JPH06104753B2 - Non-adsorbing hydrophilic hollow fiber porous membrane - Google Patents

Non-adsorbing hydrophilic hollow fiber porous membrane

Info

Publication number
JPH06104753B2
JPH06104753B2 JP61022347A JP2234786A JPH06104753B2 JP H06104753 B2 JPH06104753 B2 JP H06104753B2 JP 61022347 A JP61022347 A JP 61022347A JP 2234786 A JP2234786 A JP 2234786A JP H06104753 B2 JPH06104753 B2 JP H06104753B2
Authority
JP
Japan
Prior art keywords
hollow fiber
membrane
porous membrane
hydroxyl group
neutral hydroxyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61022347A
Other languages
Japanese (ja)
Other versions
JPS62179540A (en
Inventor
司和 三浦
和雄 豊本
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP61022347A priority Critical patent/JPH06104753B2/en
Publication of JPS62179540A publication Critical patent/JPS62179540A/en
Publication of JPH06104753B2 publication Critical patent/JPH06104753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/38Graft polymerization

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Graft Or Block Polymers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、製薬工業等における各種薬品よりなる注射
薬、輸液、バルク原液、又は用水等の除菌、除微粒子精
製に好適な親水性中空糸状多孔膜及びその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention provides a hydrophilic hollow suitable for sterilization of injectables, infusions, bulk stock solutions, water for use, etc., of various drugs in the pharmaceutical industry and purification of fine particles. A filamentous porous membrane and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、製薬工業においては、その製造された各種薬液よ
り、菌又は微粒子を除去するに当り、多くのミクロフイ
ルターが使用されている。
Conventionally, in the pharmaceutical industry, many microfilters have been used to remove bacteria or fine particles from the produced various chemical solutions.

それらのミクロフイルターには多くのタイプの平膜(デ
イスク状)又はプリーツ状のカートリツジよりなる親水
性膜が使用されてきた。この理由は、それらの使用が大
部分は1回限りの使用でほとんどが廃棄されてしまう、
所謂デイスポーザルタイプの用途にしか適用されないも
のであつて、繰返し使用するか、長期間連続又は断続的
に使用する用途では適用され得なかつた。この繰返し使
用又は長時間使用のために、最近、中空糸状のミクロフ
イルターが実用化されつつある。この中空糸状ミクロフ
イルターは、その膜形状の利点の故に、所謂クロスフロ
ーと呼ばれる平行流方式が可能で、膜面への懸濁物(菌
又は微粒子)の付着の防止が可能で、かつ、逆洗洗浄等
により過性能を回復せしめことができる。
Hydrophilic membranes consisting of many types of flat membranes (disks) or pleated cartridges have been used in these microfilters. The reason for this is that their use is mostly a one-time use and most are discarded.
It was applicable only to so-called disposable type applications, and could not be applied to applications where it is used repeatedly or is used continuously or intermittently for a long period of time. Due to this repeated use or long-term use, hollow fiber microfilters have recently been put into practical use. Due to the advantages of the membrane shape, this hollow fiber microfilter is capable of a so-called cross-flow parallel flow method, can prevent the attachment of suspensions (bacteria or fine particles) to the membrane surface, and Excessive performance can be recovered by washing and washing.

この中空糸ミクロフイルターの出現により、所謂バイオ
リアクターへの適用や、無菌化酵素等への応用等、飛躍
的に膜精製の分野が拡大した。ただし、前記の中空糸状
膜はほとんどがポリオレフインの膜から成り立つてお
り、本来疎水性であるので、実液に採用するには、あら
かじめエチルアルコール等で一時的に膜を濡らしておく
必要があり、更にその途中で膜を乾燥させることは極力
防ぐ必要があり、かつ、過中、溶解成分の膜への吸着
の可能性もあり好ましいものではなかつた。
With the advent of this hollow fiber microfilter, the field of membrane purification expanded dramatically, such as application to so-called bioreactors and application to sterilizing enzymes. However, most of the hollow fiber membranes are made of a polyolefin membrane and are inherently hydrophobic, so that the membrane must be temporarily wet with ethyl alcohol or the like before it can be used as an actual liquid. Further, it is not preferable because it is necessary to prevent the membrane from being dried during the process as much as possible, and there is a possibility that dissolved components may be adsorbed to the membrane during the period.

実際に、輸液や注射液は比較的高価なたにめに、できる
だけホールドアツプ量が少なく、かつ、取扱いが簡便で
あることが必要で、そのためにも膜が乾燥状態でもその
まま直ちに使用できることが必須条件となりつつある。
In fact, infusions and injectables are relatively expensive, but they need to have a minimum hold-up amount and be easy to handle. Therefore, it is essential that the membrane can be used immediately even when it is in a dry state. It is becoming a condition.

なお、このポリオレフイン製の中空糸状膜の他、ポリビ
ニルアルコール改質膜も上市されているが、本来その有
する機械的弱さの他に、一旦乾燥した後機械的強度が更
に弱くなり、繰返し安定して使用することは実事上不可
能で、輸液製品のフアイナルフイルター等にはほとんど
使用されていない。
In addition to this hollow fiber membrane made of polyolefin, a polyvinyl alcohol-modified membrane is also on the market, but in addition to its inherent mechanical weakness, its mechanical strength becomes even weaker after it has been dried, and it stabilizes repeatedly. It is practically impossible to use it, and it is rarely used in final filters for infusion products.

一方、ポリオレフイン中空糸状膜を化学修飾することに
よつて親水化をはかる方法は数多く提案されている。そ
の具体例はポリオレフインに発煙又は無水硫酸、クロル
スルホン酸等によるスルホン化、又はアクリル酸等をグ
ラフトすることによりスルホン基又はカルボキシル基を
導入する方法である。この方法によれば、一つの親水化
の目的には到達し、一部の純水製造、その他イオン吸着
等付加機能を与える目的には適している。
On the other hand, many methods have been proposed for making hydrophilic by chemically modifying a polyolefin hollow fiber membrane. A specific example thereof is a method of introducing a sulfone group or a carboxyl group by smoking smoke, sulfonation with sulfuric anhydride, chlorosulfonic acid or the like, or grafting acrylic acid or the like to polyolefin. According to this method, one purpose of hydrophilization is reached, and it is suitable for the purpose of producing a part of pure water and giving an additional function such as ion adsorption.

しかし、それらの膜で例えば、蛋白質、アミノ酸、塩類
等を加えた薬液を精製しようとする場合には、過後、
液が膜への吸着、反応等のために変質することがしば
しばであつた。このことのために、その優れた機械的性
能にも拘わらず、輸液、注射薬等の精製には使用するこ
とが不可能であつた。
However, for example, when purifying a drug solution containing proteins, amino acids, salts, etc. with these membranes,
It was often the case that the liquid deteriorated due to adsorption to the membrane, reaction, etc. For this reason, despite its excellent mechanical performance, it cannot be used for the purification of infusions, injections and the like.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、製薬工業等の輸液、注射液等の薬液中より菌
又は微粒子を除去精製するに際し、長時間繰返し使用で
き、かつ、膜が乾燥状態のままで直ちに使用可能であ
り、更に液が変質しない、極めて有用なミクロフイル
ター膜を提供することにある。
INDUSTRIAL APPLICABILITY The present invention can be used repeatedly for a long time when purifying bacteria or fine particles from a medical fluid such as an infusion solution or an injectable solution in the pharmaceutical industry, and can be immediately used in a dry state of the membrane. An object of the present invention is to provide a very useful microfilter membrane that does not deteriorate.

〔問題点を解決するための手段〕[Means for solving problems]

ここに本発明者は、上記課題を解決するミクロフイルタ
ー膜を鋭意研究した結果、以下の手段により達成せられ
ることが判つた。
As a result of earnest research on a microfilter film that solves the above-mentioned problems, the present inventor has found that it can be achieved by the following means.

即ち、ポリオレフィン又はオレフィンとハロゲン化オレ
フィンの共重合体、又はポリフッ化ビニリデンからなる
中空糸状多孔膜に、中性ヒドロキシル基を含む側鎖が孔
の表面までグラフトされ、かつ、中性ヒドロキシル基含
有率が、膜1グラム当たり0.1ないし5ミリ当量である
平均孔径0.01μ〜5μ、空孔率20ないし80%の非吸着性
親水性中空糸状多孔膜によって、極めて効果的に課題が
解決されることが判った。
That is, a polyolefin or a copolymer of an olefin and a halogenated olefin, or a hollow fiber-like porous membrane made of polyvinylidene fluoride, a side chain containing a neutral hydroxyl group is grafted to the surface of the pores, and the content of the neutral hydroxyl group is high. However, the problem can be solved very effectively by the non-adsorptive hydrophilic hollow fiber porous membrane having an average pore diameter of 0.01 μm to 5 μm and a porosity of 20 to 80%, which is 0.1 to 5 meq / g of the membrane. understood.

以下本発明について更に具体的詳細に説明する。The present invention will be described in more detail below.

本発明においてグラフト処理される膜としては、ポリオ
レフイン、オレフィンとハロゲン化オレフィンとの共重
合体、ポリフッ化ビニリデン等の疎水性多孔膜であるこ
とが必要で、これは基材膜として必要な機械的性質の保
持に役立つ。
The membrane to be graft-treated in the present invention is required to be a hydrophobic porous membrane such as polyolefin, copolymer of olefin and halogenated olefin, polyvinylidene fluoride, etc. Useful for maintaining properties.

ここで、前記のポリオレフイン、オレフィンとハロゲン
化オレフィンとの共重合体の具体例としては、ポリオレ
フイン樹脂、例えばポリエチレン、ポリプロピレン、ポ
リブチレン又は前記の2種以上の混合物又はエチレン、
プロピレン、ブテン、ヘキセン、テトラフルオロエチレ
ン、クロロトリフルオロエチレンの2種以上の混合物よ
りなる共重合体等、又はポリフツ化ビニリデン樹脂が採
用される。
Here, as the specific example of the above-mentioned polyolefin, a copolymer of an olefin and a halogenated olefin, a polyolefin resin, for example, polyethylene, polypropylene, polybutylene or a mixture of two or more of the above, or ethylene,
A copolymer of propylene, butene, hexene, tetrafluoroethylene, a mixture of two or more kinds of chlorotrifluoroethylene, or the like, or polyvinylidene fluoride resin is adopted.

次に、これらの疎水性膜にグラフトされるモノマーとし
ては、1個以上の中性ヒドロキシル基(アルコール性水
酸基)あるいはその前駆体となる官能基を有し、かつ、
グラフト可能でなくてはならない。具体的には、2-ヒド
ロキシエチル‐アクリレート、2-ヒドロキシエチル‐メ
タクリレート等のアクリル酸又はメタクリル酸と多価ア
ルコールのエステル類、及びアリルアルコール等の不飽
和結合を有するアルコール類、及び酢酸ビニル、プロピ
オン酸ビニル等のエノールエステル類が挙げられる。特
に好ましいのは不飽和結合を有するアルコール類及びエ
ノールエステル類である。例えばアリルアルコール等を
前記疎水性膜へグラフトすることにより、又、酢酸ビニ
ル等をグラフトし、その後加水分解させることにより、
所望とする中性水酸基を含む側鎖をもつ非吸着性親水性
膜を得ることができる。しかも、このようにして得られ
たものについては2-ヒドロキシエチル‐アクリレート等
を用いた場合と異なり、エステル結合を有しないため、
側鎖は化学的に極めて安定であり、酸、アルカリ等の条
件下においても容易には化学変化を起こさない。
Next, as a monomer to be grafted on these hydrophobic membranes, one or more neutral hydroxyl groups (alcoholic hydroxyl groups) or a functional group which is a precursor thereof, and
It must be graftable. Specifically, 2-hydroxyethyl-acrylate, esters of polyhydric alcohol with acrylic acid or methacrylic acid such as 2-hydroxyethyl-methacrylate, and alcohols having an unsaturated bond such as allyl alcohol, and vinyl acetate, Enol esters such as vinyl propionate may be mentioned. Particularly preferred are alcohols and enol esters having unsaturated bonds. For example, by grafting allyl alcohol or the like onto the hydrophobic membrane, or by grafting vinyl acetate or the like and then hydrolyzing the same,
A non-adsorptive hydrophilic membrane having a desired side chain containing a neutral hydroxyl group can be obtained. Moreover, since the product thus obtained does not have an ester bond, unlike the case where 2-hydroxyethyl-acrylate or the like is used,
The side chains are chemically extremely stable and do not easily undergo chemical changes even under conditions such as acid and alkali.

かくして得られた側鎖中でのヒドロキシル基は任意にそ
の濃度を調節できるが、本発明の効果として、膜1グラ
ム当り0.1ないし5ミリ当量、好ましくは1ないし3ミ
リ当量が必要である。
The concentration of the hydroxyl group in the side chain thus obtained can be arbitrarily adjusted, but the effect of the present invention is that 0.1 to 5 meq, preferably 1 to 3 meq is required per gram of the membrane.

ここで、膜1グラムとは、膜のかなりマクロ的な重量を
基準にした値のことであり、例えば膜表面の一部、又は
内部の一部だけを取り出した重量のことではない。基材
膜の優れた機械的性質を保持したまま親水性処理される
には、できるだけ孔の表面により優先的にグラフトされ
たほうが目的を達しやすい。したがつて、ここで言う基
材膜1グラムと言う意味は膜の全面にわたつて平等に加
味測定された値を示しており、ごく微視的な観点での重
量を意味していない。
Here, 1 gram of the film is a value based on a considerably macroscopic weight of the film, and does not mean, for example, a weight obtained by taking out only a part of the film surface or a part of the inside. In order to perform hydrophilic treatment while maintaining the excellent mechanical properties of the base film, it is easier to achieve the purpose by preferentially grafting the surface of the pores as much as possible. Therefore, the term "1 gram of the base film" as used herein means a value measured evenly over the entire surface of the film, and does not mean the weight from a microscopic viewpoint.

本発明によつてグラフト処理された多孔膜は、平均孔径
0.01μないし5μの範囲にある。ここで平均孔径とは、
ASTMF316−70に記載されている方法で得られた値を指し
ており、通常エアーフロー法と呼ばれ、空気圧を変えて
乾燥膜と湿潤膜の空気透過流束を測定し、その比から求
めるものである。
The porous membrane grafted according to the present invention has an average pore size of
It is in the range of 0.01μ to 5μ. Here, the average pore size is
It refers to the value obtained by the method described in ASTM F316-70, which is usually called the air flow method, and it is determined from the ratio by measuring the air permeation flux of dry and wet membranes by changing the air pressure. Is.

本発明における平均孔径の範囲は実用性能上から設定さ
れたものであり、これ以外の範囲では透過速度もしくは
微粒子除去効果等の点で不適当である。
The range of the average pore diameter in the present invention is set from the viewpoint of practical performance, and in the range other than this range, it is unsuitable from the viewpoint of the permeation rate or the effect of removing fine particles.

次に、本発明によつて得られた多孔膜の空孔率は20ない
し80%の範囲にある。ここで、空孔率とは、あらかじめ
膜を水等の液体に浸漬し、その後乾燥して、その前後の
重量変化から測定されたもをのである。空孔率が本発明
の範囲以外では、それぞれ透過速度、機械的性質等の点
で好ましくない。
Secondly, the porosity of the porous membrane obtained according to the present invention is in the range of 20 to 80%. Here, the porosity refers to the porosity measured by the weight change before and after immersing the membrane in a liquid such as water in advance and then drying. When the porosity is outside the range of the present invention, it is not preferable in terms of permeation rate, mechanical properties and the like.

本発明で得られた多孔質のベースとなる基材膜の孔構造
としては、種々の成形加工によつて得ることができる。
具体的には、所謂延伸法や電子線照射後化学処理で作ら
れたエツチング法等も適用可能であるが、孔構造として
は、延伸法やエツチング法などにより得られた直孔貫通
型の空孔構造よりも、例えば特公昭59−37292号、特公
昭40−957号公報及び特公昭47−17460号公報に示された
ミクロ相分離法や混合抽出法などにより形成される三次
元網目構造を有するものが好ましい。特に、特開昭55−
131028号公報に示された構造体の製造技術が確立するこ
とによつて本発明の意義が明確化し、従来技術では得ら
れない優れた性能を有する材料の製造方法を達成するこ
とができた。
The pore structure of the porous base material film obtained in the present invention can be obtained by various molding processes.
Specifically, a so-called stretching method or an etching method produced by chemical treatment after electron beam irradiation can also be applied, but as the pore structure, a direct hole through type void obtained by a stretching method or an etching method is used. Rather than the pore structure, a three-dimensional network structure formed by, for example, the micro phase separation method or the mixed extraction method disclosed in JP-B-59-37292, JP-B-40-957 and JP-B-47-17460 is used. Those having are preferred. In particular, JP-A-55-
The significance of the present invention has been clarified by the establishment of the technology for manufacturing the structure shown in Japanese Patent No. 131028, and a method for manufacturing a material having excellent performance that cannot be obtained by the conventional technology can be achieved.

本発明に用いる基材の中空糸状膜としては、内径0.1〜1
0ミリ、厚み0.05〜5mmの中空糸状の多孔膜が好ましい。
The hollow fiber membrane of the substrate used in the present invention has an inner diameter of 0.1 to 1
A hollow fiber porous membrane having a thickness of 0 mm and a thickness of 0.05 to 5 mm is preferable.

本発明の親水性膜の官能基を基材膜にグラフトさせる方
法には、化学処理法等の方法もあるが、最も有効的には
電離性放射線を基材膜に照射せしめる方法が最も良い。
この方法では基材膜を化学的に劣化せしめることが少な
いこと、フリーの重合体が出来にくいこと及びかくして
製造された多孔膜は、機械的、化学的にも優れており、
過性能も良い。
The method of grafting the functional group of the hydrophilic film of the present invention onto the base material film includes methods such as a chemical treatment method, but the most effective method is to irradiate the base material film with ionizing radiation.
In this method, the base film is less likely to be chemically deteriorated, it is difficult to form a free polymer, and the porous film thus produced is mechanically and chemically excellent,
Good overperformance.

用いられる電離性放射線は、α線、β線、γ線、加速電
子線、X線などであるが、実用的には電子線又はγ線が
好ましい。グラフト重合させる方法としては、多孔性基
材とモノマーの共存下に放射線を照射し、グラフト重合
させる同時照射法と、多孔性基材のみにあらかじめ放射
線を照射し、その後多孔性基材にモノマーを接触反応さ
せてグラフト重合させる前照射法があるが、同時照射法
では多孔性基材へのモノマーのグラフト重合が進行する
と同時に、グラフト重合に関与しないモノマーのみが単
独重合し、多孔性基材の空孔を閉塞するという問題が生
じるので、前照射法が好ましい。前照射法では、多孔性
基材にモノマーを接触させる以前に基材にあらかじめ放
射線を照射し、モノマーと接触されるまでの間マイナス
10℃以下に保ち、50℃以下、好ましくは15℃〜50℃の低
温でモノマーと接触させてグラフト重合を行なう。放射
線を照射したのちに多孔性基材を低温保存しない場合
は、生成ラジカルが急速に減衰し、室温(25℃)で30分
経過するとその数は半分になる。更に、それと同時に生
成ラジカルが微量の吸着酸素と反応し、目的物質の耐熱
耐薬品性を損なうという欠陥を生じる。又、グラフト重
合温度が60℃以上になると、グラフト重合にあずからな
いモノマーの単独熱重合物が生成し、多孔性基材の空孔
を閉塞するとか、反応後の後処理工程では抽出されない
単独熱重合物が親水化の後に流出してきて二次公害の原
因となる、といつた問題が生じる。
The ionizing radiation used is α-rays, β-rays, γ-rays, accelerated electron rays, X-rays, etc., but electron rays or γ-rays are preferable for practical use. As a method of graft polymerization, irradiation is performed in the coexistence of a porous substrate and a monomer, and a simultaneous irradiation method in which graft polymerization is performed, and irradiation is performed only on the porous substrate in advance, and then the monomer is added to the porous substrate. Although there is a pre-irradiation method of contact-reacting and graft-polymerizing, in the simultaneous irradiation method, at the same time as the graft polymerization of the monomer onto the porous substrate proceeds, only the monomer not involved in the graft polymerization is homopolymerized, and The pre-irradiation method is preferable because it causes a problem of blocking pores. In the pre-irradiation method, the substrate is pre-irradiated with radiation before the monomer is contacted with the porous substrate, and the
Graft polymerization is carried out by keeping the temperature below 10 ° C and contacting with the monomer at a low temperature of 50 ° C or lower, preferably 15 ° C to 50 ° C. If the porous substrate is not stored at a low temperature after irradiation with radiation, the generated radicals are rapidly attenuated, and the number thereof is halved after 30 minutes at room temperature (25 ° C). At the same time, the generated radicals react with a small amount of adsorbed oxygen, resulting in a defect that the heat resistance and chemical resistance of the target substance are impaired. Further, when the graft polymerization temperature is 60 ° C. or higher, a homopolymer of a monomer that is not involved in the graft polymerization is formed, and the pores of the porous substrate are blocked, or the homopolymer is not extracted in the post-treatment step after the reaction. The problem arises that the thermal polymer flows out after being hydrophilized and causes secondary pollution.

以下、実施例により本発明の構成及び効果を具体的に述
べるが、いずれも本発明を限定するものではない。
Hereinafter, the configuration and effects of the present invention will be specifically described by way of examples, but they do not limit the present invention.

