JP4659266B2 - Articles comprising radiation-grafted fiber material - Google Patents

Articles comprising radiation-grafted fiber material Download PDF

Info

Publication number
JP4659266B2
JP4659266B2 JP2001137694A JP2001137694A JP4659266B2 JP 4659266 B2 JP4659266 B2 JP 4659266B2 JP 2001137694 A JP2001137694 A JP 2001137694A JP 2001137694 A JP2001137694 A JP 2001137694A JP 4659266 B2 JP4659266 B2 JP 4659266B2
Authority
JP
Japan
Prior art keywords
fiber material
graft polymerization
radiation
fiber
filamentous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001137694A
Other languages
Japanese (ja)
Other versions
JP2002339187A (en
Inventor
朋文 白石
昇 阿部
進 勝圓
篤 井神
正樹 友谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Kurashiki Textile Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd, Kurashiki Textile Manufacturing Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP2001137694A priority Critical patent/JP4659266B2/en
Publication of JP2002339187A publication Critical patent/JP2002339187A/en
Application granted granted Critical
Publication of JP4659266B2 publication Critical patent/JP4659266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放射線グラフト重合処理された糸状又は綿塊状繊維物質から構成される製品に関する。
【0002】
【従来の技術】
放射線グラフト重合法は、既存の高分子成形体に新たな機能性官能基を導入することができる手段として、最近ますます注目されている。
放射線グラフト重合法とは、高分子基材に放射線を照射してラジカルを形成させ、これにグラフトモノマーを反応させることによってモノマーを基材中に導入するという技法であり、基材である被照射物を重合性モノマーの共存下で放射線を照射することによって、ラジカル形成とモノマーとの反応とを行わせる同時照射グラフト重合法と、予め基材に放射線照射を行ってラジカルを形成させ、この照射済み基材をモノマーと反応させる前照射グラフト重合法とに分類される。前照射グラフト重合法は、副生成物である単独重合物の生成量が少ないという利点を有する。
【0003】
前照射グラフト重合法の中でも、照射済み基材に接触させるモノマーが液体か又は気体かにより、それぞれ液相グラフト重合法と気相グラフト重合法とに分けられる。液相グラフト重合法は、広範なモノマーに適用することができるので、汎用性があるという利点がある。
しかしながら、液相グラフト重合法にも、次のような問題点がある。まず、放射線照射時やグラフト反応時に酸素を十分に除去しておかなければ、高いグラフト率で均一にグラフト重合することが難しく、更にグラフト重合後の製品の物理的安定性にも問題がある点である。更に、グラフト重合後に、不要なモノマーを洗浄除去するのに多量の洗浄液を必要とし、その廃液処理に多大なコストがかかるという問題もある。
【0004】
また、これまでに、ポリエチレンを材質とする織布又は不織布状の基材に放射線グラフト重合を用いて機能性官能基を導入したことを特徴とするポリエチレン材料が特開平11−279945号に、ポリオレフィンやハロゲン化ポリオレフィンを材質とするフィルム状又はネット状のシート材料の放射線グラフト重合方法が特開2000−53788号に、本発明者らによりそれぞれ開示されている。
【0005】
しかしながら、従来の技術においては、セルロース系繊維に放射線グラフト重合を行った場合、基材の劣化が大きく、風合いが悪くなるという問題点があった。また、従来、綿布を対象とするグラフト重合処理はあったが、綿をはじめとするセルロース系繊維を材質とする糸状又は綿塊状の繊維を対象とするものは報告されていない。更に、糸状又は綿塊状繊維物質のグラフト重合処理においては、糸状又は綿塊状繊維物質と反応液とを均一に接触させることが出来ず、低グラフト率の原因となる酸素をそれら繊維物質から脱気することが困難であった。
更に、重合開始剤を触媒として用いたグラフト重合方法が知られているが、グラフト効率が低く、未反応のモノマーやモノマーどうしが共重合した単独重合物が大量に生成する問題点があった。
【0006】
一方、グラフト重合処理された繊維物質の製品化においては、従来、布状の生地全体をグラフト重合処理することによりその全面に機能を導入するものであったことから、高コストであると同時に、生地強力の低下、風合いの硬化などの問題があった。また、グラフト重合処理により種々の機能が付与された、綿をはじめとするセルロース系繊維を材質とする糸状又は綿塊状の繊維から構成される繊維製品も報告されていない。
このような背景のもと、本発明者らは、糸状又は綿塊状繊維物質に、放射線グラフト重合を用いて重合性モノマーをグラフト重合させることにより、種々の機能が導入された繊維物質から構成される繊維製品に関する本発明を完成するに至った。
【0007】
【発明が解決しようとする課題】
本発明は、従来技術における問題点であった基材の劣化や風合いの悪化を伴うことなくグラフト重合処理され種々の機能が付与された繊維物質から構成される繊維製品を提供することを課題とする。また、本発明は、従来の布全面にグラフト重合処理された繊維物質から構成される繊維製品よりも低コストで、種々の機能が付与された繊維製品を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、糸状又は綿塊状繊維物質に、放射線グラフト重合を用いて、重合性ビニルモノマーをグラフト重合させることにより種々の機能が導入された繊維物質から作製される糸状繊維を用いて、繊維製品を構成することを課題解決手段とする。本発明は、また、綿塊状繊維物質に、放射線グラフト重合を用いて、重合性ビニルモノマーをグラフト重合させることにより種々の機能が導入された綿塊状繊維物質を用いて、繊維製品を構成することを課題解決手段とする。
