted fiber material
FR2911340B1 (en) * 2007-01-16 2009-04-17 Commissariat Energie Atomique MATERIAL COMPRISING POLYAZACYCLOALCANES, GRAFTED ON POLYPROPYLENE FIBERS, PROCESS FOR PREPARING THE SAME, AND METHOD FOR REMOVING METAL CATIONS FROM A LIQUID
JP5028661B2 (en) * 2007-11-26 2012-09-19 財団法人塩事業センター Cation exchange, anion exchange membrane and production method thereof
JP6149326B2 (en) * 2012-12-28 2017-06-21 株式会社 環境浄化研究所 Aging odor adsorbent and method for producing the same.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144389A (en) * 1976-05-27 1977-12-01 Kurashiki Boseki Kk Nonwoven structures made by cellulose ion exchange fibers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52144389A (en) * 1976-05-27 1977-12-01 Kurashiki Boseki Kk Nonwoven structures made by cellulose ion exchange fibers

Also Published As

Publication number Publication date
JPS63135432A (en) 1988-06-07

Similar Documents

Publication Publication Date Title
EP0713933B1 (en) Process for producing separation functional fibers and ion-exchange fibers produced therefrom
JPH02187136A (en) Production of iminodiacetyl-containing filtration membrane with composite function
US5743940A (en) Process for producing gas adsorbent
JPH0580941B2 (en)
JP2013011599A (en) Radioactive substance removing material and manufacturing method therefor
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP2772010B2 (en) Method for producing chelating resin adsorbent having iminodiacetic acid group
JPS6258774B2 (en)
JP3647667B2 (en) Iodine removal filter and iodine removal device carrying silver
US7291312B2 (en) Ozone removing material and method for preparing the same
JP2563448B2 (en) Method for producing immobilized tannin adsorbent
JP2011167606A (en) Method for producing chelate forming group-containing adsorbing material
JP3386929B2 (en) Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same
JPH0620554B2 (en) Method for producing gas adsorbent
US6844371B1 (en) Material having separating function
JPH05131120A (en) Electric regeneration type desalting apparatus
JP2000309609A (en) Remover of halogenated alkyl and its production
JPH07106304B2 (en) Cobalt ion removal method
JPS6258775B2 (en)
JPH05111685A (en) Method for removing heavy metal ion
KR100542297B1 (en) Ultraviolet irradiation grafted ion-exchange textile and its preparing method for electrodeionization equipment
JPH0929233A (en) Method for removing hydrogen peroxide in treatment water and water treatment apparatus
JPH04293581A (en) Method for purifying liquid
JPS6283006A (en) Manufacturing process for separating functional material
JPS62210005A (en) Novel composite functional membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees