JPH04293581A - Method for purifying liquid - Google Patents

Method for purifying liquid

Info

Publication number
JPH04293581A
JPH04293581A JP3059190A JP5919091A JPH04293581A JP H04293581 A JPH04293581 A JP H04293581A JP 3059190 A JP3059190 A JP 3059190A JP 5919091 A JP5919091 A JP 5919091A JP H04293581 A JPH04293581 A JP H04293581A
Authority
JP
Japan
Prior art keywords
fibers
treatment
activated carbon
water
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3059190A
Other languages
Japanese (ja)
Inventor
Takanobu Sugo
高信 須郷
Kunio Fujiwara
邦夫 藤原
Shinsaku Maruyama
丸山 真策
Takao Ino
隆夫 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Japan Atomic Energy Agency
Original Assignee
Ebara Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Japan Atomic Energy Research Institute filed Critical Ebara Corp
Priority to JP3059190A priority Critical patent/JPH04293581A/en
Publication of JPH04293581A publication Critical patent/JPH04293581A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform the treatment of various liquids, that is, the treatment of industrial water represented by the preparation of pure water or desalted water, the treatment of industrial waste water represented by the removal of heavy metals, the separation and recovery of valuable metals in seawater or the purification of medicines. CONSTITUTION:In the treatment of various liquids, a fibrous polymer having an ion exchange group introduced thereinto by radiation graft polymerization and activated carbon are used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は純水や脱塩水の製造に代
表される工業用水の処理、重金属の除去などに代表され
る産業排水の処理、海水中の有用重金属の分離回収、あ
るいは医薬品の精製など各種の液体を処理する方法に関
するものである。
[Industrial Application Field] The present invention is applicable to the treatment of industrial water such as the production of pure water and desalinated water, the treatment of industrial wastewater such as the removal of heavy metals, the separation and recovery of useful heavy metals from seawater, and the treatment of industrial water such as the production of pure water and desalinated water. It relates to methods for processing various liquids, such as purification of liquids.

【0002】0002

【従来の技術】液体中の不純物は通常溶解成分と懸濁物
やコロイド物質等に代表される不溶解成分に分けられる
。溶解成分はイオン性のものと非イオン性のものにわけ
られる。そして、各不純物を除去する技術として、イオ
ンはイオン交換樹脂、逆浸透膜などによりされる。逆浸
透膜は比較的塩濃度の高い海水などからの脱塩に向いて
おり、河川水や井戸水等の塩濃度が低い場合の脱塩やイ
オン成分をほぼ完全に除去する場合は使用方法の違いは
あるが、イオン交換樹脂が用いられる。不溶解成分の除
去には凝集沈澱や濾過が古くから行われてきたが、除去
できる粒子の大きさには限界があり、産業の発展に伴い
使用末端で更に膜処理をする場合が多くなった。膜には
多孔性と非多孔性のものがあり、形状も中空糸や平膜な
どがある。非多孔性の逆浸透膜は微粒子の除去にも効果
的である。非イオン性の溶解成分は活性炭吸着などによ
って除去される。
2. Description of the Related Art Impurities in liquids are generally divided into dissolved components and insoluble components such as suspended matter and colloidal substances. Dissolved components can be divided into ionic and nonionic components. As a technique for removing each impurity, ions are removed using an ion exchange resin, a reverse osmosis membrane, etc. Reverse osmosis membranes are suitable for desalinating water with relatively high salt concentrations, such as seawater, but there are differences in how they are used to desalinate river water, well water, etc., where the salt concentration is low, or to almost completely remove ionic components. However, ion exchange resins are used. Coagulation sedimentation and filtration have been used for a long time to remove insoluble components, but there is a limit to the size of particles that can be removed, and with the development of industry, further membrane treatment is often required at the end of use. . Membranes can be porous or non-porous, and can have shapes such as hollow fibers or flat membranes. Non-porous reverse osmosis membranes are also effective in removing particulates. Nonionic dissolved components are removed by activated carbon adsorption or the like.