【0009】
【発明の実施の態様】
即ち、本発明は、放射線グラフト重合処理により種々の機能が導入された糸状又は綿塊状繊維物質から構成される繊維製品に関するものである。
糸状又は綿塊状繊維物質に、放射線グラフト重合を用いて機能性官能基を導入するためには、いずれの方法によってもよいが、本発明の一態様においては次の方法に従うことができる。
【0010】
本発明の一態様においては、糸状又は綿塊状繊維物質に放射線照射を行ってラジカルを形成させた後、この照射済みの繊維物質を、グラフト重合反応容器において重合性ビニルモノマーを含むグラフト重合反応処理液(以下、処理液という)に含浸させることにより、放射線グラフト重合処理を行う。
【0011】
糸状繊維物質をグラフト重合処理する場合、多孔円管の周囲に糸状繊維物質を巻糸機などによって巻き付けて形成した円筒状繊維物質形成体(チーズキャリヤ)を用いる。また、綿塊状繊維物質をグラフト重合処理する場合は、円筒体であってその中心に多孔円管を有する円筒体の内部に綿塊状繊維物質を配置して形成した円筒状繊維物質形成体(ルーズキャリヤ)を用いる。綿塊状繊維物質は、例えば原綿を人手又は機械力で適当な大きさに引き裂いてから配置してもよいし、原綿をスライバー状にして配置してもよい。多孔円管は、一端が開放されており、他端が閉鎖されており、更に管壁面に適当な大きさ及び形で押し抜かれた孔を多数有している。処理液をこの多孔円管の開放端から導入し、その孔から噴出させることにより、処理液が繊維物質に貫流して接触する。
【0012】
本発明を用いて放射線グラフト重合処理することができる繊維物質としては、合成繊維を材質とするものばかりでなく、従来、扱うことのできなかった綿などのセルロース系繊維、動物性繊維を材質とするもの、鉱物系繊維、若しくは再生繊維、又はそれらの混合繊維も対象とする。セルロース系繊維には、綿、麻等の天然セルロース系繊維、ビスコースレーヨン、銅アンモニア法レーヨン、ポリノジック等の再生セルロース繊維、テンセル等の精製セルロース繊維、アセテート、ジアセテート等の半合成繊維が含まれるが、これらに限定されるものではない。鉱物系繊維には、石綿、玄武岩繊維等が含まれるが、これらに限定されるものではない。動物性繊維には、羊毛等の獣毛繊維、絹等が含まれるが、これらに限定されるものではない。また合成繊維には、ポリエステル系、ポリアミド系、アクリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリビニルアルコール系、フッ素系等が含まれるが、これらに限定されるものではない。再生繊維には、キチン・キトサン繊維、コラーゲン繊維などが含まれるが、これらに限定されるものではない。
【0013】
本発明に用いることができる糸状繊維物質には、単一のセルロース系繊維の糸又は複数のセルロース系繊維の混紡糸、セルロース系繊維とポリエステル系、ポリアミド系、アクリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリビニルアルコール系、フッ素系等の合成繊維との混紡糸、鉱物系繊維との混紡糸、羊毛等の獣毛繊維、絹等の動物性繊維との混紡糸、再生繊維との混紡糸が含まれる。また、再生セルロース系繊維、半合成系繊維、合成繊維、再生繊維の場合は、長繊維(フィラメント糸)であっても、紡績糸であってもよく、複数の繊維を混紡したものでもよい。
【0014】
本発明に用いることができる綿塊状繊維物質には、綿、麻等の天然セルロース系繊維、ビスコースレーヨン、銅アンモニア法レーヨン、ポリノジック等の再生セルロース繊維、テンセル等の精製セルロース繊維、アセテート、ジアセテート等の半合成繊維、石綿、玄武岩繊維等の鉱物系繊維、羊毛等の獣毛繊維、絹等の動物性繊維、ポリエステル系、ポリアミド系、アクリル系、ポリ塩化ビニル系、ポリ塩化ビニリデン系、ポリエチレン系、ポリプロピレン系、ポリウレタン系、ポリビニルアルコール系、フッ素系等の合成繊維、キチン・キトサン繊維、コラーゲン繊維などが含まれるが、これらに限定されるものではない。
【0015】
重合性ビニルモノマーを導入する際の糸状繊維物質は、精練を施していない原糸、精練後、漂白後、苛性シルケット後、アンモニアシルケット後、染色後いずれの状態でもよく、原糸の状態で放射線グラフト重合を行った後、製織、精練、漂白、苛性シルケット、アンモニアシルケット、染色、仕上げ工程を行っても放射線グラフト重合で得られた機能は低下しない。綿塊状繊維物質についても原綿、精練後、漂白後、苛性シルケット後、アンモニアシルケット後、染色後いずれの状態でもよい。
【0016】
本発明の放射線グラフト重合法によって繊維物質中に導入することのできる重合性ビニルモノマーとしては、それ自体が種々の機能性官能基を有する重合性ビニルモノマーや、或いはそれをグラフトした後に更に2次反応を行うことによって機能性官能基を導入することのできる重合性ビニルモノマーを用いることができる。
【0017】
イオン交換基、親水性基、疎水性基、抗菌性を有するモノマー、2次反応を行って機能を導入できるモノマーには、アクリル酸、メタクリル酸、スチレンスルホン酸、ビニルスルホン酸、メタクリルスルホン酸、アリルスルホン酸及びこれらのアルカリ金属塩、ビニルベンジルトリメチルアンモニウムクロライド、アリールアミノ、N,N−ジメチルアミノエチルアクリレート、N,N−ジメチルアミノエチルメタクリレート、N,N−ジエチルアミノエチルメタクリレート、N,N−ジメチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、2−ヒドロキシルエチルメタクリレート、アクリロニトリル、アクロレイン、ビニルピリジン、スチレン、クロロメチルスチレン、メタクリル酸グリシジル、アクリル酸グリシジル、グリシジルソルベート、グリシジルメタイタコナート、グリシジルビニルスルホナート、エチルグリシジルマレアート、2−ビニルピロリドン、ジビニルベンゼン、1−ビニル−2−ピペリドン、N−ビニル−N−メチルアセトアミド、N−ビニル−N−エチルアセトアミド、N−ビニル−N−メチルプロピルアミド、N−ビニル−N−エチルプロピルアミド及びこれらの誘導体などが含まれる。
【0018】
まず、グラフト重合すべき繊維物質に放射線を照射する。照射条件は、特に限定はないが、十分なグラフト効率を得るためには、脱酸素状態で、5〜200kGy、特に30〜100kGyが好ましい。酸素濃度は、必要とされる重合率でグラフト重合が達成される濃度であればよく、好ましくは、酸素濃度1%以下、より好ましくは、酸素濃度100ppm以下である。本発明の目的のために好適に用いることのできる放射線としては、α線、β線、γ線、電子線、紫外線などがあげられるがこれらに限定されるものではない。本発明において用いるのは、γ線又は電子線が適している。
【0019】
放射線照射後、放射線が照射された繊維物質をグラフト重合反応容器内に配置する。この際、繊維物質は、先に説明したように、多孔円管を中心に有する円筒状繊維物質形成体として配置される。グラフト重合を行う際には、繊維物質及び反応容器内を脱酸素状態にすることを要する。酸素濃度は、必要とされる重合率でグラフト重合が達成される濃度であればよく、好ましくは、酸素濃度1%以下、より好ましくは、酸素濃度100ppm以下である。本発明の一態様においては、真空ポンプ等を用いることにより反応容器内を脱気し減圧状態にしてから、その反応容器に窒素を供給し常圧に戻す。この操作を数回繰り返すことにより、反応容器及び繊維物質に含まれる酸素が除去される。次いで、予め別の容器で窒素バブリングにより脱気された処理液を、繊維物質が配置されたグラフト重合反応容器に満たす。本発明の別の態様においては、脱酸素状態を実現するため、窒素の代わりに希ガスなどの不活性ガスを用いることができる。
【0020】
続いて、反応容器に満たされた処理液を、ポンプにより吸引し、ポンプを通って再び処理槽に戻すように循環させる。この際、処理液を繊維物質に貫流して接触させることが好ましい。例えば、反応容器からポンプにより吸引した処理液を、円筒状繊維物質形成体の中心の多孔円管に導入し円管の中心軸に対して外向きに噴出して、繊維物質を貫流して接触させるように反応容器に戻すか、又は処理液を、多孔円管の中心軸に対して内向きに円筒状繊維物質形成体を貫流して接触させるように吸引して、ポンプを通って再び反応容器に戻すかのいずれであってもよい。しかし、好ましくは、正転/逆転可能なポンプを用いて一定時間毎に正転/逆転を繰り返すことにより、円筒状繊維物質形成体に、処理液を、多孔円管の中心軸に対して内向き又は外向きにその孔を経て交互に繊維物質に貫流することにより接触させる。これにより、繊維物質を処理液に確実に含浸させることができる。処理液を繊維物質に貫流させながら、反応容器内の繊維物質及び処理液の温度を適当な加熱/冷却手段により、0〜100℃、好ましくは、30〜70℃、特に好ましくは、40〜60℃に保持し、常圧で10分〜6時間、好ましくは、30分〜3時間、脱酸素状態で反応させて、放射線グラフト重合処理を行う。グラフト重合後に機能性官能基を導入する場合には、当業者に知られた方法を用いて2次反応を行うことにより、繊維物質にグラフトされた重合性ビニルモノマーに機能性官能基を導入する。
【0021】
本発明の実施形態には、放射線グラフト重合を用いて機能性官能基を導入した糸状又は綿塊状繊維物質から構成される繊維製品がある。
放射線グラフト重合により機能性官能基を導入した糸状繊維物質を、織物、編物の経糸及び/又は緯糸に用いることにより、生地の状態で機能性官能基を導入した繊維物質と比較して強力が高く、低コストでそれらを製造することが可能である。この際、経糸及び/又は緯糸の全てに放射線グラフト重合処理した繊維物質を用いてもよいし、未加工のものと組合わせて、例えば、未加工糸1〜20本に対し1本の割合で用いてもよい。更には、異なる機能を導入した複数の糸状繊維物質を組み合わせて縦糸及び/又は緯糸として用いることにより、生地の加工では不可能であった機能の複合化を行うこともできる。
【0022】
本発明の放射線グラフト重合を用いて機能性官能基を導入した糸状繊維物質から構成される繊維製品の例には、消臭機能を付与したリネンサプライ用シーツ、オムツ、オムツカバー若しくはそれらの回収袋、又は便座カバー、マット、ペーパーホルダーなどのトイレタリー製品、アンモニア消臭と抗菌の機能を付与した白衣、病衣などの病院用途製品、又は靴下、酸性ガス消臭と塩基性ガス消臭の相反する機能を付与した製品などが含まれるが、これらに限定されるものではない。これらは、従来の放射線グラフト重合により機能を付与した生地を用いるよりも安価に製造でき、工業洗濯に対しても非常に耐久性が高い。
【0023】
また織物、編物では、使用目的に応じて、織組織、編組織の異なる繊維製品を製造することが可能である。これらの例には、綾織りすることにより機能を付与した糸を肌側に用いたデニム又はパンツ等の織物製品、二重織りすることにより肌側部分にのみ機能を付与した糸を使用したシャツ又はパンツ等の製品、又は肌側に消臭機能を付与した糸を用い、表側にムレを防止するために放湿性の高い素材の糸を使用するなどの表と裏で機能の異なる糸で製編したニット製品等が含まれるが、これらに限定されるものではない。
【0024】
放射線グラフト重合により機能性官能基を導入した綿塊状繊維物質は、布団綿やぬいぐるみ等の中綿に使用することができる。また、単独で使用して糸にすることが可能であるが、他のセルロース系繊維、ポリエステル、ポリアミド、アクリル、ナイロン等の合成繊維、羊毛、絹等の動物性繊維の原綿と混紡して糸にすることもできる。更に、これらの糸を用いて、上述のように目的に応じた機能を有する種々の製品を製造することができる。他の機能を導入した綿塊状繊維物質と混紡することにより、綿塊状の形態で機能の複合化を行うことも可能である。
【0025】
機能性官能基を導入した生地の表面に、ラミネート加工やコーティング加工を行うことによって、表側には防水性や撥水性が付与され、人体の肌面である生地の裏側は機能性官能基が導入されているので、複合の機能を有する繊維製品を製造することができる。具体的にはアンモニア消臭機能を導入した介護用防水シーツ、抗菌機能を導入したエプロン、汗消臭機能を導入したレインコートやキャンプ等で使用する野外テントなどが例示される。
以下の実施例によって、本発明のいくつかの態様を具体的に説明する。これらの実施例は、特許請求の範囲に示された本発明の範囲を制限するものではない。
【0026】
【実施例】
(実施例1)
糸状繊維物質の放射線グラフト重合を行った。まず、常法によりチーズキャリヤにチーズ巻きしたポリエステル30%、綿70%の混紡原糸(22.5番手)を脱気して、脱酸素状態で放射線を50KGy照射した。この放射線照射した混紡原糸をグラフト重合処理槽に配置し、脱気、窒素供給を繰り返し処理槽内の酸素を除去した。次いで、予め脱気、窒素置換(酸素濃度1%以下)したアクリル酸10%、ビニルスルホン酸ナトリウム20%(塩基性ガス消臭に適したモノマー)を含む水90%、メタノール10%の混合溶液を処理槽内に満たし、混紡原糸を浸漬した。処理槽内の温度を50℃まで徐々に昇温し、脱酸素状態で1時間処理した。この間、ポンプの正転/逆転を一定時間毎に繰り返し、モノマーを含む混合溶液を混紡原糸に貫流して接触させた。次いで、グラフト重合処理した混紡原糸を取り出し、水で洗浄し乾燥して、ポリエステル30%、綿70%グラフト重合加工混紡糸を得た。
【0027】
経糸にポリエステル30%、綿70%未加工混紡糸、緯糸にポリエステル30%、綿70%グラフト重合加工混紡糸と未加工混紡糸を1:1の比率で用いた平織物(番手:経糸22.5×緯糸22.5番手相当、密度:経63本/インチ、緯58本/インチ)を製織し、常法により糊抜、精練、漂白、苛性シルケット、染色(スレン染料)を行い、シーツ用織物を製造した。表1に諸特性を示す。
【0028】
【表1】

Figure 0004659266
【0029】
表中、生地強力試験は、JIS L 1096(一般織物試験方法の引張強さA法(ストリップ法)及び引裂強さD法(ペンジュラム法)に準拠した。
消臭試験は、1Lテドラーバッグに各試料を1gずつ入れ、所定濃度のアンモニアガスを充填し、10、30、60分後のテドラーバッグ中のガス濃度を検知管により測定した。
【0030】
(実施例2)
実施例1で製造したグラフト重合加工混紡糸と未加工混紡糸の比率を1:5にした以外は、実施例1と同様にシーツ用織物を製造した。表1に諸特性を示す。
(実施例3)
実施例1で製造したグラフト重合加工混紡糸と未加工混紡糸の比率を1:10にした以外は、実施例1と同様にシーツ用織物を製造した。表1に諸特性を示す。
【0031】
(比較例1)
経糸、緯糸ともにポリエステル30%、綿70%未加工混紡糸を用いて平織物(番手:経糸22.5×緯糸22.5番手相当、密度:経63本/インチ、緯58本/インチ)を製織し、常法により糊抜、精練、漂白、苛性シルケット、染色(スレン染料)を行い、シーツ用織物を製造した。表1に諸特性を示す。
【0032】
(実施例4)
実施例1のポリエステル30%、綿70%の混紡原糸の代わりに綿100%原糸(40番手)を用いた以外は、実施例1と同様に処理を行い、綿100%グラフト重合加工糸(塩基性ガス消臭機能)を製造した。更に、実施例1のアクリル酸、ビニルスルホン酸ナトリウムの代わりに、ビニルベンジルトリメチルアンモニウムクロライド(抗菌性能を有するモノマー)20%を含むメタノール溶液を用いて、綿100%原糸(40番手)にグラフト重合処理を行った。
【0033】
経糸に綿100%未加工糸、緯糸に綿100%グラフト重合加工糸(塩基性ガス消臭機能)、綿100%グラフト重合加工糸(抗菌機能)及び綿100%未加工原糸を1:1:1の比率で用いた平織物(番手:経糸40×緯糸40番手相当、密度:経133本/インチ、緯72本/インチ)を製織し、常法により糊抜、精練、漂白、苛性シルケット、染色(スレン染料)を行い、白衣用織物を製造した。
得られた白衣製品を繊維製品新機能評価協議会制定の洗濯方法(一般家庭洗濯方法)で繰り返し100回洗濯を実施し性能評価を行った。表2に諸特性を示す。
【0034】
【表2】
Figure 0004659266
【0035】
表中、抗菌試験は、JIS L 1902(繊維製品の抗菌試験方法)に準拠した。試験菌は黄色ブドウ球菌(Staphylococcus aureus ATCC 6538P)を用いた。 繊維製品新機能評価協議会制定の洗濯方法は、JIS L 0217 103法、洗剤はJAFET標準洗剤(繊維製品新機能評価協議会指定洗剤)を使用した。
性能評価の結果、アンモニア消臭性能、抗菌性能共に優れた効果を示し、洗濯に対する耐久性が非常に高いことを示した。また、アンモニアガスを40ppm充填し、60分後のガス濃度を検知管により測定した結果、優れた効果を示した。
【0036】
(比較例2)
経糸、緯糸ともに綿100%未加工糸を用いて平織物(番手:経糸40×緯糸40番手相当、密度:経133本/インチ、緯72本/インチ)を製織し、常法により糊抜、精練、漂白、苛性シルケット、染色(スレン染料)を行い、白衣用織物を製造した。表2に諸特性を示す。
【発明の効果】
本発明によれば、放射線グラフト重合処理により種々の機能を付与した糸状又は綿塊状繊維物質を用いることにより、従来よりも低コストで繊維製品に機能を導入することが可能となり、また、繊維製品の必要な箇所に機能を導入することができる。また、更に複合的な機能をもった繊維製品を提供することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a product composed of a yarn-like or flocculent fiber material subjected to a radiation graft polymerization treatment.
[0002]
[Prior art]
The radiation graft polymerization method has recently attracted more and more attention as a means for introducing a new functional functional group into an existing polymer molding.
The radiation graft polymerization method is a technique in which a polymer base material is irradiated with radiation to form radicals, and then the monomer is introduced into the base material by reacting with the graft monomer. By irradiating the product with radiation in the presence of a polymerizable monomer, a simultaneous irradiation graft polymerization method in which radical formation and the reaction with the monomer are performed, and the substrate is irradiated with radiation in advance to form radicals, and this irradiation is performed. And a pre-irradiation graft polymerization method in which a used substrate is reacted with a monomer. The pre-irradiation graft polymerization method has an advantage that the amount of a homopolymer which is a by-product is small.
[0003]
Among the pre-irradiation graft polymerization methods, there are a liquid-phase graft polymerization method and a gas-phase graft polymerization method depending on whether the monomer brought into contact with the irradiated substrate is liquid or gas, respectively. Since the liquid phase graft polymerization method can be applied to a wide range of monomers, it has an advantage of versatility.
However, the liquid phase graft polymerization method has the following problems. First, if oxygen is not sufficiently removed at the time of radiation irradiation or graft reaction, it is difficult to perform uniform graft polymerization at a high graft rate, and there is also a problem in the physical stability of the product after graft polymerization. It is. Furthermore, after the graft polymerization, a large amount of washing liquid is required to wash away unnecessary monomers, and there is a problem that the waste liquid treatment is very expensive.
[0004]
In addition, a polyethylene material in which a functional functional group is introduced into a woven or non-woven base material made of polyethylene by using radiation graft polymerization has been disclosed in JP-A-11-279945. Japanese Patent Laid-Open No. 2000-53788 discloses a radiation graft polymerization method for film-like or net-like sheet materials made of styrene or halogenated polyolefin.
[0005]
However, in the prior art, when radiation graft polymerization is performed on cellulosic fibers, there is a problem in that the base material is greatly deteriorated and the texture is deteriorated. Conventionally, there has been a graft polymerization treatment for cotton cloth, but there has been no report on yarn-like or lump-like fibers made of cellulosic fibers such as cotton. Further, in the graft polymerization treatment of the filamentous or fluffy fiber material, the filamentous or fluffy fiber material and the reaction solution cannot be uniformly contacted, and oxygen causing the low graft rate is degassed from the fiber material. It was difficult to do.
Furthermore, a graft polymerization method using a polymerization initiator as a catalyst is known. However, there is a problem that graft efficiency is low and unreacted monomers and a homopolymer obtained by copolymerization of monomers are produced in large quantities.
[0006]
On the other hand, in the commercialization of the fiber material subjected to the graft polymerization treatment, conventionally, since the entire cloth-like cloth was subjected to the graft polymerization treatment, a function was introduced to the entire surface, so that the cost was high. There were problems such as reduced fabric strength and hardened texture. In addition, there has been no report of a fiber product composed of yarn-like or lump-like fibers made of cellulosic fibers such as cotton, to which various functions are imparted by graft polymerization.
Under such a background, the present inventors are composed of a fibrous material into which various functions are introduced by graft polymerization of a polymerizable monomer to a filamentous or flocculent fibrous material using radiation graft polymerization. The present invention relating to a textile product has been completed.
[0007]
[Problems to be solved by the invention]
It is an object of the present invention to provide a fiber product composed of a fibrous material which has been subjected to graft polymerization treatment and has been imparted with various functions without accompanying deterioration of the base material or texture which has been a problem in the prior art. To do. Another object of the present invention is to provide a fiber product to which various functions are imparted at a lower cost than a fiber product composed of a fiber material graft-polymerized on the entire surface of a conventional cloth.
[0008]
[Means for Solving the Problems]
The present invention relates to a textile product using a filamentous fiber produced from a fibrous material in which various functions are introduced by graft polymerization of a polymerizable vinyl monomer to a filamentous or flocculent fibrous material using radiation graft polymerization. It is a problem solving means to configure. The present invention also constitutes a fiber product using a cotton lump fiber material into which various functions are introduced by graft polymerization of a polymerizable vinyl monomer to the lump fiber material using radiation graft polymerization. Is a problem solving means.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
That is, the present invention relates to a fiber product composed of a thread-like or cotton lump-like fiber substance into which various functions are introduced by radiation graft polymerization.
In order to introduce a functional functional group into a filamentous or flocculent fiber material using radiation graft polymerization, any method may be used, but in one embodiment of the present invention, the following method can be followed.
[0010]
In one embodiment of the present invention, after a radical is formed by irradiating a filamentous or flocculent fiber material with radiation, the irradiated fiber material is subjected to a graft polymerization reaction treatment containing a polymerizable vinyl monomer in a graft polymerization reaction vessel. A radiation graft polymerization process is performed by impregnating a liquid (hereinafter referred to as a processing liquid).
[0011]
When the fibrous fiber material is subjected to graft polymerization, a cylindrical fibrous material formed body (cheese carrier) formed by winding the fibrous fiber material around a perforated circular tube with a winding machine or the like is used. In addition, when the flocculent fiber material is graft-polymerized, a cylindrical fiber material formed body (loose) formed by arranging a flocculent fiber material inside a cylindrical body having a porous tube at the center thereof. Carrier). The lump-like fiber material may be arranged after the raw cotton is torn to an appropriate size by hand or mechanical force, or may be arranged in a sliver form. The perforated circular tube is open at one end, closed at the other end, and further has a number of holes punched out in a suitable size and shape on the wall of the tube. By introducing the treatment liquid from the open end of the perforated circular tube and ejecting it from the hole, the treatment liquid flows through and contacts the fiber material.
[0012]