〔実施例〕〔Example〕

実施例1及び比較例1,2 微粉硅酸(ニプシルVN3LP)23.1重量部、ジプチルテレ
フタレート(DBP)55.4重量部、ポリプロピレン樹脂粉
末〔旭化成ポリプロピレン‐M8231〕21.5重量部の組成
物をあらかじめ予備混合した後、30ミリ二軸押出機で内
径0.7mm、厚み0.25mmの中空糸状に押出した後、1,1,1-
トリクロルエタン〔フロロセンVG(商品名)〕中に60分
間浸漬しDBPを抽出した後、更に温度60℃の苛性ソーダ4
0%水溶液中に約20分浸漬して微粉硅酸を押出したあ
と、水洗、乾燥した。
Example 1 and Comparative Examples 1 and 2 Compositions of 23.1 parts by weight of finely divided silicic acid (Nipsil VN3LP), 55.4 parts by weight of diptyl terephthalate (DBP), and 21.5 parts by weight of polypropylene resin powder [Asahi Kasei Polypropylene-M8231] were premixed. After that, it was extruded into a hollow fiber with an inner diameter of 0.7 mm and a thickness of 0.25 mm using a 30 mm twin-screw extruder, and then 1,1,1-
After dipping in trichlorethane [Fluorocene VG (trade name)] for 60 minutes to extract DBP, caustic soda 4 at a temperature of 60 ° C
After immersing in a 0% aqueous solution for about 20 minutes to extrude finely divided silicic acid, it was washed with water and dried.

かくして得られた多孔質に、電子加速器(加圧電圧1.5M
eV、電子線電流1mA)を用いて窒素雰囲気下100KGYで照
射した後、あらかじめ溶存酸素を0.1ppm以下にした酢酸
ビニル蒸気に当ててグラフトさせた。
The porous material thus obtained was then charged with an electron accelerator (pressurizing voltage 1.5M
After irradiation with 100 KGY in a nitrogen atmosphere using eV and an electron beam current of 1 mA), it was exposed to vinyl acetate vapor having dissolved oxygen of 0.1 ppm or less in advance for grafting.

このグラフト膜を更に80℃の苛性ソーダ30%水溶液で24
時間反応させ、平均孔径0.15μ、空孔率62%、ヒドロキ
シル基2.5ミリ当量/1グラム膜の実施例膜を得た。
This graft membrane is further treated with a 30% aqueous solution of caustic soda at 80 ° C for 24 hours.
After reacting for a time, an example membrane having an average pore diameter of 0.15μ, a porosity of 62%, and a hydroxyl group of 2.5 meq / g was obtained.

比較のために、実施例と同じ条件下で押出、抽出された
未処理ポリプロピレン中空糸膜を、特開昭56−57836号
公報,実施例6)と同じような方法でスルホン化を行な
い、スルホン基0.5ミリ当量/1グラム膜(平均孔径0.16
μ空孔率65%)の比較例1の膜を得た。
For comparison, an untreated polypropylene hollow fiber membrane extruded and extracted under the same conditions as in Example was subjected to sulfonation in the same manner as in JP-A-56-57836, Example 6). 0.5 meq / g membrane (average pore size 0.16
A film of Comparative Example 1 having a μ-porosity of 65% was obtained.

なお、実施例膜において、DBP、無水硅酸を抽出した後
の未処理膜を比較例2の膜として以下の実験で使用し
た。
In addition, in the example membrane, the untreated membrane after extraction of DBP and silicic acid anhydride was used as the membrane of Comparative Example 2 in the following experiment.

なお、ここで実施例膜のヒドロキシル基、及び比較例膜
のスルホン基の定量は以下によつた。
In addition, here, the quantification of the hydroxyl group of the example film and the sulfone group of the comparative film was as follows.

〔ヒドロキシル基の定量〕[Quantification of hydroxyl group]

アルカリ処理後の膜を十分に水洗、乾燥した後無水酢酸
‐ピリジン混液(1:3容量比)を適量加え、密封容器中
で60℃、2.5時間加温する。冷却後水を加えて過剰の無
水酢酸を酢酸に変えてクレゾールレツドとチモールブル
ーの混合指示薬を加え、標準水酸化アルカリを用いて滴
定した。
After the membrane after alkali treatment is thoroughly washed with water and dried, an appropriate amount of acetic anhydride-pyridine mixed solution (1: 3 volume ratio) is added, and the mixture is heated in a sealed container at 60 ° C for 2.5 hours. After cooling, water was added to change excess acetic anhydride to acetic acid, a mixed indicator of cresol red and thymol blue was added, and titration was performed using standard alkali hydroxide.

〔スルホン基の定量〕[Quantification of sulfone group]

スルホン化多孔膜を1N HCl水溶液に浸漬しH型とした
後、水洗し、次に1N CaCl2水溶液へ浸漬、遊離したHCl
を0.1N NaOH水溶液を用い、フエノールフタレインを指
示薬として滴定した。
The sulfonated porous membrane was dipped in 1N HCl aqueous solution to form H type, washed with water, and then dipped in 1N CaCl 2 aqueous solution to release the released HCl.
Was titrated with 0.1N NaOH aqueous solution using phenolphthalein as an indicator.

上記第3種の膜の過特性を第1表に示す。Table 1 shows the over-characteristics of the films of the third type.

第1表のデータは、本発明実施例の優れた薬液精製効果
の一端を示している。
The data in Table 1 shows a part of the excellent chemical liquid purification effect of the examples of the present invention.