【0003】このように液体中の不純物の除去方法はす
でに確立されたものとして多くの実績がある。
[0003] As described above, methods for removing impurities from liquids have already been established and have many achievements.

【0004】最近の科学技術の進歩は材料開発の分野に
及び、上記先行技術への機能性材料の適用が徐々に行わ
れるようになった。例えば、本発明者が特開昭63ー1
35432に提案した「イオンと微粒子の同時除去材料
」では、本来は粒子の除去しかできなかった繊維や中空
繊維、およびそれらの加工品に放射線グラフト重合を利
用してイオン交換基を導入し、イオンと微粒子の同時除
去材料を開発している。しかし、この方法では溶解成分
中の非イオン成分の除去が考慮されていないので、これ
を除去するために別の操作が必要になり、複合機能化の
利点が半減してしまう。
Recent advances in science and technology have extended to the field of material development, and functional materials have gradually been applied to the above-mentioned prior art. For example, the inventor of the present invention
35432, we introduced ion-exchange groups into fibers, hollow fibers, and their processed products, which were originally only capable of removing particles, by using radiation graft polymerization. We are developing materials that can simultaneously remove particles and particles. However, since this method does not take into account the removal of nonionic components in the dissolved components, a separate operation is required to remove them, which reduces the benefits of composite functionalization by half.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は液体中
の不純物、即ち溶解成分と不溶解成分を同時に効率良く
除去する方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for efficiently removing impurities in a liquid, that is, dissolved and undissolved components at the same time.

【0006】[0006]

【課題を解決するための手段】本発明は放射線グラフト
重合によってイオン交換基を導入した繊維状高分子と活
性炭を使用することを特徴としている。
[Means for Solving the Problems] The present invention is characterized by the use of activated carbon and a fibrous polymer into which ion exchange groups have been introduced by radiation graft polymerization.

【0007】グラフト重合は接ぎ木重合と呼ばれるよう
に、ミクロ的に見れば基材の主鎖から共有結合によって
グラフト側鎖がでており、これに官能基を導入すれば、
主鎖である基材の物理的・化学的性質を保ちながら、新
しい機能を付与することができる。この官能基としてイ
オン交換基又はイオン交換基に変換可能なものを選択す
れば、強度的に優れているばかりでなく、剥離・脱落が
ほとんどないイオン交換繊維となる。また、放射線グラ
フト重合は複雑な形状の基材に対しても適用可能である
。例えば、繊維径を変化させたり、長繊維およびその加
工品、短繊維、短繊維の集合体およびその加工品、中空
糸および多孔性中空糸、さらに非円形断面の繊維および
これらの切断短体を適宜使用することにより、機能を更
に高めることができる。比重の異なる複数の繊維を利用
すると、混合状態で使用済みとなった短繊維を逆洗分離
し、それぞれ再生を行うことができる。再生使用しない
で廃棄処分する場合、繊維内に架橋構造がないため、燃
焼しやすい特性を有している。
[0007] Graft polymerization is called graft polymerization, and from a microscopic perspective, a graft side chain is protruded from the main chain of the base material by a covalent bond, and if a functional group is introduced into this,
New functions can be added while maintaining the physical and chemical properties of the base material, which is the main chain. If an ion exchange group or one that can be converted into an ion exchange group is selected as the functional group, an ion exchange fiber not only has excellent strength but also hardly peels or falls off. Furthermore, radiation graft polymerization can be applied to substrates with complex shapes. For example, by changing the fiber diameter, producing long fibers and processed products thereof, short fibers, aggregates of short fibers and processed products thereof, hollow fibers and porous hollow fibers, as well as fibers with non-circular cross sections and cut short pieces thereof. By using it appropriately, the function can be further enhanced. By using a plurality of fibers with different specific gravities, the used short fibers in a mixed state can be backwashed and separated, and each can be recycled. When disposed of without recycling, the fibers have the property of being easily combustible because there is no crosslinked structure within the fibers.