Examples of fiber materials that can be subjected to radiation graft polymerization using the present invention include not only synthetic fibers but also cellulosic fibers such as cotton and animal fibers that could not be handled conventionally. In addition, the target is mineral fiber, recycled fiber, or mixed fiber thereof. Cellulosic fibers include natural cellulose fibers such as cotton and hemp, viscose rayon, copper ammonia rayon, regenerated cellulose fibers such as polynosic, purified cellulose fibers such as tencel, and semi-synthetic fibers such as acetate and diacetate. However, it is not limited to these. Mineral fiber includes, but is not limited to, asbestos, basalt fiber, and the like. Animal fibers include, but are not limited to, animal hair fibers such as wool, silk and the like. Synthetic fibers include, but are not limited to, polyesters, polyamides, acrylics, polyvinyl chlorides, polyvinylidene chlorides, polyethylenes, polypropylenes, polyurethanes, polyvinyl alcohols, fluorines, etc. It is not something. Regenerated fibers include, but are not limited to, chitin / chitosan fibers and collagen fibers.
[0013]
The filamentous fiber material that can be used in the present invention includes a single cellulosic fiber yarn or a blended yarn of a plurality of cellulosic fibers, cellulosic fiber and polyester, polyamide, acrylic, polyvinyl chloride, poly Blended yarns with synthetic fibers such as vinylidene chloride, polyethylene, polypropylene, polyurethane, polyvinyl alcohol, and fluorine, blended yarns with mineral fibers, animal hair fibers such as wool, and animal fibers such as silk And blended yarns with recycled fibers. In the case of regenerated cellulose fibers, semi-synthetic fibers, synthetic fibers, and regenerated fibers, they may be long fibers (filament yarns), spun yarns, or a mixture of a plurality of fibers.
[0014]
Cotton lump fiber materials that can be used in the present invention include natural cellulosic fibers such as cotton and linen, viscose rayon, copper ammonia rayon, regenerated cellulose fibers such as polynosic, purified cellulose fibers such as tencel, acetate, diene Semi-synthetic fibers such as acetate, mineral fibers such as asbestos and basalt fibers, animal fibers such as wool, animal fibers such as silk, polyester, polyamide, acrylic, polyvinyl chloride, polyvinylidene chloride, Examples include, but are not limited to, synthetic fibers such as polyethylene, polypropylene, polyurethane, polyvinyl alcohol, and fluorine, chitin / chitosan fibers, and collagen fibers.
[0015]
The filamentous fiber material when introducing the polymerizable vinyl monomer may be any raw yarn that has not been scoured, after scouring, after bleaching, after caustic mercerization, after ammonia mercerization, or after dyeing. Even if weaving, scouring, bleaching, caustic mercerization, ammonia mercerization, dyeing, and finishing steps are performed after graft polymerization, the function obtained by radiation graft polymerization does not deteriorate. The cotton lump fiber material may also be in any state after raw cotton, after scouring, after bleaching, after caustic mercerization, after ammonia mercerization, or after dyeing.
[0016]
Examples of the polymerizable vinyl monomer that can be introduced into the fiber material by the radiation graft polymerization method of the present invention include a polymerizable vinyl monomer having various functional functional groups, or a secondary polymer after grafting it. A polymerizable vinyl monomer capable of introducing a functional functional group by carrying out the reaction can be used.
[0017]
Monomers having ion exchange groups, hydrophilic groups, hydrophobic groups, antibacterial properties, and monomers capable of introducing functions through secondary reactions include acrylic acid, methacrylic acid, styrene sulfonic acid, vinyl sulfonic acid, methacryl sulfonic acid, Allylsulfonic acid and alkali metal salts thereof, vinylbenzyltrimethylammonium chloride, arylamino, N, N-dimethylaminoethyl acrylate, N, N-dimethylaminoethyl methacrylate, N, N-diethylaminoethyl methacrylate, N, N-dimethyl Acrylamide, N, N-dimethylaminopropylacrylamide, 2-hydroxylethyl methacrylate, acrylonitrile, acrolein, vinylpyridine, styrene, chloromethylstyrene, glycidyl methacrylate, glycidyl acrylate Glycidyl sorbate, glycidyl metaitaconate, glycidyl vinyl sulfonate, ethyl glycidyl maleate, 2-vinyl pyrrolidone, divinyl benzene, 1-vinyl-2-piperidone, N-vinyl-N-methylacetamide, N-vinyl-N -Ethylacetamide, N-vinyl-N-methylpropylamide, N-vinyl-N-ethylpropylamide and derivatives thereof are included.
[0018]
First, the fiber material to be graft polymerized is irradiated with radiation. Irradiation conditions are not particularly limited, but 5 to 200 kGy, particularly 30 to 100 kGy are preferable in a deoxygenated state in order to obtain sufficient graft efficiency. The oxygen concentration may be a concentration at which graft polymerization can be achieved at a required polymerization rate, and is preferably 1% or less, more preferably 100 ppm or less. Examples of radiation that can be suitably used for the purpose of the present invention include, but are not limited to, α rays, β rays, γ rays, electron beams, and ultraviolet rays. A gamma ray or an electron beam is suitable for use in the present invention.
[0019]
After irradiation, the fiber material irradiated with radiation is placed in a graft polymerization reaction vessel. At this time, as described above, the fiber material is arranged as a cylindrical fiber material forming body having a porous circular tube as a center. When performing graft polymerization, it is necessary to deoxidize the fiber material and the reaction vessel. The oxygen concentration may be a concentration at which graft polymerization can be achieved at a required polymerization rate, and is preferably 1% or less, more preferably 100 ppm or less. In one embodiment of the present invention, the inside of a reaction vessel is degassed by using a vacuum pump or the like to reduce the pressure, and then nitrogen is supplied to the reaction vessel to return to normal pressure. By repeating this operation several times, oxygen contained in the reaction vessel and the fiber material is removed. Subsequently, the treatment liquid deaerated in advance by nitrogen bubbling in another container is filled in the graft polymerization reaction container in which the fiber material is arranged. In another aspect of the present invention, an inert gas such as a rare gas can be used in place of nitrogen in order to realize the deoxygenated state.
[0020]
Subsequently, the treatment liquid filled in the reaction vessel is sucked by a pump and circulated so as to return to the treatment tank again through the pump. At this time, it is preferable that the treatment liquid flows through and contacts the fiber material. For example, the processing liquid sucked by the pump from the reaction vessel is introduced into the porous tube at the center of the cylindrical fiber material forming body, and ejected outwardly with respect to the central axis of the circular tube to flow through and contact the fiber material. The reaction solution is sucked so as to flow through the cylindrical fibrous material forming body inwardly in contact with the central axis of the perforated circular tube, and then reacted again through the pump. It may be returned to the container. However, it is preferable that the processing liquid is injected into the cylindrical fiber material forming body with respect to the central axis of the porous circular tube by repeating normal rotation / reverse rotation at regular intervals using a pump capable of normal rotation / reverse rotation. Contact is made by flowing through the fiber material alternately through the holes in the direction or outward. Thereby, a fiber substance can be reliably impregnated with a processing liquid. While allowing the treatment liquid to flow through the fiber material, the temperature of the fiber material and the treatment liquid in the reaction vessel is adjusted to 0 to 100 ° C., preferably 30 to 70 ° C., particularly preferably 40 to 60, by an appropriate heating / cooling means. The radiation graft polymerization treatment is carried out by maintaining the temperature at a temperature of 10 minutes to 6 hours at normal pressure, preferably 30 minutes to 3 hours in a deoxygenated state. When the functional functional group is introduced after the graft polymerization, the functional functional group is introduced into the polymerizable vinyl monomer grafted to the fiber material by performing a secondary reaction using a method known to those skilled in the art. .
[0021]
In an embodiment of the present invention, there is a fiber product composed of a filamentous or fluffy fiber material into which a functional functional group has been introduced using radiation graft polymerization.
By using a fibrous fiber material into which functional functional groups have been introduced by radiation graft polymerization for warp and / or weft of woven fabrics and knitted fabrics, it has higher strength than fiber materials into which functional functional groups have been introduced in the fabric state. It is possible to manufacture them at a low cost. At this time, the fiber material subjected to the radiation graft polymerization treatment may be used for all of the warp and / or the weft, or in combination with the unprocessed one, for example, at a ratio of 1 to 1-20 unprocessed yarns. It may be used. Furthermore, by combining a plurality of filamentous fiber materials having different functions and used as warp and / or weft, it is possible to combine functions that were impossible in the processing of the fabric.
[0022]
Examples of fiber products composed of a fibrous fiber material into which a functional functional group is introduced using the radiation graft polymerization of the present invention include a linen supply sheet, a diaper, a diaper cover, or a collection bag thereof, which has a deodorizing function. Or toiletry products such as toilet seat covers, mats, paper holders, white robes with ammonia deodorization and antibacterial functions, hospital use products such as sick clothes, or socks, acid gas deodorization and basic gas deodorization conflict Examples include, but are not limited to, products with functions. These can be manufactured at a lower cost than the use of a cloth imparted with a function by conventional radiation graft polymerization, and are extremely durable against industrial laundry.
[0023]
In the case of woven fabrics and knitted fabrics, it is possible to produce fiber products having different woven and knitted structures depending on the purpose of use. These examples include textile products such as denim or pants that use yarns that have been functionalized by twill weaving on the skin side, shirts that use yarns that have only been functionalized on the skin side by double weaving. Or, using products with different functions on the front and back, such as pants, etc., or using yarn with a deodorizing function on the skin side, and using yarn with a highly moisture-releasing material on the front side to prevent stuffiness Examples include, but are not limited to, knitted products.
[0024]
The lump-like fiber material into which a functional functional group has been introduced by radiation graft polymerization can be used for batting such as futon and stuffed animals. It can also be used alone to make yarn, but it can be blended with other cellulosic fibers, synthetic fibers such as polyester, polyamide, acrylic, nylon, etc., and raw fibers of animal fibers such as wool and silk. It can also be. Furthermore, various products having functions according to the purpose can be manufactured using these yarns as described above. It is also possible to combine the functions in the form of a cotton lump by blending with a cotton lump-like fiber material into which other functions are introduced.
[0025]
By laminating and coating the surface of the fabric with functional functional groups, waterproofing and water repellency are given to the front side, and functional functional groups are introduced to the back side of the fabric, which is the human skin surface. Therefore, a fiber product having a composite function can be manufactured. Specifically, a waterproof sheet for nursing care that has an ammonia deodorizing function, an apron that has an antibacterial function, a raincoat that has a sweat deodorizing function, an outdoor tent used in camping, and the like.
The following examples illustrate some aspects of the present invention. These examples do not limit the scope of the invention as set forth in the claims.
[0026]
【Example】
Example 1
Radiation graft polymerization of the filamentous fiber material was performed. First, 30% polyester and 70% cotton blended yarn (22.5 count) wound on a cheese carrier by a conventional method was degassed and irradiated with 50 KGy in a deoxygenated state. The irradiated mixed yarn was placed in a graft polymerization treatment tank, and degassing and nitrogen supply were repeated to remove oxygen in the treatment tank. Next, a mixed solution of 90% water and 10% methanol containing 10% acrylic acid, 20% sodium vinyl sulfonate (monomer suitable for basic gas deodorization) previously deaerated and nitrogen-substituted (oxygen concentration 1% or less) Was filled in the treatment tank and the blended yarn was immersed. The temperature in the treatment tank was gradually raised to 50 ° C. and treated in a deoxygenated state for 1 hour. During this time, forward / reverse rotation of the pump was repeated at regular intervals, and the mixed solution containing the monomer was allowed to flow through and contact with the blended yarn. Next, the graft-polymerized blended yarn was taken out, washed with water and dried to obtain a graft-polymerized blended yarn of 30% polyester and 70% cotton.
[0027]
Plain fabric using 30% polyester and 70% unprocessed blended yarn for warp, 30% polyester and 70% cotton for weft and graft polymerized blended yarn and unprocessed blended yarn in a ratio of 1: 1 (count: warp 22. 5 × weft equivalent to 22.5 counts, density: warp 63 / inch, weft 58 / inch), weeding, scouring, bleaching, caustic mercerization, dyeing (slen dye) by conventional methods for sheets A woven fabric was produced. Table 1 shows various characteristics.
[0028]
[Table 1]
Figure 0004659266
[0029]
In the table, the fabric strength test was based on JIS L 1096 (Tensile Strength Method A (Strip Method) and Tear Strength Method D (Pendulum Method) of General Textile Test Methods).
In the deodorization test, 1 g of each sample was placed in a 1 L Tedlar bag, filled with ammonia gas of a predetermined concentration, and the gas concentration in the Tedlar bag after 10, 30, and 60 minutes was measured with a detector tube.
[0030]
(Example 2)
A sheet fabric was produced in the same manner as in Example 1 except that the ratio of the graft-polymerized blended yarn produced in Example 1 to the unprocessed blended yarn was 1: 5. Table 1 shows various characteristics.
(Example 3)
A sheet fabric was produced in the same manner as in Example 1, except that the ratio of the graft-polymerized blended yarn produced in Example 1 to the raw blended yarn was 1:10. Table 1 shows various characteristics.
[0031]
(Comparative Example 1)
Warp and weft 30% polyester, 70% cotton unprocessed blended fabric using plain woven fabric (count: warp 22.5 x weft equivalent to 22.5 count, density: warp 63 / inch, weft 58 / inch) Weaving was performed, and paste removal, scouring, bleaching, caustic mercerization, and dyeing (slen dye) were performed in a conventional manner to produce a sheet fabric. Table 1 shows various characteristics.
[0032]
Example 4
The same treatment as in Example 1 was conducted except that 100% cotton yarn (40 count) was used instead of the blended yarn of 30% polyester and 70% cotton of Example 1, and 100% cotton graft polymerized yarn. (Basic gas deodorizing function) was produced. Furthermore, instead of acrylic acid and sodium vinyl sulfonate in Example 1, a methanol solution containing 20% vinylbenzyltrimethylammonium chloride (a monomer having antibacterial performance) was used to graft onto 100% cotton yarn (40th count). Polymerization treatment was performed.
[0033]
100% cotton unprocessed yarn for warp, 100% cotton graft polymerized yarn (basic gas deodorizing function), 100% cotton graft polymerized yarn (antibacterial function) and weft 100% unprocessed raw yarn for weft : Weaving a plain woven fabric (count: warp 40 × weft 40 equivalent, density: warp 133 / inch, weft 72 / inch) used in a ratio of 1: desizing, scouring, bleaching, caustic mercerized Then, dyeing (slen dye) was performed to produce a woven fabric for white coat.
The obtained lab coat product was repeatedly washed 100 times by the washing method (general home washing method) established by the Textile Products New Function Evaluation Council, and the performance was evaluated. Table 2 shows various characteristics.
[0034]
[Table 2]
Figure 0004659266
[0035]
In the table, the antibacterial test conformed to JIS L 1902 (antibacterial test method for textile products). As a test bacterium, Staphylococcus aureus ATCC 6538P was used. The washing method established by the Textile Products New Function Evaluation Council used JIS L 0217 103 method, and the detergent used was a JAFET standard detergent (designated by the Textile Products New Function Evaluation Council).
As a result of performance evaluation, both ammonia deodorization performance and antibacterial performance were excellent, and the durability against washing was very high. Moreover, 40 ppm of ammonia gas was filled, and as a result of measuring the gas concentration after 60 minutes with a detector tube, an excellent effect was shown.
[0036]
(Comparative Example 2)
Weaving a plain weave (count: warp 40 × equivalent to 40 weft, density: warp 133 / inch, weft 72 / inch) using 100% cotton unprocessed yarn for both warp and weft. Scouring, bleaching, caustic mercerization and dyeing (slen dye) were carried out to produce a woven fabric for white coat. Table 2 shows various characteristics.
【The invention's effect】
According to the present invention, it is possible to introduce a function into a fiber product at a lower cost than before by using a thread-like or cotton lump-like fiber material imparted with various functions by radiation graft polymerization, and the fiber product. Functions can be introduced at the necessary locations. Further, it becomes possible to provide a textile product having a more complex function.

Claims (4)

多孔円管の周囲に糸状繊維物質を巻き付けて形成した円筒状繊維物質形成体に、放射線グラフト重合を用いて、機能性官能基を有する重合性ビニルモノマーをグラフト重合させること、
得られた繊維物質から糸状繊維を作製すること、
該糸状繊維を、経糸及び/又は緯糸として織って生地を構成すること、及び
該生地から繊維製品を構成すること、
を含む繊維製品の製造方法。
Graft polymerization of a polymerizable vinyl monomer having a functional functional group onto a cylindrical fibrous material formed by winding a fibrous fibrous material around a perforated circular tube using radiation graft polymerization;
Producing a filamentous fiber from the resulting fiber material;
Weaving the filamentous fibers as warp and / or weft to form a fabric, and composing a fiber product from the fabric;
A method for producing a textile product comprising:
前記放射線グラフト重合が、
糸状繊維物質に放射線を照射すること、及び
放射線が照射された糸状繊維物質を多孔円管の周囲に巻き付けて形成した円筒状繊維物質形成体に機能性官能基を有する重合性ビニルモノマーをグラフト重合すること、
によって行なわれる、請求項1に記載の製造方法。
The radiation graft polymerization is
Radiation is applied to a filamentous fiber material, and a polymerizable vinyl monomer having a functional functional group is graft-polymerized on a cylindrical fiber material formed body formed by wrapping the filamentous fiber material irradiated with radiation around a perforated circular tube. To do,
The manufacturing method of Claim 1 performed by these.
中心に多孔円管を有する円筒体の内部に綿塊状繊維物質を配置して形成した円筒状繊維物質形成体に、放射線グラフト重合を用いて、機能性官能基を有する重合性ビニルモノマーをグラフト重合させること、
得られた繊維物質から糸状繊維を作製すること、
該糸状繊維を、経糸及び/又は緯糸として織って生地を構成すること、及び
該生地から繊維製品を構成すること、
を含む繊維製品の製造方法。
Radiation graft polymerization is used to graft a polymerizable vinyl monomer having a functional functional group to a cylindrical fiber material forming body formed by placing a cotton lump-like fiber material inside a cylindrical body having a porous tube at the center. Letting
Producing a filamentous fiber from the resulting fiber material;
Weaving the filamentous fiber as warp and / or weft to form a fabric, and composing a fiber product from the fabric;
A method for producing a textile product comprising:
前記放射線グラフト重合が、
綿塊状繊維物質に放射線を照射すること、及び
放射線が照射された綿塊状繊維物質を、中心に多孔円管を有する円筒体の内部に配置して形成した円筒状繊維物質形成体に機能性官能基を有する重合性ビニルモノマーをグラフト重合すること、
によって行なわれる、請求項3に記載の製造方法。
The radiation graft polymerization is
Functionality is applied to the cylindrical fiber material forming body formed by irradiating the fluff-like fiber material with radiation, and arranging the flocculent fiber material irradiated with radiation inside a cylindrical body having a porous circular tube at the center. Graft polymerization of a polymerizable vinyl monomer having a group,
The manufacturing method of Claim 3 performed by these.
JP2001137694A 2001-05-08 2001-05-08 Articles comprising radiation-grafted fiber material Expired - Lifetime JP4659266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137694A JP4659266B2 (en) 2001-05-08 2001-05-08 Articles comprising radiation-grafted fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137694A JP4659266B2 (en) 2001-05-08 2001-05-08 Articles comprising radiation-grafted fiber material

Publications (2)

Publication Number Publication Date
JP2002339187A JP2002339187A (en) 2002-11-27
JP4659266B2 true JP4659266B2 (en) 2011-03-30

Family

ID=18984761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137694A Expired - Lifetime JP4659266B2 (en) 2001-05-08 2001-05-08 Articles comprising radiation-grafted fiber material

Country Status (1)

Country Link
JP (1) JP4659266B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154392A (en) * 2005-12-08 2007-06-21 Ooyabu:Kk Twisted yarn and method for producing the same, woven fabric and knitted fabric
EP2317007B1 (en) * 2008-08-11 2015-09-30 Kurashiki Boseki Kabushiki Kaisha Sliver for spinning, process for producing same, and spun yarn and textile product both using same
JP5959167B2 (en) * 2011-08-17 2016-08-02 住江織物株式会社 Manufacturing method of deodorant carpet
JP2013155464A (en) * 2012-01-31 2013-08-15 Suminoe Textile Co Ltd Method for manufacturing functional fabric, and the functional fabric
JP6149326B2 (en) * 2012-12-28 2017-06-21 株式会社 環境浄化研究所 Aging odor adsorbent and method for producing the same.
JP6150526B2 (en) * 2013-01-11 2017-06-21 倉敷紡績株式会社 Hygroscopic cellulose fiber and process for producing the same
JP7408311B2 (en) * 2019-07-31 2024-01-05 倉敷紡績株式会社 Moisture-absorbing heat-generating fabric and moisture-absorbing heat-generating clothing using the same
CN115233357B (en) * 2022-06-20 2024-02-20 深圳市亿卓服饰科技有限公司 Breathable moisture-absorbing hemp fabric and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135432A (en) * 1986-11-26 1988-06-07 Japan Atom Energy Res Inst Material for simultaneous removal of ion and microparticle
JPH01239170A (en) * 1988-03-15 1989-09-25 Toray Ind Inc Production of water-resistant fabric
JPH0223922A (en) * 1988-07-13 1990-01-26 Toray Ind Inc Wiping cloth
JPH05230765A (en) * 1992-02-14 1993-09-07 Unitika Ltd Method for modifying yarn of synthetic fiber
JPH08284066A (en) * 1995-02-15 1996-10-29 Asahi Chem Ind Co Ltd Water-absorbing antibacterial synthetic fiber and its production
JPH11279945A (en) * 1998-03-23 1999-10-12 Japan Atom Energy Res Inst Polyethylene material graft-polymerized with radiation
JP2000053788A (en) * 1998-08-12 2000-02-22 Japan Atom Energy Res Inst Radiation graft polymerization

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135432A (en) * 1986-11-26 1988-06-07 Japan Atom Energy Res Inst Material for simultaneous removal of ion and microparticle
JPH01239170A (en) * 1988-03-15 1989-09-25 Toray Ind Inc Production of water-resistant fabric
JPH0223922A (en) * 1988-07-13 1990-01-26 Toray Ind Inc Wiping cloth
JPH05230765A (en) * 1992-02-14 1993-09-07 Unitika Ltd Method for modifying yarn of synthetic fiber
JPH08284066A (en) * 1995-02-15 1996-10-29 Asahi Chem Ind Co Ltd Water-absorbing antibacterial synthetic fiber and its production
JPH11279945A (en) * 1998-03-23 1999-10-12 Japan Atom Energy Res Inst Polyethylene material graft-polymerized with radiation
JP2000053788A (en) * 1998-08-12 2000-02-22 Japan Atom Energy Res Inst Radiation graft polymerization

Also Published As

Publication number Publication date
JP2002339187A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP5758807B2 (en) POLYESTER FIBER, PROCESS FOR PRODUCING THE SAME, AND FABRIC AND FIBER PRODUCT
US4672005A (en) Process for improving polymer substrate properties, and modified polymers produced thereby
JP4659266B2 (en) Articles comprising radiation-grafted fiber material
JP4753062B2 (en) Method and apparatus for radiation graft polymerization of fiber material
US4726968A (en) Process for improving polymer substrate properties, and modified polymers produced thereby
JP2000045179A (en) Antimicrobial fiber and its fibrous structure
CN1930331B (en) Functional fiber having photocatalyst activity and fiber structure containing the same
US4921890A (en) Process for improving polymer substrate properties, and flame retardancy modified polymers produced thereby
JP2013204207A (en) Deodorant regenerated cellulosic fiber, fiber structure including the same, and method for producing them
JP3349028B2 (en) Textile products made of deodorant and antibacterial acrylic synthetic fibers
JP6391552B2 (en) Functional fiber product and manufacturing method thereof
CN115182166A (en) Cloth treatment method, anti-hair-sticking cloth, clothes, household textile and equipment
JP4213976B2 (en) Deodorant fiber
JPH09228240A (en) Acidic/basic gas absorbing fiber and its structure
JP2006225780A (en) Antimicrobial fiber
JP2022118974A (en) Spun yarn and quick drying fabric using the same and quick drying clothing
JPH0742652B2 (en) Method for producing flexible leather-like sheet
EP0052156B1 (en) Method of modifying a synthetic or natural polyamide product
KR101250109B1 (en) Functional fiber having photocatalyst activity and fiber structure containing the same
JP3279120B2 (en) Method for producing deodorized fiber structure
JPH06128877A (en) Antimicrobial deodorizing synthetic yarn
JP7040923B2 (en) Water-absorbent knit
KR101446059B1 (en) Manufacturing method of basis yarns and Multi-function towels improved drying therefrom
JP2621580B2 (en) Antibacterial and deodorant colored polyester fiber structure and method for producing the same
JPH0457969A (en) Production of antibacterial fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4659266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term