実施例2,3及び比較例3 エチレン−テトラフルオロエチレン共重合体(商品名ア
フロンCOP)25.2重量部、クロロトリフルオロエチレン
オリゴマー(商品名ダイフロイル#20)53.4重量部、シ
リコーンオイル(商品名KF−96)6.5重量部、微粉シリ
カ14.9重量部を予備混合後、実施例1とほぼ同じ押出機
で押出後、クロロトリフルオロエチレンオリゴマー、シ
リコーンオイル、微粉シリカを抽出し、実施例1と同じ
操作で平均孔径0.14μ、空孔率62%、ヒドロキシル基含
有量4.0ミリ当量/1グラム膜なる実施例膜を得た。
Examples 2 and 3 and Comparative Example 3 25.2 parts by weight of ethylene-tetrafluoroethylene copolymer (trade name: Aflon COP), 53.4 parts by weight of chlorotrifluoroethylene oligomer (trade name: Daifloyl # 20), silicone oil (trade name: KF- 96) 6.5 parts by weight and 14.9 parts by weight of finely divided silica were premixed, and then extruded in the same extruder as in Example 1, and then chlorotrifluoroethylene oligomer, silicone oil, and finely divided silica were extracted, and the same operation as in Example 1 was performed. An example membrane having an average pore diameter of 0.14μ, a porosity of 62%, and a hydroxyl group content of 4.0 meq / gram was obtained.

別に、実施例1における酢酸ビニルの代わりにアリルア
ルコールをグラフトさせ、2.5ミリ当量/1グラム膜の実
施例膜(平均孔径0.16μ,空孔率60%)を得た。
Separately, allyl alcohol was grafted instead of vinyl acetate in Example 1 to obtain an example membrane (average pore diameter 0.16μ, porosity 60%) having a membrane of 2.5 meq / g.

前記二つの実施例膜の過性能は第2表の如くであつ
た。なお、参考のために、上市されている改質ポリビニ
ルアルコール膜(クラレSF−401)を比較例3として示
した。
The overperformance of the two example membranes is shown in Table 2. For reference, a commercially available modified polyvinyl alcohol film (Kuraray SF-401) is shown as Comparative Example 3.

なお、前記の実施例2、3の膜に1%のγ‐アミノ酸酸
モデル液を通して過速度、保持率を測定したところ、
4m3/m2過した後、その保持率はそれぞれ70、65%であ
つた。その後これを苛性ソーダ水溶液及び上記滅菌操作
で洗浄後その過速度を測定したところ、それぞれ100
%、98%に回復した。
In addition, when 1% γ-amino acid acid model solution was passed through the membranes of Examples 2 and 3 to measure the overspeed and the retention rate,
After passing 4 m 3 / m 2 , the retention rates were 70 and 65%, respectively. Then, after washing this with an aqueous solution of caustic soda and the above sterilization operation and measuring its overspeed, each was 100%.
%, 98%.

この事実は、本発明膜は実際の薬液過に当つて繰返し
使用できることを示すものである。
This fact shows that the membrane of the present invention can be repeatedly used in the case of actual chemical overshoot.

〔発明の効果〕〔The invention's effect〕

本発明の膜は、乾燥後の透水保持率が高く、使用中外部
からの汚染が少ないため、実際の薬液の末端フアイナル
フイルターに用いた場合、繰返し使用でき、特にプラン
トに組み込んで連続使用できるので、薬液精製におい
て、精製装置の取扱いが非常に簡単になり、省力化が図
られた点で、その効果は大である。
Since the membrane of the present invention has a high water permeability retention rate after drying and little external contamination during use, it can be used repeatedly when used as a terminal final filter of an actual chemical solution, and in particular, since it can be incorporated into a plant and continuously used. In the chemical liquid purification, the effect is significant in that the handling of the refining device is extremely simple and labor saving is achieved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C08J 9/26 CES 7310−4F ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C08J 9/26 CES 7310-4F