【0008】ここで放射線グラフト重合に用いられる電
離性放射線はα、β、γ線、電子線、紫外線などがあり
、何れも使用可能であるが、γ線や電子線などが本発明
に適している。
The ionizing radiation used in the radiation graft polymerization includes α, β, γ rays, electron beams, and ultraviolet rays, and any of them can be used, but γ rays, electron beams, etc. are suitable for the present invention. There is.

【0009】放射線グラフト重合に用いられる繊維状高
分子としては、有機高分子化合物のなかでも特に、ポリ
エチレン、ポリプロピレン等に代表されるポリオレフィ
ン類、PTFE、塩化ビニル等に代表されるハロゲン化
ポリオレフィン類、エチレン−テトラフロロエチレン共
重合体、エチレン−ビニルアルコール共重合体(EVA
)等に代表されるオレフィン−ハロゲン化オレフィン共
重合体類に適しているが、この範囲に限定されるわけで
はない。
The fibrous polymers used in radiation graft polymerization include, among organic polymer compounds, polyolefins represented by polyethylene, polypropylene, etc., halogenated polyolefins represented by PTFE, vinyl chloride, etc. Ethylene-tetrafluoroethylene copolymer, ethylene-vinyl alcohol copolymer (EVA
), etc., but is not limited to this range.

【0010】繊維状高分子に導入されるイオン交換基と
しては、カチオン交換基ではスルホン基、カルボキシル
基やリン酸基、アニオン交換基では強塩基性の4級アン
モニウム基やより低級のアミンを含む弱塩基性のもの、
さらにビリジニウム基などの一般的な酸性・塩基性のイ
オン交換基のほか、イミノジ酢酸基などのキレート基も
使用可能であり、特に限定されるものではなく、対象と
する液体の種類や要求水質などを考慮して適宜選択する
ことができる。
The ion exchange groups introduced into the fibrous polymer include sulfone groups, carboxyl groups and phosphoric acid groups for cation exchange groups, and strongly basic quaternary ammonium groups and lower amines for anion exchange groups. weakly basic,
Furthermore, in addition to general acidic/basic ion exchange groups such as viridinium groups, chelate groups such as iminodiacetic acid groups can also be used, and are not particularly limited, depending on the type of liquid to be used and the required water quality. It can be selected appropriately in consideration of the following.

【0011】基材である繊維状高分子に放射線を照射す
る方法としては、基材とモノマーの共存下に放射線を照
射する同時照射法と、予め基材を照射した後、モノマー
と接触させる前照射法があるが、何れの方法も利用する
ことができる。基材とモノマーとの接触において、モノ
マーが蒸気又は液体のどちらでもよい。
[0011] Methods for irradiating radiation to the fibrous polymer that is the base material include a simultaneous irradiation method in which radiation is irradiated while the base material and monomer coexist, and a simultaneous irradiation method in which the base material is irradiated in advance and then before contact with the monomer. There is an irradiation method, but any method can be used. In contacting the substrate and the monomer, the monomer may be either a vapor or a liquid.

【0012】一方、活性炭は非イオン性溶解成分である
有機物の吸着性に優れているので、活性炭とグラフト重
合によるイオン交換繊維とを使用することより、イオン
と粒子さらに有機物の同時除去が可能である。活性炭は
粒状、粉末状及び繊維状のいずれも使用することができ
、用途により選択することができる。繊維状活性炭は成
型加工が極めて容易であり、機能の複合化を目指す本発
明には特に好ましい。以上述べた各材料を使用する方法
としては、特に限定されるものではなく、繊維状の特徴
である成型加工の容易さを生かし、種々の方法が考えら
れる。各繊維よりなる不織布をそのまま使用してもよい
し、切断してもよく、また両者を併用してもよい。。 イオン交換基を導入した中空糸に粉末又は短い活性炭素
繊維をプレコートすることも可能である。
On the other hand, activated carbon has excellent adsorption properties for organic matter, which is a nonionic dissolved component, so by using activated carbon and ion exchange fibers produced by graft polymerization, it is possible to simultaneously remove ions, particles, and organic matter. be. Activated carbon can be used in any of granular, powdered, and fibrous forms, and can be selected depending on the purpose. Fibrous activated carbon is extremely easy to mold and is particularly preferred in the present invention, which aims to provide multiple functions. Methods for using each of the materials described above are not particularly limited, and various methods can be considered that take advantage of the ease of molding, which is a characteristic of fibrous materials. The nonwoven fabric made of each fiber may be used as it is, may be cut, or both may be used in combination. . It is also possible to precoat the hollow fibers into which ion exchange groups have been introduced with powder or short activated carbon fibers.

【0013】例えば、放射線グラフト重合により製造し
たイオン交換繊維の切断短体を粉末活性炭と混合したり
、繊維状活性炭のカット物と混合して、例えばプレコー
トろ過などのろ過層を形成させて液体を処理することも
本発明の一実施態様を示すものである。原子力発電所で
は、放射性廃棄物の低減対策が重要であるが、本発明の
ように燃焼に有利な素材を選定することが好ましい。
For example, cut short pieces of ion-exchange fiber produced by radiation graft polymerization are mixed with powdered activated carbon, or mixed with cut pieces of fibrous activated carbon to form a filtration layer such as precoat filtration, and liquid can be filtered. Processing also represents an embodiment of the invention. In nuclear power plants, measures to reduce radioactive waste are important, and it is preferable to select materials that are advantageous for combustion, as in the present invention.

【0014】[0014]

【実施例】強酸性粉末カチオン交換樹脂(エピコール社
製、商品名PD3)0.4g、強塩基性粉末アニオン交
換樹脂(エピコール社製、商品名PD1)0.2g、放
射線グラフト重合で製造した直径35μm、長さ0.5
mmよりなる強酸性カチオン交換繊維※0.6g及び活
性炭(商品名エバダイヤ)をロールミルで粉砕し200
mesh篩を通過した粉末活性炭0.8gを予め純水1
lに入れ1時間混合撹拌した。これを底部にサランネッ
トを有する直径50mmφのアクリル製カラムに充填し
、純水に水酸化鉄を注入して鉄濃度が50μg/las
Feとなるよう調整した合成原水を20l/hで通水し
た。なお、電気伝導率は0.3μs/cm,TOCは0
.23mg/lであった。通水1時間後の処理水質は電
気伝導率が0.06μs/cm、Feが0.02μg/
l、TOCが0.08mg/lであった。 ※放射線グラフト重合による強酸性カチオン交換繊維の
製法 直径約30μmのポリプロピレン製長繊維に加速電子線
20Mrad照射した後、スチレン蒸気と20時間接触
させ、グラフト重合を行った。次いで、クロルスルホン
酸にてスルホン化を行いイオン交換容量(中性塩分解容
量)2.9meq/gの強酸性カチオン交換繊維を得た
[Example] Strongly acidic powder cation exchange resin (manufactured by Epicor, trade name PD3) 0.4 g, strong basic powder anion exchange resin (manufactured by Epicor, trade name PD1) 0.2 g, diameter produced by radiation graft polymerization 35μm, length 0.5
Strongly acidic cation exchange fiber consisting of 0.6 mm *0.6 g and activated carbon (trade name Evadia) are crushed in a roll mill to 200 g.
0.8g of powdered activated carbon that has passed through a mesh sieve was added to 11g of pure water in advance.
The mixture was mixed and stirred for 1 hour. This was packed into an acrylic column with a diameter of 50 mm with a saran net at the bottom, and iron hydroxide was injected into pure water to reach an iron concentration of 50 μg/las.
Synthetic raw water adjusted to contain Fe was passed through at a rate of 20 l/h. In addition, the electrical conductivity is 0.3 μs/cm, and the TOC is 0.
.. It was 23 mg/l. The quality of the treated water after 1 hour of water flow has an electrical conductivity of 0.06 μs/cm and an Fe content of 0.02 μg/cm.
l, TOC was 0.08 mg/l. *Production of strongly acidic cation exchange fibers by radiation graft polymerization After irradiating polypropylene long fibers with a diameter of approximately 30 μm with an accelerated electron beam of 20 Mrad, the fibers were brought into contact with styrene vapor for 20 hours to perform graft polymerization. Next, sulfonation was performed with chlorosulfonic acid to obtain a strongly acidic cation exchange fiber having an ion exchange capacity (neutral salt decomposition capacity) of 2.9 meq/g.

【0015】(比較例)実施例で使用したPD1を1.
5g、PD3を0.5gの比率で1時間混合後充填した
以外は実施例と同様に通水試験を行ったところ、1時間
後の処理水質は電気伝導率が0.06μs/cm、Fe
が0.02μg/lasFe,TOCが0.19mg/
lであり、TOCに示される非イオン性溶解成分の除去
性能は本発明と比較して低いことが明らかであった。
(Comparative Example) PD1 used in the example was 1.
A water flow test was conducted in the same manner as in the example except that 5g of PD3 and 0.5g of Fe
is 0.02μg/lasFe, TOC is 0.19mg/
It was clear that the removal performance of nonionic dissolved components shown in TOC was lower than that of the present invention.

【0016】[0016]

【発明の効果】本発明により、繊維状の素材を基にして
液体中の不純物、即ちイオン、粒子及び非イオン性溶解
成分の同時除去が可能となった。高度の品質が要求され
る液体の処理、例えば原子力発電プラントにおいて、復
水処理にプレコード濾過による純水中の微量不純物の除
去が行われているが、濾過助剤として本発明によるイオ
ン交換繊維と粉末活性炭又は活性炭素繊維を適当な長さ
で使用することにより、イオンや粒子の除去性能を失う
ことなくプレコート用フィラメントからの微細な粉末イ
オン交換樹脂のリークを低減し、従来は除去不能であっ
た非イオン性溶解成分も除去できるようになった。これ
により、プラントの健全運用、放射線被爆の低減、放射
性廃棄物の低減に寄与するところ極めて大である。更に
、先端産業の発展に伴い、周辺産業や周辺技術への要求
は益々高くなっている。本発明による高機能材料は高度
化への要求に対する技術的手段をそれら産業界に提供で
きる。
[Effects of the Invention] According to the present invention, impurities in a liquid, that is, ions, particles, and nonionic dissolved components, can be simultaneously removed using a fibrous material. In the treatment of liquids that require a high level of quality, for example in nuclear power plants, trace impurities in pure water are removed by precoding filtration for condensate treatment, and the ion exchange fiber of the present invention is used as a filter aid. By using powdered activated carbon or activated carbon fiber in an appropriate length, it is possible to reduce the leakage of fine powdered ion exchange resin from the precoat filament without losing ion and particle removal performance. It is now possible to remove non-ionic dissolved components. This will greatly contribute to the sound operation of the plant, the reduction of radiation exposure, and the reduction of radioactive waste. Furthermore, with the development of cutting-edge industries, demands on peripheral industries and peripheral technologies are becoming increasingly high. The highly functional material according to the present invention can provide those industries with a technical means to meet the demands for sophistication.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  放射線グラフト重合によってイオン交
換基を導入した繊維状高分子と活性炭を使用することを
特徴とする液体の精製方法。
1. A method for purifying a liquid, which uses activated carbon and a fibrous polymer into which ion exchange groups have been introduced by radiation graft polymerization.
【請求項2】  前記繊維状高分子が紡糸された長繊維
およびこの加工品、短繊維、短繊維の集合体およびその
加工品、中空糸および多孔性中空糸、およびこれらの切
断短体から選択される請求項1記載の方法
2. Selected from long fibers spun from the fibrous polymer and processed products thereof, short fibers, aggregates of short fibers and processed products thereof, hollow fibers, porous hollow fibers, and cut short pieces thereof. The method according to claim 1, wherein
【請求項3】
  前記活性炭は粒状、粉末状、繊維状より選択される
請求項1又は請求項2記載の方法。
[Claim 3]
The method according to claim 1 or 2, wherein the activated carbon is selected from granules, powders, and fibers.
JP3059190A 1991-03-22 1991-03-22 Method for purifying liquid Pending JPH04293581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3059190A JPH04293581A (en) 1991-03-22 1991-03-22 Method for purifying liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3059190A JPH04293581A (en) 1991-03-22 1991-03-22 Method for purifying liquid

Publications (1)

Publication Number Publication Date
JPH04293581A true JPH04293581A (en) 1992-10-19

Family

ID=13106250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3059190A Pending JPH04293581A (en) 1991-03-22 1991-03-22 Method for purifying liquid

Country Status (1)

Country Link
JP (1) JPH04293581A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167606A (en) * 2010-02-17 2011-09-01 Nippon Rensui Co Ltd Method for producing chelate forming group-containing adsorbing material
CN110300735A (en) * 2017-02-13 2019-10-01 默克专利股份公司 Method for producing ultrapure water
US11629071B2 (en) 2017-02-13 2023-04-18 Merck Patent Gmbh Method for producing ultrapure water
US11820676B2 (en) 2017-02-13 2023-11-21 Merck Patent Gmbh Method for producing ultrapure water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011167606A (en) * 2010-02-17 2011-09-01 Nippon Rensui Co Ltd Method for producing chelate forming group-containing adsorbing material
CN110300735A (en) * 2017-02-13 2019-10-01 默克专利股份公司 Method for producing ultrapure water
US11629071B2 (en) 2017-02-13 2023-04-18 Merck Patent Gmbh Method for producing ultrapure water
US11807556B2 (en) 2017-02-13 2023-11-07 Merck Patent Gmbh Method for producing ultrapure water
US11820676B2 (en) 2017-02-13 2023-11-21 Merck Patent Gmbh Method for producing ultrapure water

Similar Documents

Publication Publication Date Title
Khulbe et al. Removal of heavy metals and pollutants by membrane adsorption techniques
Charles et al. Pollutant removal from industrial discharge water using individual and combined effects of adsorption and ion-exchange processes: Chemical abatement
JP5252653B2 (en) Method for manufacturing sintered body
US6861002B2 (en) Reactive compositions for fluid treatment
JP3852926B2 (en) Organic porous body having selective boron adsorption capacity, boron removal module and ultrapure water production apparatus using the same
Chen et al. Functional PVDF ultrafiltration membrane for Tetrabromobisphenol-A (TBBPA) removal with high water recovery
US5743940A (en) Process for producing gas adsorbent
WO1996007615A1 (en) Water treatment process
EP0700315A1 (en) Multi-stage water treatment system
CN104136112A (en) Preparation method of granular oxide adsorbent, and water treatment method using same
WO2015041866A1 (en) Resin regeneration method for reducing organic contaminants
JP2001187809A (en) Organic polymer material, its production method and heavy metal ion scavenger comprising the material
US5304309A (en) Cyclic process for selective coagulant recovery from clarifier sludge
JPH04293581A (en) Method for purifying liquid
JPH0580941B2 (en)
JP5572785B2 (en) Efficient removal of harmful components in contaminated water
CN111995145A (en) Heavy metal-containing waste liquid treatment method and system
DE60035792T2 (en) USE OF A MATERIAL WITH SEPARATION FUNCTION
JPH01228541A (en) Manufacture of fixed tannin adsorbent
Zhang et al. Effective fluorine removal using mixed matrix membrane based on polysulfone: adsorption performance and diffusion behavior
JP3247704B2 (en) Heavy metal removal method
Mahajan-Tatpate et al. Removal of heavy metals from water: Technological advances and today’s lookout through membrane applications.
Hadoudi et al. Sorption of bisphenol A from aqueous solutions using natural adsorbents: isotherm, kinetic and effect of temperature
RU2399412C2 (en) Method of making sorbent for purifying natural and waste water
WO2003082748A1 (en) Process for regenerating ion-exchange resins