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ポリオレフィン又はオレフィンとハロゲン
化オレフィンの共重合体、又はポリフッ化ビニリデンか
らなる、中空糸状多孔膜に、中性ヒドロキシル基を含む
側鎖が孔の表面までグラフトされ、かつ中性ヒドロキシ
ル基含有率が、膜1グラム当り0.1ないし5ミリ当量で
ある平均孔径0.01μ〜5μ、空孔率20ないし80%の非吸
着性親水性中空糸状多孔膜。
1. A hollow fiber-like porous membrane made of polyolefin or a copolymer of olefin and halogenated olefin, or polyvinylidene fluoride, having side chains containing neutral hydroxyl groups grafted to the surface of pores, and neutral hydroxyl groups. A non-adsorptive hydrophilic hollow fiber porous membrane having a group content of 0.1 to 5 milliequivalents per gram of membrane, an average pore diameter of 0.01 to 5 µ, and a porosity of 20 to 80%.
【請求項2】側鎖がビニルアルコールの単量体あるいは
重合体、又はアリルアルコールの単量体あるいは重合体
である特許請求の範囲第1項記載の非吸着性親水性中空
糸状多孔膜。
2. The non-adsorbing hydrophilic hollow fiber porous membrane according to claim 1, wherein the side chain is a vinyl alcohol monomer or polymer, or an allyl alcohol monomer or polymer.
【請求項3】膜の孔構造が実質的に三次元網目構造を有
し、膜形状が内径0.1〜10mm、厚み0.05〜5mmの中空糸状
である特許請求の範囲第1項記載の非吸着性親水性中空
糸状多孔膜。
3. The non-adsorbing property according to claim 1, wherein the pore structure of the membrane has a substantially three-dimensional network structure, and the membrane shape is a hollow fiber shape having an inner diameter of 0.1 to 10 mm and a thickness of 0.05 to 5 mm. Hydrophilic hollow fiber porous membrane.
【請求項4】ポリオレフィン又はオレフィンとハロゲン
化オレフィンの共重合体又はポリフッ化ビニリデンから
なる中空糸状多孔膜に、中性ヒドロキシル基を含む側鎖
が孔の表面までグラフトされ、かつ、中性ヒドロキシル
基含有率が、膜1グラム当り0.1ないし5ミリ当量であ
る平均孔径0.01μ〜5μ、空孔率20〜80%の非吸着性親
水性中空糸状多孔膜の製造方法において、実質的に三次
元網目構造を有する上記材質の中空糸状多孔膜に、電離
性放射線を照射させることにより、中性ヒドロキシル基
を有するグラフト性モノマーを孔の表面までグラフトさ
せることを特徴とする非吸着性親水性中空糸状多孔膜の
製造方法。
4. A hollow fiber-like porous membrane made of polyolefin or a copolymer of olefin and halogenated olefin or polyvinylidene fluoride, with side chains containing neutral hydroxyl groups grafted to the surface of pores, and neutral hydroxyl groups. In the method for producing a non-adsorptive hydrophilic hollow fiber porous membrane having an average pore diameter of 0.01 μ-5 μ and a porosity of 20-80%, the content of which is 0.1 to 5 milliequivalents per gram of membrane, a substantially three-dimensional network is obtained. A non-adsorbing hydrophilic hollow-fiber-like porous film characterized by grafting a grafting monomer having a neutral hydroxyl group to the surface of pores by irradiating the hollow-fiber-like porous film having the above structure with ionizing radiation. Membrane manufacturing method.
【請求項5】中性ヒドロキシル基を有するグラフト性モ
ノマーがアリルアルコールである特許請求の範囲第4項
記載の非吸着性親水性中空糸状多孔膜の製造方法。
5. The method for producing a non-adsorptive hydrophilic hollow fiber porous membrane according to claim 4, wherein the grafting monomer having a neutral hydroxyl group is allyl alcohol.
【請求項6】ポリオレフィン又はオレフィンとハロゲン
化オレフィンの共重合体又はポリフッ化ビニリデンから
なる中空糸状多孔膜に、中性ヒドロキシル基を含む側鎖
が孔の表面までグラフトされ、かつ、中性ヒドロキシル
基含有率が、膜1グラム当り0.1〜5ミリ当量である平
均孔径0.01μ〜5μ、空孔率20〜80%の非吸着性親水性
中空糸状多孔膜の製造方法において、実質的に三次元網
目構造を有する上記材質の中空糸状多孔膜に、電離性放
射線を照射させることにより、中性ヒドロキシル基前駆
体を有するグラフト性モノマーを孔の表面までグラフト
させ、その後前駆体を中性ヒドロキシル基へ誘導するこ
とを特徴とする非吸着性親水性中空糸状多孔膜の製造方
法。
6. A hollow fiber-like porous membrane made of polyolefin or a copolymer of olefin and halogenated olefin or polyvinylidene fluoride is grafted with a side chain containing a neutral hydroxyl group up to the surface of pores, and a neutral hydroxyl group. In the method for producing a non-adsorptive hydrophilic hollow fiber porous membrane having a content of 0.1 to 5 milliequivalent per gram of the membrane, an average pore diameter of 0.01 µ to 5 µ, and a porosity of 20 to 80%, a substantially three-dimensional network is obtained. By irradiating the hollow fiber-like porous membrane having the above structure with ionizing radiation, the grafting monomer having a neutral hydroxyl group precursor is grafted to the surface of the pores, and then the precursor is induced to a neutral hydroxyl group. A method for producing a non-adsorbing hydrophilic hollow fiber-like porous membrane, comprising:
【請求項7】中性ヒドロキシル基前駆体を有するグラフ
ト性モノマーが酢酸ビニルであり、前駆体の中性ヒドロ
キシル基への誘導がエステル結合の加水分解である特許
請求の範囲第6項記載の非吸着性親水性中空糸状多孔膜
の製造方法。
7. The non-claim according to claim 6, wherein the grafting monomer having a neutral hydroxyl group precursor is vinyl acetate, and the induction of the precursor to a neutral hydroxyl group is hydrolysis of an ester bond. A method for producing an adsorptive hydrophilic hollow fiber porous membrane.
JP61022347A 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane Expired - Fee Related JPH06104753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61022347A JPH06104753B2 (en) 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61022347A JPH06104753B2 (en) 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane

Publications (2)

Publication Number Publication Date
JPS62179540A JPS62179540A (en) 1987-08-06
JPH06104753B2 true JPH06104753B2 (en) 1994-12-21

Family

ID=12080136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61022347A Expired - Fee Related JPH06104753B2 (en) 1986-02-04 1986-02-04 Non-adsorbing hydrophilic hollow fiber porous membrane

Country Status (1)

Country Link
JP (1) JPH06104753B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280146A (en) * 2019-06-14 2019-09-27 南京工业大学 A kind of method that three-dimensional netted organic flexible material repairs molecular screen membrane defect

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62262705A (en) * 1986-05-07 1987-11-14 Agency Of Ind Science & Technol Hydrophilic porous membrane, its production and serum separator using said membrane
US5019260A (en) * 1986-12-23 1991-05-28 Pall Corporation Filtration media with low protein adsorbability
US4940541A (en) 1987-02-11 1990-07-10 Tokyo Bi-Tech Laboratories, Inc. Blood cleaning hollow fiber membrane, method for cleaning blood, and apparatus therefor
KR930006404B1 (en) * 1987-08-06 1993-07-14 데루모 가부시끼가이샤 Hydrophilic porous membrane process for its production and plasma seperating apparatus
JP2501891B2 (en) * 1987-09-11 1996-05-29 工業技術院長 Hydrophilic polypropylene porous membrane and plasma separation device
CA1325405C (en) * 1987-09-11 1993-12-21 Toshio Masuoka Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
CN1147352C (en) * 1996-12-10 2004-04-28 旭化成株式会社 Porous polyvinylidene fluoride resin film and process for producing same
US6299773B1 (en) * 1998-06-22 2001-10-09 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
TW581709B (en) 1999-10-22 2004-04-01 Asahi Kasei Corp Heat-resistant microporous film
AUPR143400A0 (en) * 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
EP1413350B1 (en) 2001-08-01 2011-12-14 Asahi Kasei Medical Co., Ltd. Multilayer microporous film
CN1705505B (en) 2002-10-18 2010-04-28 旭化成医疗株式会社 Microporous hydrophilic membrane
AU2003903507A0 (en) 2003-07-08 2003-07-24 U. S. Filter Wastewater Group, Inc. Membrane post-treatment
CA2535360C (en) 2003-08-29 2013-02-12 U.S. Filter Wastewater Group, Inc. Backwash
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
JP2008539054A (en) 2005-04-29 2008-11-13 シーメンス・ウォーター・テクノロジーズ・コーポレイション Chemical cleaning for membrane filters
MY146286A (en) 2005-08-22 2012-07-31 Siemens Industry Inc An assembly for water filtration using a tube manifold to minimise backwash
WO2008051546A2 (en) 2006-10-24 2008-05-02 Siemens Water Technologies Corp. Infiltration/inflow control for membrane bioreactor
CA2682707C (en) 2007-04-02 2014-07-15 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
KR20160045152A (en) 2007-05-29 2016-04-26 에보쿠아 워터 테크놀로지스 엘엘씨 Water treatment system
AU2009273775B2 (en) 2008-07-24 2014-11-20 Evoqua Water Technologies Llc Frame system for membrane filtration modules
AU2010101488B4 (en) 2009-06-11 2013-05-02 Evoqua Water Technologies Llc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
AU2011245709B2 (en) 2010-04-30 2015-06-11 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
SG11201401091SA (en) 2011-09-30 2014-04-28 Evoqua Water Technologies Llc Isolation valve
CN103958024B (en) 2011-09-30 2016-07-06 伊沃夸水处理技术有限责任公司 The manifold arrangement improved
EP2866922B1 (en) 2012-06-28 2018-03-07 Evoqua Water Technologies LLC A potting method
AU2013315547A1 (en) 2012-09-14 2015-02-26 Evoqua Water Technologies Llc A polymer blend for membranes
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
DE112013004713T5 (en) 2012-09-26 2015-07-23 Evoqua Water Technologies Llc Membrane safety device
AU2013323934A1 (en) 2012-09-27 2015-02-26 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
AU2014329869B2 (en) 2013-10-02 2018-06-14 Evoqua Water Technologies Llc A method and device for repairing a membrane filtration module
CN107847869B (en) 2015-07-14 2021-09-10 罗门哈斯电子材料新加坡私人有限公司 Aeration device for a filtration system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141432A (en) * 1981-02-27 1982-09-01 Asahi Chem Ind Co Ltd Hydrophilic polyolefin resin porous membrane and its production
JPS60147447A (en) * 1984-01-10 1985-08-03 Toyo Soda Mfg Co Ltd Agricultural and horticultural film with outstanding sustainability in antifogging potential
JPS618102A (en) * 1984-06-21 1986-01-14 Asahi Chem Ind Co Ltd Conductive microfilter
JPS61106640A (en) * 1984-10-30 1986-05-24 Toa Nenryo Kogyo Kk Hydrophilic microporous polyethylene membrane
JPH0765270B2 (en) * 1985-11-05 1995-07-12 三菱レイヨン株式会社 Method for functionalizing hollow fiber membranes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110280146A (en) * 2019-06-14 2019-09-27 南京工业大学 A kind of method that three-dimensional netted organic flexible material repairs molecular screen membrane defect

Also Published As

Publication number Publication date
JPS62179540A (en) 1987-08-06

Similar Documents

Publication Publication Date Title
JPH06104753B2 (en) Non-adsorbing hydrophilic hollow fiber porous membrane
JP4699207B2 (en) Hydrophilic microporous membrane
JP4531395B2 (en) Multilayer microporous membrane
EP2913097B1 (en) Charged hollow fiber membrane having hexagonal voids
WO1989000879A1 (en) Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
JPH0829234B2 (en) Hydrophilic microporous membrane
EP2913098B1 (en) Hollow fiber membrane having hexagonal voids
JP2686949B2 (en) Selective adsorption functional microfilter and its manufacturing method
JPH02119937A (en) Base membrane for affinity separation membrane and production thereof
JPH07121345B2 (en) Non-adsorbing hydrophilic semipermeable membrane and method for producing the same
JPS6214903A (en) Process of turning hydrophobic microporous filter membrane hydrophilic
TWI643666B (en) Porous film and method for manufacturing porous film
JP2003268152A (en) Hydrophilic microporous film
JPS62258711A (en) Production of grafted membrane
JPH01224009A (en) Treatment of graft membrane
JP4079221B2 (en) Method for producing graft membrane
JPS6331501A (en) Composite semipermeable membrane and its production
JPH0316626A (en) Hydrophilic porous film
JPS63310602A (en) Novel method for purifying condensate
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane
JPS6283006A (en) Manufacturing process for separating functional material
JPS62201604A (en) Method for removing cobalt ion
JPH0829232B2 (en) Method to give pressure resistance to filtration membrane
JP2802648B2 (en) Cation-selective adsorptive porous membrane and its production method
JPH0411932A (en) Production of composite membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees