JPH08199480A - Production of separation functional fiber, and ion exchange fiber and gas adsorbing material produced by using the same - Google Patents

Production of separation functional fiber, and ion exchange fiber and gas adsorbing material produced by using the same

Info

Publication number
JPH08199480A
JPH08199480A JP7146465A JP14646595A JPH08199480A JP H08199480 A JPH08199480 A JP H08199480A JP 7146465 A JP7146465 A JP 7146465A JP 14646595 A JP14646595 A JP 14646595A JP H08199480 A JPH08199480 A JP H08199480A
Authority
JP
Japan
Prior art keywords
fiber
core
sheath
ion exchange
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7146465A
Other languages
Japanese (ja)
Other versions
JP3386929B2 (en
Inventor
Takanobu Sugo
高信 須郷
Toshihiko Yamada
俊彦 山田
Hiroyuki Shima
弘之 嶋
Kunio Fujiwara
邦夫 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Japan Atomic Energy Agency
Original Assignee
Ebara Corp
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Japan Atomic Energy Research Institute filed Critical Ebara Corp
Priority to JP14646595A priority Critical patent/JP3386929B2/en
Publication of JPH08199480A publication Critical patent/JPH08199480A/en
Application granted granted Critical
Publication of JP3386929B2 publication Critical patent/JP3386929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

PURPOSE: To obtain an ion exchange fiber and a gas absorbing material by irradiating an ionizing radiation to a fiber having a specific core-sheath structure and grafting the fiber with a polymerizable monomer. CONSTITUTION: An olefinic polymer such as a polyethylene capable of producing a radical by irradiating ionizing radioaction rays such as γ-rays or electron beam is arranged in the sheath part of a fiber and a polyethylene terephthalate hardly causing degradation due to irradiation is arranged in the core part to afford a core-sheath type fiber concentrically or eccentrically formed in a shear-core weight ratio of 0.1-10 and the ionizing radioactive rays are irradiated to the core-sheath type fiber or fabric or nonwoven fabric made therefrom in which sheath parts of adjacent fibers are fused or its processed product, and then, the fiber is grafted with a polymerizable monomer such as glycidyl methacrylate to form the objective separation functional fiber. The core-sheath structure fiber or the separation functional fiber is subjected to radiation graft polymerization with a monomer other than styrene to provide the objective ion exchange fiber, and the objective gas adsorbing material is obtained by using the separation functional fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、分離機能性繊維の製造
に係り、特に、放射線グラフト重合を用いる分離機能性
繊維の製造方法とそれを用いて得たイオン交換繊維及び
ガス吸着材とに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation functional fiber, and more particularly to a method for manufacturing a separation functional fiber using radiation graft polymerization and an ion exchange fiber and a gas adsorbent obtained by using the method. It is a thing.

【0002】[0002]

【従来の技術】クリーンルームは、半導体工業、精密機
械工業、写真工業、医薬品製造工業、病院などのバイオ
ロジカルクリーンルームなどの先端産業分野は勿論のこ
と、最近では食品工業、農業分野の他、周辺産業にまで
利用分野が拡大している。このような産業分野における
環境条件としては、温度、湿気、気流とともに空気浄化
が極めて重要である。これらの産業における空気の浄化
は高性能フィルタとしてガラス繊維を構成成分とするH
EPA(High Efficiency Parti
culate Air)フィルタや更に高効率のULP
A(UltraLow Penetration Ai
r)フィルタが使用されている。又、これらのフィルタ
のプレフィルタとしてガラス繊維以外の合成繊維を構成
成分とした中性能繊維、粗塵フィルタ等も多く使用され
ている。以上のフィルタは粒子除去を目的としたもの
で、0.1μm前後の微粒子まで効率良く除去できるよ
う配慮されている。しかし、ガス、イオンなどに対する
除去効果は期待できない。
2. Description of the Related Art Clean rooms are used not only in the advanced industries such as semiconductor industry, precision machinery industry, photographic industry, pharmaceutical manufacturing industry, and biological clean rooms such as hospitals, but also recently in food industry, agriculture field, and other peripheral industries. The field of application is expanding to. As environmental conditions in such industrial fields, air purification is extremely important in addition to temperature, humidity, and air flow. Air purification in these industries is a high performance filter that uses glass fiber as a constituent component.
EPA (High Efficiency Parti)
create Air) filter and more efficient ULP
A (UltraLow Penetration Ai
r) A filter is used. Also, as prefilters for these filters, medium-performance fibers containing synthetic fibers other than glass fibers as constituent components, coarse dust filters, etc. are often used. The above filters are intended to remove particles, and are designed so that even particles of about 0.1 μm can be removed efficiently. However, the effect of removing gas and ions cannot be expected.

【0003】現在のLSI製造工場において、ウエハ表
面の汚染は微粒子によるものとガス、イオンによるもの
の両方が考えられている。特に、後者の汚染は接触抵抗
を増大させたり、ウエハ内部の特性に影響を与えるなど
の問題を引き起こしている。ガス、イオンの発生源とし
ては、エッチングなどの製造工程、クリーンルーム仕上
材、外気導入の際における混入など種々のものがある。
発生したガス、イオンはクリーンルーム内の循環にもか
かわらず、空気浄化系で除去されないため、次第に蓄積
し、製品の品質のみならず、作業者の健康にも影響を与
えるのではないかと懸念されている。
In the current LSI manufacturing factory, contamination of the wafer surface is considered to be caused by both fine particles and gases and ions. In particular, the latter contamination causes problems such as an increase in contact resistance and an influence on the characteristics inside the wafer. There are various sources of gas and ions, such as a manufacturing process such as etching, a clean room finishing material, and mixing when introducing outside air.
The generated gas and ions are not removed by the air purification system despite being circulated in the clean room, so they are gradually accumulated, and it is feared that not only the quality of the product but also the health of the worker may be affected. There is.

【0004】分離機能性繊維又はイオン交換繊維は、特
開平5−111685号公報に示されるように、精密電
子工業、医療、製薬、原子力発電又は食品産業などの分
野における用水や排水に含まれるコバルト、ニツケル、
水銀、銅などの重金属イオンを効果的に吸着除去するこ
とが可能である。又、特公平5−67325号公報、特
開平5−111607号公報、特開平6−142439
号公報では、イオン交換繊維のフィルターにより、気体
中の微粒子及びH2S、NH3、二酸化炭素、フッ化水素
が除去可能であることが示されている。しかしながら、
これらの従来の繊維は、ガスからこのようなものを十分
効果的に除去することができなかった。
Separation-functional fibers or ion-exchange fibers are cobalt contained in water and wastewater in the fields of precision electronics industry, medical care, pharmaceuticals, nuclear power generation, food industry, etc., as disclosed in JP-A-5-111685. , Nickel,
It is possible to effectively adsorb and remove heavy metal ions such as mercury and copper. Also, Japanese Patent Publication No. 5-67325, Japanese Patent Laid-Open No. 5-111607, and Japanese Patent Laid-Open No. 6-142439.
In the publication, it is shown that fine particles in the gas and H 2 S, NH 3 , carbon dioxide and hydrogen fluoride can be removed by a filter of ion exchange fiber. However,
These conventional fibers have not been able to remove such from the gas sufficiently effectively.

【0005】イオン交換繊維の製造法として特公平6−
20554号公報(米国特許出願No.08/264,
762号)があるが、この中の実施例ではそのイオン交
換繊維が大気中の塩化水素とアンモニアを吸着している
が、塩化水素とアンモニアのよりいっそうの効果的な吸
着が望まれている。
Japanese Examined Patent Publication No. 6-
20554 (US patent application No. 08/264,
No. 762), the ion exchange fiber adsorbs hydrogen chloride and ammonia in the air in the examples therein, but more effective adsorption of hydrogen chloride and ammonia is desired.

【0006】吸着やイオン交換の速度は表面積が大き
く、また表面積の官能基の密度が大きくなるほど大き
い。何故ならば、吸着やイオン交換反応は先ず繊維の表
面で起き、徐々に内部へ進行するため、内部の官能基は
十分に利用されているとは言えない。したがって、繊維
表面に官能基が密に存在している方が有利である。
The rate of adsorption or ion exchange increases as the surface area increases and the density of functional groups on the surface area increases. This is because the adsorption or ion exchange reaction first occurs on the surface of the fiber and gradually progresses to the inside, so that the internal functional groups cannot be said to be fully utilized. Therefore, it is advantageous that the functional groups are densely present on the fiber surface.

【0007】一方、放射線グラフト重合法はグラフト重
合の場をコントロールしやすく、分離機能性材料の製法
として注目されており、この方法によるイオン交換繊維
や吸着材などが検討されている。放射線グラフト重合法
は、基材に電離性放射線を照射した後、モノマー液に浸
漬させて反応させる前照射液相グラフト重合法が一般的
である。この場合、反応の初期は基材の表面付近にグラ
フト重合が起こり、反応時間が経過するに伴い基材内部
にまで重合が進行する。従って、グラフト率100%以
上の十分高いグラフト率で表面付近にグラフト重合を集
中させることが困難である。気相グラフト重合法におい
ても高いグラフト率においては、基材の内部にまでグラ
フト重合が進行する。したがって、放射線グラフト重合
においても、イオン交換基のような官能基を表面に集中
させた繊維状の分離機能性材料を製造することは容易で
はなかった。
On the other hand, the radiation graft polymerization method is easy to control the field of the graft polymerization and has attracted attention as a method of producing a separation functional material, and ion exchange fibers and adsorbents by this method have been studied. The radiation graft polymerization method is generally a pre-irradiation liquid phase graft polymerization method in which a base material is irradiated with ionizing radiation and then immersed in a monomer solution for reaction. In this case, graft polymerization occurs near the surface of the base material at the initial stage of the reaction, and the polymerization proceeds to the inside of the base material as the reaction time elapses. Therefore, it is difficult to concentrate the graft polymerization near the surface at a sufficiently high graft rate of 100% or more. Even in the gas phase graft polymerization method, at a high graft ratio, the graft polymerization proceeds to the inside of the substrate. Therefore, even in the radiation graft polymerization, it was not easy to produce a fibrous separation functional material in which functional groups such as ion-exchange groups are concentrated on the surface.

【0008】また、放射線グラフト重合を適用して基材
内部まで反応が進行すると、ポリプロピレン等の基材を
用いた場合は、物理的強度が低くなり、また酸化劣化が
生じて分解生成物を放出するなどの問題があった。これ
に最も近い先行技術として、芯鞘構造を持たないポリプ
ロピレン繊維の基材に放射線グラフト重合によりイオン
交換基を導入したガス吸着材の製造法が、特公平6−2
0554号公報として公知である。
Further, when the reaction proceeds to the inside of the substrate by applying radiation graft polymerization, the physical strength is lowered when a substrate such as polypropylene is used, and oxidative deterioration occurs to release decomposition products. There was a problem such as doing. As the closest prior art to this, a method for producing a gas adsorbent in which an ion exchange group is introduced into a base material of polypropylene fiber having no core-sheath structure by radiation graft polymerization is disclosed in Japanese Patent Publication No. 6-2.
It is known as Japanese Patent No. 0554.

【0009】一般に、イオン交換材や吸着材などの分離
機能性材料は、表面積が大きい程交換速度や吸着速度が
大きく有利である。そのため、表面積の大きな繊維状の
イオン交換材や吸着材を使用する頻度が増えている。繊
維状の分離機能性材料として、イオン交換繊維を例に説
明すると、現在、ポリスチレンが基材(matrix)
又は海で、ポリエチレンが基材内のフィラメント状の多
芯又は島である多芯構造の繊維があり、その基材の部分
にイオン交換基を導入したものや、ポリビニルアルコー
ル繊維を焼成したものにイオン交換基を導入したものが
知られている。
In general, a separation functional material such as an ion exchange material or an adsorbent has a larger exchange rate or adsorption rate as the surface area is larger, which is advantageous. Therefore, the frequency of using a fibrous ion exchange material or adsorbent having a large surface area is increasing. As an example of the fibrous separation functional material, ion-exchange fiber will be explained. Currently, polystyrene is the base material (matrix).
Or, in the sea, there is a fiber with a multi-core structure in which polyethylene is a filamentous multi-core or islands in the base material, and an ion exchange group is introduced into the base material part, or a polyvinyl alcohol fiber fired It is known that an ion exchange group is introduced.

【0010】特開平5−64726号公報の実施例3で
は、電気再生式脱塩装置にポリプロピレンが芯で、ポリ
エチレンが鞘で、スチレン単量体がグラフトされてから
転化された複合繊維をイオン交換繊維として使用して非
常に優秀な結果を示しており、芯鞘構造のイオン交換繊
維が電気再生式脱塩装置に応用されても優秀であること
が示されている。しかし、この芯部がポリプロピレンで
ある繊維を大気中で使用した場合、芯部のポリプロピレ
ンの強度低下及び分解を生じるが、この芯部を耐放射線
性と耐酸化性が良いポリエチレンテレフタレートで置き
換えることにより、大気中においても安定であることが
これまでの調査で判明している。
In Example 3 of Japanese Patent Application Laid-Open No. 5-64726, an electrically regenerative desalting apparatus is ion-exchanged with polypropylene as a core, polyethylene as a sheath, and a composite fiber converted after grafting a styrene monomer. It shows very excellent results when used as a fiber, and it is shown that the ion-exchange fiber having a core-sheath structure is excellent even when applied to an electric regenerative desalination apparatus. However, when the fiber whose core is polypropylene is used in the atmosphere, the strength and decomposition of polypropylene of the core occur, but by replacing this core with polyethylene terephthalate, which has good radiation resistance and oxidation resistance, It has been found in previous studies that it is stable even in the atmosphere.

【0011】近年では薬品を添加した活性炭やゼオライ
ト、マンガン酸化物を担持した素材以外に、イオン交換
繊維を素材にしたガス吸着フィルタが、クリーンルーム
用に開発されている。この中でも特開平6−14243
8号(特願平4−294501号)に示されたように、
放射線グラフト重合を用いて製造された高分子樹脂のイ
オン交換繊維を使用したものは、クリーンルーム内のガ
ス吸着材として非常に良い結果を出している。
In recent years, gas adsorption filters made of ion-exchange fiber as a material have been developed for clean rooms, in addition to materials supporting activated carbon, zeolite, and manganese oxide to which chemicals have been added. Among them, JP-A-6-14243
As shown in No. 8 (Japanese Patent Application No. 4-294501),
The one using the ion exchange fiber of the polymer resin produced by the radiation graft polymerization has shown very good results as the gas adsorbent in the clean room.

【0012】特開平6−142438号(特願平4−2
94501号)には、クリーンルーム内の微量汚染空気
の浄化法として、放射線グラフト重合により高分子イオ
ン交換繊維の不織布フィルタ−を作り、これによるクリ
ーンルーム内の空気浄化の方法を示している。この中の
実施例では電離性放射線を照射する原材料としてポリプ
ロピレン繊維の不織布、ポリエチレン及びポリプロピレ
ンよりなる複合繊維の不織布が用いられているが、ポリ
プロピレン及びポリエチレンは放射線の照射と酸素の存
在により酸性物質が発生しやすく、更に照射により劣化
し発塵しやすいことが問題である。
JP-A-6-142438 (Japanese Patent Application No. 4-2)
No. 94501), as a method for purifying a trace amount of contaminated air in a clean room, a method for purifying air in a clean room by making a non-woven fabric filter of polymer ion exchange fibers by radiation graft polymerization is shown. In the examples in these, as a raw material for irradiating with ionizing radiation, a non-woven fabric of polypropylene fiber, a non-woven fabric of composite fiber composed of polyethylene and polypropylene is used.However, polypropylene and polyethylene have acidic substances due to radiation irradiation and the presence of oxygen. The problem is that they are easily generated, and further deteriorate due to irradiation and easily generate dust.

【0013】[0013]

【発明が解決しようとする課題】将来的には、クリーン
ルーム内の清浄度は現在以上に厳しくなることは必至で
あり、このため現在以上にフィルタ−自身からの発塵や
ガス状物質の発生が問題になることは明白である。この
ために本発明では電離性放射線の照射によりラジカルの
生成及び/又は高分子の崩壊を起こしにくい高分子の成
分を芯とし、逆にラジカルの生成が容易な高分子の成分
を使用して、この芯部上に鞘部を形成することにより、
フィルタ自身からの発塵及びガス状物質の発生を防止し
た。
In the future, it is inevitable that the cleanliness in the clean room will become more severe than it is now, and therefore, the dust generated from the filter itself and the generation of gaseous substances will be further increased. The problem is clear. For this reason, in the present invention, a polymer component that is less likely to cause radical generation and / or polymer collapse by irradiation with ionizing radiation is used as a core, and conversely, a polymer component that is easy to generate radicals is used. By forming the sheath on this core,
Prevents dust generation and gaseous substances from the filter itself.

【0014】本発明は、前記従来技術の問題点を解決
し、繊維表面に官能基が密に導入され、物理的及び化学
的劣化の少ない放射線グラフト重合による分離機能性繊
維の製造方法とそれに基づくイオン交換繊維及びガス吸
着材とを提供するものである。即ち、本発明の分離機能
性繊維から製造されたイオン交換繊維及びガス吸着材
は、ガス中のガス汚染物質をよりいっそう効果的に除去
することができ、特にクリーンルーム内における微粒子
のみならず微量のガス、イオンなどにより汚染された空
気を浄化することができる。
The present invention solves the above-mentioned problems of the prior art and is based on a method for producing a separation functional fiber by radiation graft polymerization in which functional groups are densely introduced on the surface of the fiber and physical and chemical deterioration is small. An ion exchange fiber and a gas adsorbent are provided. That is, the ion-exchange fiber and the gas adsorbent produced from the separation-functional fiber of the present invention can more effectively remove the gas pollutants in the gas, and particularly not only the fine particles in the clean room but also the trace amount thereof. It is possible to purify air contaminated with gas, ions and the like.

【0015】[0015]

【課題を解決するための手段】そこで、まず、本発明
は、芯鞘構造を有する繊維にイオン化放射線を照射した
後、その繊維に重合性単量体をグラフト重合させ、イオ
ン交換特性、キレート特性等の種々の特性を有する分離
機能性繊維を製造する方法である。即ち、異なる高分子
からなる芯鞘構造を有する繊維に電離性放射線を照射し
た後、その繊維に重合性単量体をグラフトさせることを
特徴とする分離機能性繊維の製造方法である。
In view of the above, according to the present invention, first, a fiber having a core-sheath structure is irradiated with ionizing radiation, and then a polymerizable monomer is graft-polymerized on the fiber to obtain an ion exchange property and a chelate property. It is a method for producing a separation functional fiber having various properties such as. That is, the method for producing a separation-functional fiber is characterized in that a fiber having a core-sheath structure made of different polymers is irradiated with ionizing radiation and then a polymerizable monomer is grafted onto the fiber.

【0016】次に、本発明は、芯部及び鞘部が異なる種
類の高分子成分からなる芯鞘構造を有する複合繊維の鞘
に、放射線グラフト重合により、イオン交換基を導入す
ることによって製造されたイオン交換繊維、及びガス吸
着材をである。即ち、芯鞘構造を有する繊維の芯部及び
鞘部が異なる高分子成分からなり、スチレン以外の単量
体を放射線グラフト重合することを経て前記繊維の鞘部
にイオン交換基を導入することによって製造されたイオ
ン交換繊維であり、又鞘部が電離放射線の照射によって
ラジカルの生成が容易な成分であり、芯部が電離放射線
の放射によってラジカルの生成及び/又は高分子の崩壊
を起こしにくい成分である、芯鞘構造を有する繊維に電
離放射線を照射した後、鞘部に重合性単量体をグラフト
させることによって製造されたガス吸着材である。
Next, the present invention is produced by introducing an ion-exchange group into the sheath of a composite fiber having a core-sheath structure having a core and a sheath made of different types of polymer components by radiation graft polymerization. Ion exchange fiber and gas adsorbent. That is, the core portion and the sheath portion of the fiber having a core-sheath structure are composed of different polymer components, and by introducing a ion-exchange group into the sheath portion of the fiber through radiation graft polymerization of a monomer other than styrene. Produced ion-exchange fiber, the sheath part is a component that is easy to generate radicals by irradiation of ionizing radiation, and the core part is a component that is hard to generate radicals and / or collapse of polymers by irradiation of ionizing radiation. Which is a gas adsorbent produced by irradiating a fiber having a core-sheath structure with ionizing radiation and then grafting a polymerizable monomer on the sheath.

【0017】次に、本発明の構成を詳細に説明する。Next, the structure of the present invention will be described in detail.

【0018】図1に芯鞘構造を有する繊維の断面を示
す。図1に記載のように芯鞘構造の繊維とは、芯部1の
まわりを鞘部2が取り巻いている構造のものであり、図
1(a)のように、芯部と鞘部は同心円でもよいし、図
1(b)のように同心円でなく偏心していてもよく、ま
た図1(c)のように海又は基材(matrix)を形
成する鞘2が、島を形成する多芯1を散在させている海
島多島式であってもよい。
FIG. 1 shows a cross section of a fiber having a core-sheath structure. A fiber having a core-sheath structure as shown in FIG. 1 is a structure in which a sheath portion 2 surrounds a core portion 1. As shown in FIG. 1A, the core portion and the sheath portion are concentric circles. However, it may be eccentric instead of being concentric as shown in FIG. 1 (b), and as shown in FIG. 1 (c), the sheath 2 forming the sea or matrix forms an island forming a multicore. The islands and islands type in which 1 is scattered may be used.

【0019】また、前記芯鞘構造を有する繊維の材質
は、鞘部が電離性放射線の照射によってラジカルの生成
が可能な材質であり、芯部が電離性放射線の照射によっ
てラジカルの生成及び/又は高分子の崩壊を起こしにく
い材質であるのがよい。
Further, the material of the fiber having the core-sheath structure is such that the sheath portion is a material capable of generating radicals by irradiation of ionizing radiation, and the core portion generates and / or radicals by irradiation of ionizing radiation. A material that does not easily cause the polymer to collapse is preferable.

【0020】更にまた、芯部の材質は鞘部の材質より高
融点のものがよい。その理由は、芯鞘繊維を熱融着法に
よって不織布化できるからである。各繊維が鞘部で融着
しているため、繊維の破砕片などパーティクル(粒子)
の発生が極めて少ない。これは本発明の適用分野である
精密電子工業や原子力発電等での水処理や空気処理にと
って極めて重要な特性である。
Furthermore, it is preferable that the material of the core portion has a higher melting point than the material of the sheath portion. The reason is that the core-sheath fiber can be made into a non-woven fabric by a heat fusion method. Particles such as crushed pieces of fiber because each fiber is fused at the sheath
Is extremely rare. This is an extremely important characteristic for water treatment and air treatment in the precision electronics industry, nuclear power generation, etc. to which the present invention is applied.

【0021】具体的には、鞘部の材質としては、ポリオ
レフィン系のものが適しており、これは鞘部に放射線グ
ラフト重合に適した材質を用いるためである。ポリエチ
レンやポリプロピレンに代表されるポリオレフィン類、
ポリ塩化ビニルやポリテトラフルオロエチレン(PTF
E)に代表されるハロゲン化ポリオレフィン類、エチレ
ン−テトラフルオロエチレン共重合体に代表されるオレ
フィンとハロゲン化ポリオレフィンとの共重合体、エチ
レン−ビニルアルコール共重合体(EVOH)、エチレ
ンービニルアセテイト(EVA)等に代表されるオレフ
ィンと他の単量体との共重合体などが材質として適して
いる。特にポリエチレンがイオン交換繊維の鞘成分とし
ては優れている。
Specifically, a polyolefin-based material is suitable as the material for the sheath, because a material suitable for radiation graft polymerization is used for the sheath. Polyolefins represented by polyethylene and polypropylene,
Polyvinyl chloride and polytetrafluoroethylene (PTF
E) halogenated polyolefins, copolymers of olefins and halogenated polyolefins represented by ethylene-tetrafluoroethylene copolymers, ethylene-vinyl alcohol copolymer (EVOH), ethylene-vinyl acetate Copolymers of olefins represented by (EVA) and the like with other monomers are suitable materials. In particular, polyethylene is excellent as the sheath component of the ion exchange fiber.

【0022】芯部の材質としては、鞘部の材質と異なる
ものの中から選択でき、鞘部への放射線グラフト重合後
も繊維としての強度を維持できる材質が好ましい。特
に、ポリオレフィンの芯材質が使用できない場合には、
ポリエチレンテレフタレートやポリブチレンテレフタレ
ート等に代表されるポリエステル類が芯材質として適し
ている。
The material of the core portion can be selected from those different from the material of the sheath portion, and a material that can maintain the strength of the fiber after radiation graft polymerization to the sheath portion is preferable. Especially when the core material of polyolefin cannot be used,
Polyesters represented by polyethylene terephthalate and polybutylene terephthalate are suitable as the core material.

【0023】芯鞘の材質の組合せとして、例えばポリエ
チレン(鞘)/ポリプロピレン(芯)、ポリエチレン
(鞘)/ポリエチレンテレフタレート(芯)などがあ
り、特に、耐放射線性に優れたポリエチレン/ポリエチ
レンテレフタレートの材質のものが好ましいが、これに
限定されるものではない。
Examples of the combination of materials of the core / sheath include polyethylene (sheath) / polypropylene (core), polyethylene (sheath) / polyethylene terephthalate (core), and the like. Particularly, the material of polyethylene / polyethylene terephthalate excellent in radiation resistance. However, the present invention is not limited thereto.

【0024】芯鞘構造を有する繊維の鞘部と芯部の重量
比は0.1〜10の範囲が好ましい。0.1以下になる
と、十分な官能基量とするには、鞘部のグラフト率を非
常に高くしなければならず、強度的に弱くなって芯鞘構
造が維持できなくなる。10を越えると、ほとんど鞘部
の材質の単一繊維と同じになり、芯鞘構造にした効果が
消失する。
The weight ratio of the sheath portion to the core portion of the fiber having the core-sheath structure is preferably in the range of 0.1 to 10. If it is 0.1 or less, the graft ratio of the sheath portion must be made extremely high in order to obtain a sufficient amount of the functional group, and the strength becomes weak and the core-sheath structure cannot be maintained. When it exceeds 10, it becomes almost the same as the single fiber of the material of the sheath portion, and the effect of forming the core-sheath structure disappears.

【0025】図7に示すように、芯鞘構造を有する繊維
の鞘部にグラフト重合を行うと鞘部の寸法が増加して芯
部と剥離する。即ち、グラフト前では芯部と鞘部との間
に隙間が存在しないが、グラフト重合後には芯部と鞘部
との間に隙間が生じ、鞘部に襞が生じる。そして、官能
基の導入後には前記隙間が更に広がり、襞も拡大する。
As shown in FIG. 7, when graft polymerization is performed on the sheath portion of the fiber having a core-sheath structure, the dimension of the sheath portion increases and the core portion is separated. That is, there is no gap between the core and the sheath before grafting, but after the graft polymerization, there is a gap between the core and the sheath, resulting in folds in the sheath. Then, after the introduction of the functional group, the gap is further expanded and the folds are expanded.

【0026】図8乃至図11に、芯部がポリエチレンテ
レフタレート(PET)、鞘部がポリエチレン(PE)
の複合繊維のグラフト前の場合(図8)、メタクリル酸
グリシジルを約116%グラフト重合した場合(図
9)、更にこれをスルホン化(図10)又はアミノ化
(図11)した後の場合の複合繊維の断面写真を示す。
8 to 11, the core portion is polyethylene terephthalate (PET) and the sheath portion is polyethylene (PE).
Before grafting of the composite fiber of FIG. 8 (FIG. 8), grafting of about 116% of glycidyl methacrylate (FIG. 9), and further after sulfonation (FIG. 10) or amination (FIG. 11). The cross-section photograph of the composite fiber is shown.

【0027】グラフト後の鞘部はグラフト前の場合の平
滑な表面と比べ多数の襞が認められる。このように鞘部
表面が起伏の多い構造となっているため、表面積が増加
し、吸着分離速度の向上に好ましいばかりでなく、微粒
子の物理的補足機能も増加する。更に、芯鞘の剥離は繊
維全体の保水性能を高める機能を有している。この現象
は、本発明による分離機能繊維、特にイオン交換繊維を
エアーフィルターとして酸性及びアルカリ性ガス等の有
害ガスを除去するのに使用する場合において乾燥による
性能劣化を防止できるので有利である。鞘部のグラフト
により物理的強度がやや劣化するが、繊維全体として強
度は芯部で保たれている。
A large number of folds are observed in the sheath after grafting, as compared with the smooth surface before grafting. Since the surface of the sheath portion has many undulations in this manner, the surface area increases, which is not only preferable for improving the adsorption separation rate, but also increases the physical capturing function of the fine particles. Further, the peeling of the core-sheath has a function of enhancing the water retention performance of the entire fiber. This phenomenon is advantageous in that when the separation functional fiber according to the present invention, particularly the ion exchange fiber is used as an air filter for removing harmful gases such as acidic and alkaline gases, performance deterioration due to drying can be prevented. Although the physical strength is slightly deteriorated by the graft of the sheath, the strength of the fiber as a whole is maintained in the core.

【0028】芯鞘構造を有する繊維の形状としては、長
繊維や短繊維に適用できる。また、繊維の集合体である
織布や不織布またはそれ等の加工品にも適用できる。
The shape of the fiber having the core-sheath structure can be applied to long fibers and short fibers. It can also be applied to woven or non-woven fabrics, which are aggregates of fibers, or processed products thereof.

【0029】基材である芯鞘構造を有する繊維に放射線
グラフト重合する方法として下記のような方法が適用で
きる。
The following method can be applied as a method for radiation-induced graft polymerization of a fiber having a core-sheath structure as a base material.

【0030】先ず、放射線照射用の線源にはα線、β
線、γ線、電子線、X線や紫外線など種々のものが使用
できるがγ線や電子線が本発明には適している。照射線
量としては、20〜300kGyが好ましい。20kG
y以下では反応に十分なラジカルが生成しない。300
kGy以上になると、放射線劣化が大きくなり照射コス
トも高くなるなど問題がある。
First, α rays and β are used as the radiation irradiation source.
Various kinds of rays such as rays, γ rays, electron rays, X rays and ultraviolet rays can be used, but γ rays and electron rays are suitable for the present invention. The irradiation dose is preferably 20 to 300 kGy. 20 kG
If y or less, sufficient radicals are not generated for the reaction. 300
When it is equal to or higher than kGy, there is a problem that radiation deterioration becomes large and irradiation cost becomes high.

【0031】予め放射線を照射した後、重合性単量体
(モノマー)を接触させてグラフト重合する方法は前照
射グラフト重合法と呼ばれ、基材をモノマーの存在下で
放射線照射する同時照射法と比べ単独重合物(ホモポリ
マー)の生成量が少ないので、本発明のような分離機能
性繊維の製法としてふさわしい。
A method of graft-polymerizing by contacting a polymerizable monomer (monomer) after irradiation with radiation in advance is called a pre-irradiation graft polymerization method, and is a simultaneous irradiation method in which a base material is irradiated with radiation in the presence of the monomer. Compared with the above, since the amount of the homopolymer produced is small, it is suitable as a method for producing the separation functional fiber as in the present invention.

【0032】照射済基材を、モノマー液に浸漬したまま
グラフト重合する場合を液相グラフト重合と呼び、反応
温度20〜60℃、反応時間2〜10時間が適してい
る。
The case where the irradiated substrate is graft-polymerized while being immersed in the monomer solution is called liquid-phase graft polymerization, and a reaction temperature of 20 to 60 ° C. and a reaction time of 2 to 10 hours are suitable.

【0033】照射済基材に所定量のモノマーを付与して
真空中又は不活性ガス中で反応させる含浸グラフト重合
は反応温度20〜60℃、反応時間0.2〜8時間が適
している。この場合グラフト重合後の基材が乾燥状態な
ので、基材の取扱いが簡単、廃液の発生量が少ないなど
の利点がある。
The impregnation graft polymerization in which a predetermined amount of the monomer is applied to the irradiated substrate and the reaction is performed in a vacuum or in an inert gas is suitable for a reaction temperature of 20 to 60 ° C. and a reaction time of 0.2 to 8 hours. In this case, since the base material after the graft polymerization is in a dry state, there are advantages such as easy handling of the base material and a small amount of waste liquid generated.

【0034】照射済基材とモノマー蒸気を接触させる気
相グラフト重合は比較的蒸気圧の高いモノマーにしか適
用できず、グラフトむらも発生しやすいが、廃液発生量
が少ないことやグラフト重合後の基材が乾燥状態である
という利点がある。この場合、反応温度として20〜8
0℃、反応時間2〜10時間が必要である。
The vapor phase graft polymerization in which the irradiated substrate and the monomer vapor are brought into contact with each other can be applied only to a monomer having a relatively high vapor pressure, and graft unevenness is likely to occur, but the amount of waste liquid generated is small and after the graft polymerization. It has the advantage that the substrate is dry. In this case, the reaction temperature is 20 to 8
A reaction time of 2 to 10 hours is required at 0 ° C.

【0035】本発明は、以上のいずれの放射線グラフト
重合法も用いることができる。重合性単量体としては、
種々の機能を有する重合性単量体、あるいはグラフト後
に2次反応によって機能を導入するような重合性単量体
を用いることができる。例えば、イオン交換繊維の場
合、イオン交換基を有するモノマーとして、アクリル
酸、メタクリル酸、スチレンスルホン酸ナトリウム、メ
タクリルスルホン酸ナトリウム、アリルスルホン酸ナト
リウムなどがあり、これ等をグラフト重合するだけでイ
オン交換繊維が得られる。
In the present invention, any of the above radiation graft polymerization methods can be used. As the polymerizable monomer,
A polymerizable monomer having various functions or a polymerizable monomer having a function introduced by a secondary reaction after grafting can be used. For example, in the case of ion-exchange fiber, there are acrylic acid, methacrylic acid, sodium styrene sulfonate, sodium methacryl sulfonate, sodium allyl sulfonate, etc. as the monomer having an ion exchange group, and the ion exchange can be performed only by graft-polymerizing these. Fibers are obtained.

【0036】グラフト重合後にさらに反応を行いイオン
交換基を導入できるモノマーとして、アクリロニトリ
ル、アクロレイン、ビニルピリジン、スチレン、クロロ
メチルスチレン、メタクリル酸グリシジルなどがある。
例えばメタクリル酸グリシジルグルグラフト物は、亜硫
酸ナトリウムなどのスルホン化薬品を用い、スルホン基
を導入することができる。
Monomers capable of introducing an ion-exchange group by further reacting after graft polymerization include acrylonitrile, acrolein, vinylpyridine, styrene, chloromethylstyrene, glycidyl methacrylate and the like.
For example, in the glycidyl methacrylate graft product, a sulfone group can be introduced by using a sulfonating agent such as sodium sulfite.

【0037】本発明の分離機能性繊維を製造する方法の
用途として、主としてイオン交換繊維について述べた
が、他にもキレート基を有する重金属吸着剤、触媒、ア
フィニティクロマト用の担体などにも本発明は適用でき
る。
As the application of the method for producing the separation-functional fiber of the present invention, the ion-exchange fiber was mainly described, but the present invention is also applicable to a heavy metal adsorbent having a chelate group, a catalyst, a carrier for affinity chromatography and the like. Is applicable.

【0038】[0038]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will now be specifically described with reference to examples, but the present invention is not limited thereto.

【0039】実施例1 平均径20μmの芯部ポリプロピレン、鞘部ポリエチレ
ン(芯鞘の重量比は1)の複合繊維よりなる不織布(目
付50g/m2)にγ線を窒素雰囲気で200kGy照
射した後、アクリル酸50%水溶液に浸漬し、40℃で
6時間反応し、53%のグラフト率を得た。イオン交換
容量は4.8meq/gであった。
Example 1 A non-woven fabric (weight per unit area of 50 g / m 2 ) composed of composite fibers of core polypropylene and sheath polyethylene (weight ratio of core / sheath: 1) having an average diameter of 20 μm was irradiated with γ-rays in a nitrogen atmosphere at 200 kGy. Then, it was immersed in a 50% aqueous solution of acrylic acid and reacted at 40 ° C. for 6 hours to obtain a graft ratio of 53%. The ion exchange capacity was 4.8 meq / g.

【0040】この繊維を水酸化ナトリウムでNa型に変
換し、X線マイクロアナライザーで断面を観察したとこ
ろ、鞘部のポリエチレンにのみナトリウムの分布が認め
られた。
When this fiber was converted to Na type with sodium hydroxide and the cross section was observed with an X-ray microanalyzer, sodium distribution was observed only in the polyethylene of the sheath.

【0041】この不織布(H型)を20mmφに打抜
き、図2に示すガス吸着実験装置のガラスカラムに0.
4g充填し、試験ガスを3l/minで循環し、アンモ
ニアガスの除去試験を行った。
This non-woven fabric (H type) was punched out to a diameter of 20 mm, and the glass column of the gas adsorption experimental apparatus shown in FIG.
4 g was filled, the test gas was circulated at 3 l / min, and the ammonia gas removal test was conducted.

【0042】図2において、3はフッ素樹脂バック(4
0l)で、4はガラスカラム(20mmφ)で中に不織
布5が充填されている。6はポンプで、7、8、9がそ
れぞれ試料分析のためのサンプリング部で、10が流量
計である。
In FIG. 2, 3 is a fluororesin bag (4
0l), 4 is a glass column (20 mmφ), and the nonwoven fabric 5 is filled therein. Reference numeral 6 is a pump, 7, 8 and 9 are sampling portions for sample analysis, and 10 is a flow meter.

【0043】結果を図3に−○−として示す。図3に示
すように、本発明の繊維を用いた不織布では、フッ素樹
脂バック3内のアンモニア濃度は初期が40ppmであ
ったが、約50分で10ppm以下に、2時間後には5
ppm以下となった。
The results are shown in FIG. 3 as-○-. As shown in FIG. 3, in the nonwoven fabric using the fiber of the present invention, the ammonia concentration in the fluororesin bag 3 was 40 ppm at the initial stage, but was reduced to 10 ppm or less in about 50 minutes, and after 5 hours, the ammonia concentration was 5 ppm.
It became below ppm.

【0044】比較例1 平均径20μmのポリプロピレン単独繊維によりなり、
目付40g/m2の不織布を実施例1と同様にアクリル
酸の放射線グラフト重合を行い、58%のグラフト率を
得た。この繊維のイオン交換容量は5.0meq/gで
あり、イオン交換基は繊維中心まで比較的均一に分布し
ていた。
Comparative Example 1 A polypropylene single fiber having an average diameter of 20 μm,
A non-woven fabric having a basis weight of 40 g / m 2 was subjected to radiation-induced graft polymerization of acrylic acid in the same manner as in Example 1 to obtain a graft ratio of 58%. The ion exchange capacity of this fiber was 5.0 meq / g, and the ion exchange groups were distributed relatively uniformly to the center of the fiber.

【0045】この繊維を実施例1と同様に打抜き、図2
のガス吸着実験装置で,アンモニアガスの除去試験を行
った。その結果を図3に−△−として併記したが、フッ
素バッグ内のアンモニア濃度が10ppm以下に低下す
るのに1時間50分かかった。
This fiber was punched out in the same manner as in Example 1 and
Ammonia gas removal test was conducted using the gas adsorption experimental device. The results are also shown in FIG. 3 as -Δ-, but it took 1 hour and 50 minutes for the ammonia concentration in the fluorine bag to drop to 10 ppm or less.

【0046】実施例2 平均径20μmの芯部ポリプロピレン、鞘部ポリエチレ
ン(芯鞘の重量比は1)の複合繊維によりなる不織布
(目付40g/m2)にγ線を窒素雰囲気で200kG
y照射した後、メタクリル酸グリシジル/メタノール
(1/1)液に浸漬し、45℃で7時間反応させ、グラ
フト率138%を得た。このグラフト済繊維を亜硫酸ナ
トリウム水溶液に浸漬し、80℃で8時間反応させ、ス
ルホン化を行った。この繊維はイオン交換容量が2.4
2meq/gの強酸性カチオン交換繊維でありスルホン
基のほとんど全部が鞘部に分布していた。
Example 2 A nonwoven fabric (weight per unit area: 40 g / m 2 ) made of a composite fiber of a core polypropylene and a sheath polyethylene (core-sheath weight ratio of 1) having an average diameter of 20 μm was irradiated with γ rays in a nitrogen atmosphere at 200 kG.
After y irradiation, it was immersed in a glycidyl methacrylate / methanol (1/1) solution and reacted at 45 ° C. for 7 hours to obtain a graft ratio of 138%. This grafted fiber was immersed in an aqueous solution of sodium sulfite and reacted at 80 ° C. for 8 hours for sulfonation. This fiber has an ion exchange capacity of 2.4.
It was a strongly acidic cation exchange fiber of 2 meq / g, and almost all of the sulfone groups were distributed in the sheath.

【0047】この繊維(H型)を20φに打抜き、実施
例1と同様の条件で図2の装置を用いて、アンモニアガ
スの除去試験を行った。結果を図4に−○−として示す
が、フッ素樹脂バック内のアンモニア濃度は初期が40
ppmであったが、20分以内で10ppm以下に低下
した。
This fiber (H type) was punched out into 20φ, and an ammonia gas removal test was conducted under the same conditions as in Example 1 using the apparatus of FIG. The results are shown as-○-in Fig. 4, but the ammonia concentration in the fluorocarbon resin bag was 40 at the initial stage.
Although it was ppm, it decreased to 10 ppm or less within 20 minutes.

【0048】比較例2 平均径20μmのポリプロピレン単独繊維よりなり、目
付40g/m2の不織布を実施例2と同様にメタクリル
酸グリシジルの放射線グラフト重合を行い、グラフト率
135%を得た。次に実施例2と同様にスルホン化を行
いイオン交換容量が2.45meq/gの強酸性カチオ
ン交換繊維となった。この繊維のスルホン基は繊維の中
心付近まで比較的均一に分布していた。
Comparative Example 2 A non-woven fabric made of polypropylene single fiber having an average diameter of 20 μm and having a basis weight of 40 g / m 2 was subjected to radiation graft polymerization of glycidyl methacrylate in the same manner as in Example 2 to obtain a graft ratio of 135%. Then, sulfonation was performed in the same manner as in Example 2 to obtain a strongly acidic cation exchange fiber having an ion exchange capacity of 2.45 meq / g. The sulfonic groups of this fiber were relatively evenly distributed near the center of the fiber.

【0049】実施例2と同様に繊維を20φに打抜き、
図2の装置でアンモニアガスの除去試験を行ったとこ
ろ、結果は図4で−△−に示すのようになり、フッ素樹
脂バック内のアンモニア濃度が10ppm以下になるま
で35分間要した。
The fibers were punched into 20φ in the same manner as in Example 2,
When an ammonia gas removal test was conducted using the apparatus shown in FIG. 2, the result was as shown by -Δ- in FIG. 4, and it took 35 minutes for the ammonia concentration in the fluororesin bag to reach 10 ppm or less.

【0050】実施例1、2と比較例1、2より、グラフ
ト率、官能基の種類及びイオン交換容量がほぼ同一であ
るにかかわらず、本発明の芯鞘構造を有する繊維の方
が、アンモニアガスの除去性能が優れているのは明らか
である。
As compared with Examples 1 and 2 and Comparative Examples 1 and 2, the fiber having the core-sheath structure of the present invention was more ammonia than the fibers having the same graft ratio, kind of functional group and ion exchange capacity. It is clear that the gas removal performance is excellent.

【0051】実施例3 平均径20μmの同心円状の芯部ポリエチレンテレフタ
レート、鞘部ポリエチレン(鞘芯の重量比は0.7)の
複合繊維よりなる不織布(目付55g/m2)に電子線
を窒素雰囲気で100kGy照射したのち、実施例2と
同様にメタクリル酸グリシジルを反応し、グラフト率1
16%のグラフト不織布を得た。この不織布をエチレン
ジアミン溶液に浸漬し、50℃で3時間反応させ、酸吸
着量が5.3meq/gのキレート基を有する不織布が
得られた。この不織布の繊維のキレート基はほとんど全
部が鞘部に分布していた。
Example 3 A non-woven fabric (unit weight: 55 g / m 2 ) made of a composite fiber of concentric polyethylene terephthalate having a mean diameter of 20 μm and sheath polyethylene (weight ratio of the sheath core was 0.7) was irradiated with an electron beam of nitrogen. After irradiation with 100 kGy in the atmosphere, glycidyl methacrylate was reacted in the same manner as in Example 2 to give a graft ratio of 1
A 16% graft nonwoven was obtained. This nonwoven fabric was immersed in an ethylenediamine solution and reacted at 50 ° C. for 3 hours to obtain a nonwoven fabric having a chelate group with an acid adsorption amount of 5.3 meq / g. Almost all the chelating groups of the fibers of this non-woven fabric were distributed in the sheath.

【0052】この不織布を20φに打抜き、0.5g分
を採取した。これを硫酸銅水溶液(濃度110mg/l
asCu)300mlに浸漬し、撹拌しながら銅濃度の
経時変化を調べた。その結果は、図5の−○−に示すと
おりであり、1分間で銅濃度は20mg/lasCuに
低下した。
This non-woven fabric was punched out into 20φ and 0.5 g was sampled. This is an aqueous solution of copper sulfate (concentration 110 mg / l
AsCu) was immersed in 300 ml, and the change with time of the copper concentration was examined while stirring. The result is as shown by-○-in FIG. 5, and the copper concentration decreased to 20 mg / lasCu in 1 minute.

【0053】この実施例3で基材膜として使用した不織
布繊維の断面写真を図8に、この繊維のグラフト後の断
面写真を図9に、グラフト後にエチレンジアミン溶液に
てアミノ化した繊維の断面を図11に示す。
A cross-sectional photograph of the non-woven fiber used as the base film in Example 3 is shown in FIG. 8, a cross-sectional photograph of the fiber after grafting is shown in FIG. 9, and a cross section of the fiber aminated with an ethylenediamine solution after grafting is shown. It shows in FIG.

【0054】比較例3 平均径20μのポリエチレン単独繊維によりなる不織布
(目付60g/m2)に実施例3と同様の条件で電子線
を照射した後、メタクリル酸グリシジルを反応し、グラ
フト率131%のグラフト不織布を得た。さらに同様の
条件でエチレンジアミンと反応させ、酸吸着量が5.1
9mq/gのキレート基を有する不織布が得られた。こ
の不織布繊維のキレート基は繊維の中心付近まで均一に
分布していた。
Comparative Example 3 A non-woven fabric composed of polyethylene single fibers having an average diameter of 20 μ (weight per unit area: 60 g / m 2 ) was irradiated with an electron beam under the same conditions as in Example 3, and then reacted with glycidyl methacrylate to give a graft ratio of 131%. A graft nonwoven fabric of Further, it was reacted with ethylenediamine under the same conditions and the acid adsorption amount was 5.1.
A non-woven fabric having a chelate group of 9 mq / g was obtained. The chelate groups of this non-woven fiber were evenly distributed near the center of the fiber.

【0055】この不織布を実施例3と同様20φに打抜
き、硫酸銅溶液に浸漬し、銅濃度の経時変化を調べた。
その結果は、図5に−△−として併記したとおりであ
り、1分間で約40mg/lasCuまで低下してい
た。
This non-woven fabric was punched out into 20φ in the same manner as in Example 3 and immersed in a copper sulfate solution to examine changes in copper concentration with time.
The results are as shown in FIG. 5 as -Δ-, which was reduced to about 40 mg / lasCu in 1 minute.

【0056】実施例3及び比較例3より、ほぼ同一のグ
ラフト率、官能基濃度にかかわらず、本発明の芯鞘構造
を有する繊維の方が、重金属吸着性能が優れているのは
明らかである。
It is clear from Example 3 and Comparative Example 3 that the fibers having the core-sheath structure of the present invention have a better heavy metal adsorption performance regardless of the graft ratio and the functional group concentration which are almost the same. .

【0057】実施例4 (a)同心円状のポリエチレン(PE)(鞘)/ポリプ
ロピレン(PP)(芯)の繊維(直径約17μm)より
なる目付50g/m2の不織布に、窒素雰囲気でγ線を
照射した後、メタクリル酸グリシジルをグラフト重合し
た。153%のグラフト率が得られた。
Example 4 (a) A non-woven fabric made of concentric polyethylene (PE) (sheath) / polypropylene (PP) (core) fibers (diameter about 17 μm) having a basis weight of 50 g / m 2 was irradiated with gamma rays in a nitrogen atmosphere. Was irradiated, and then glycidyl methacrylate was graft-polymerized. A graft rate of 153% was obtained.

【0058】この不織布を亜硫酸ナトリウム8%、イソ
プロピルアルコール12%、水80%のスルホン化液に
浸し、80℃で8時間反応させてスルホン化を行った。
更に塩酸7%に浸漬し、H型へ交換した。この繊維を
(a)PE/PPとする。
This non-woven fabric was immersed in a sulfonation solution containing 8% of sodium sulfite, 12% of isopropyl alcohol and 80% of water, and reacted at 80 ° C. for 8 hours for sulfonation.
Further, it was immersed in 7% hydrochloric acid and replaced with an H type. This fiber is (a) PE / PP.

【0059】(b)次に同心円状のポリエチレン(P
E)(鞘)/ポリエチレンテレフタレート(PET)
(芯)の繊維(直径約17μm)よりなる目付50g/
2に上記(a)と同様の方法でグラフト重合とスルホ
ン化及び再生を行った。この繊維を(b)PE/PET
とする。この繊維の断面を図10に示す。
(B) Next, concentric polyethylene (P
E) (sheath) / polyethylene terephthalate (PET)
50 g / unit weight consisting of (core) fibers (diameter about 17 μm)
Graft polymerization, sulfonation and regeneration were carried out on m 2 in the same manner as in the above (a). This fiber is (b) PE / PET
And The cross section of this fiber is shown in FIG.

【0060】繊維(a)と(b)の不織布の引張強度を
図6に示す。図において、(a)のPE/PPは−○−
で、また(b)のPE/PETは−△−で示す。このよ
うに(b)のPE/PETを用いた場合は引張強度は放
射線の照射線量によって減少しないことがわかる。
The tensile strength of the non-woven fabric of the fibers (a) and (b) is shown in FIG. In the figure, (a) PE / PP is-○-
PE / PET of (b) is indicated by -Δ-. Thus, it can be seen that the tensile strength does not decrease with the irradiation dose of radiation when PE / PET of (b) is used.

【0061】次に、繊維の化学的劣化による分解性生成
物の放出を確認するための試験を行った。一般に、合成
高分子系のイオン交換体であっても酸化による高分子骨
格の劣化、それにともなう低分子分解生成物の生成や官
能基の脱離は避けることができず、これらの化学的劣化
に対する耐性の高い、イオン交換体がより望まれてい
る。
Next, a test was conducted to confirm the release of degradable products due to the chemical deterioration of the fibers. In general, even in the case of synthetic polymer-based ion exchangers, deterioration of the polymer skeleton due to oxidation, and accompanying formation of low-molecular decomposition products and elimination of functional groups are unavoidable. There is a greater need for ion exchangers that are highly resistant.

【0062】この劣化による分解生成物の放出を評価す
るために上記(a)のPE/PPと(b)のPE/PE
Tの不織布(20cm×4cm)約200gを入れた容
器に空気を1リットル/min.で流通し排気中に含ま
れる分解生成物を超純水で捕集し分析した。有機低分子
分解生成物を評価するためにTOCを測定し、イオン交
換基の脱離を評価するために硫酸イオンの濃度をイオン
クロマトグラフィーで測定した。その結果を表1に示
す。
In order to evaluate the release of decomposition products due to this deterioration, PE / PP of (a) above and PE / PE of (b) above are evaluated.
Air in a container containing about 200 g of T non-woven fabric (20 cm × 4 cm) at 1 liter / min. The decomposition products contained in the exhaust gas that were circulated in 1. were collected with ultrapure water and analyzed. TOC was measured to evaluate the organic low-molecular-weight decomposition products, and the concentration of sulfate ion was measured by ion chromatography to evaluate the elimination of ion-exchange groups. Table 1 shows the results.

【0063】[0063]

【表1】 実施例5(SO2の除去) 実施例1と同様の不織布にγ線を窒素雰囲気で200k
Gy照射した後、メタクリル酸グリシジルの溶液に浸漬
し、重量で基材の150%を含浸させた。この不織布を
ガラスアンプルに入れ、真空ポンプで減圧にした後、4
5℃で3時間反応させ、グラフト率141%を得た。こ
のグラフト済不織布をイミノジエタノール30%水溶液
に浸漬し、70℃で3時間反応させ、イオン交換容量
2.89meq/gの弱塩基性アニオン交換不織布を得
た。
[Table 1] Example 5 (removal of SO 2 ) γ rays were applied to the same nonwoven fabric as in Example 1 at 200 k in a nitrogen atmosphere.
After Gy irradiation, it was dipped in a solution of glycidyl methacrylate to impregnate 150% by weight of the substrate. After putting this non-woven fabric into a glass ampoule and reducing the pressure with a vacuum pump, 4
The reaction was carried out at 5 ° C for 3 hours to obtain a graft ratio of 141%. The grafted nonwoven fabric was immersed in a 30% aqueous solution of iminodiethanol and reacted at 70 ° C. for 3 hours to obtain a weakly basic anion exchange nonwoven fabric having an ion exchange capacity of 2.89 meq / g.

【0064】この不織布を20φに打ち抜き、実施例1
の装置を使用して二酸化イオウ(SO2)の除去試験を
行った。フッ素バック内のSO2濃度は初期30ppm
が40分で1ppm以下に低下した。
This non-woven fabric was punched out to 20φ and Example 1 was used.
A sulfur dioxide (SO 2 ) removal test was carried out using the above apparatus. The initial concentration of SO 2 in the fluorine bag is 30 ppm
Fell to 1 ppm or less in 40 minutes.

【0065】実施例6(CO2の除去) 実施例1と同様の不織布に同様の放射線照射を行った
後、クロロメチルスチレン(CMS)の溶液に浸漬し、
40℃で7時間の反応を行って、CMSのグラフト率1
12%の不織布が得られた。この不織布をトリメチルア
ミン10%水溶液に浸漬し、50℃で3時間の四級アン
モニウム化反応を行った。この不織布を5%の水酸化ナ
トリウム水溶液に浸漬し、OH型に再生した。この不織
布は中性塩分解容量が2.38mg/gの強塩基性アニ
オン交換不織布であった。
Example 6 (Removal of CO 2 ) The same nonwoven fabric as in Example 1 was irradiated with the same radiation, and then immersed in a solution of chloromethylstyrene (CMS),
The reaction was carried out at 40 ° C for 7 hours to give a CMS graft ratio of 1
12% non-woven fabric was obtained. This non-woven fabric was immersed in a 10% aqueous solution of trimethylamine and subjected to a quaternary ammonium formation reaction at 50 ° C. for 3 hours. This non-woven fabric was immersed in a 5% aqueous sodium hydroxide solution and regenerated into an OH type. This nonwoven fabric was a strongly basic anion exchange nonwoven fabric having a neutral salt decomposition capacity of 2.38 mg / g.

【0066】この不織布を20φに打ち抜き、空気と触
れぬよう真空及びN2雰囲気で乾燥し、実施例1の装置
に充填し、二酸化炭素(CO2)の除去試験を行った。
なお、フッ素バック内のCO2は130ppmとなるよ
う純空気で希釈した。除去試験開始後、フィルタ出口の
CO2は0ppmを示し、バック内のCO2濃度は50分
で1ppm以下に低下した。
This non-woven fabric was punched out to 20φ, dried in a vacuum and N 2 atmosphere so as not to come into contact with air, filled in the apparatus of Example 1, and subjected to a carbon dioxide (CO 2 ) removal test.
The CO 2 in the fluorine bag was diluted with pure air to 130 ppm. After the start of the removal test, CO 2 at the filter outlet showed 0 ppm, and the CO 2 concentration in the bag dropped to 1 ppm or less in 50 minutes.

【0067】実施例7(H2S硫化水素の除去) 実施例6と同様の不織布を実施例1の装置に充填し、硫
化水素(H2S)の除去試験を行った。なお、H2S濃度
2は3ppmとなるよう純空気で調整した。除去試験開
始後、フィルタ出口のH2S濃度は0.0ppmを示
し、フッ素バック内のH2S濃度は初期の3ppmが約
30分で1ppm以下に低下した。
Example 7 (Removal of H 2 S Hydrogen Sulfide) The same non-woven fabric as in Example 6 was filled in the apparatus of Example 1 and a hydrogen sulfide (H 2 S) removal test was conducted. In addition, H 2 S concentration
2 was adjusted to 3 ppm with pure air. After the removal test was started, the H 2 S concentration at the filter outlet was 0.0 ppm, and the H 2 S concentration in the fluorine bag was reduced from the initial 3 ppm to less than 1 ppm in about 30 minutes.

【0068】実施例8(NO3の除去) 実施例5で使用した弱塩基性アニオン交換不織布と実施
例1の装置を使用し、NO3ガスの除去試験を行った。
フッ素バック内のNO3濃度は2ppmとなるよう純空
気で調整した。除去試験開始後、フッ素バック内のNO
3濃度は30分で0.5ppm以下に低下した。
Example 8 (Removal of NO 3 ) Using the weakly basic anion exchange nonwoven fabric used in Example 5 and the apparatus of Example 1, a NO 3 gas removal test was conducted.
The NO 3 concentration in the fluorine bag was adjusted to 2 ppm with pure air. NO in the fluorine bag after the removal test started
The concentration of 3 decreased to 0.5 ppm or less in 30 minutes.

【0069】実施例9(HFフッ化水素の除去) 実施例5で使用した弱塩基性アニオン交換不織布と実施
例1の装置を使用し、フッ化水素ガス(HF)の除去試
験を行った。フッ素バック内のHF濃度は5ppmが除
去試験開始後30分で1ppm以下に低下した。又フィ
ルタ出口のHF濃度は0.5ppm以下であった。
Example 9 (Removal of HF Hydrogen Fluoride) Using the weakly basic anion exchange nonwoven fabric used in Example 5 and the apparatus of Example 1, a hydrogen fluoride gas (HF) removal test was conducted. The HF concentration in the fluorine bag was 5 ppm, but decreased to 1 ppm or less 30 minutes after the start of the removal test. The HF concentration at the filter outlet was 0.5 ppm or less.

【0070】[0070]

【発明の効果】本発明によれば、繊維表面に官能基が密
に導入され、また、物理的、化学的劣化が少なく、強度
が十分に保持できる分離機能性繊維が得られた。また、
この分離機能性繊維は、分離機能に優れており、短時間
でガス分離あるいは液体中からの重金属分離等ができる
ため、ガス除去用フィルタ、重金属吸着剤等に使用でき
る。
EFFECTS OF THE INVENTION According to the present invention, a separation functional fiber in which functional groups are densely introduced on the fiber surface, physical and chemical deterioration is small, and strength can be sufficiently retained is obtained. Also,
This separation functional fiber has an excellent separation function and can perform gas separation or heavy metal separation from a liquid in a short time, so that it can be used as a gas removal filter, a heavy metal adsorbent, or the like.

【0071】更に、イオン交換繊維としては再生可能で
あるため、フイルター枠、セパレーターを含む全構成成
分に再生剤によって犯されない物を用いてフイルターを
作ることで、使用後に再生剤を用いて再生することが可
能なイオン交換ガス除去フイルターとすることができ
る。
Further, since the ion-exchange fiber is recyclable, a filter is made by using all the constituent components including the filter frame and the separator that are not violated by the regenerator, so that it can be regenerated with the regenerator after use. It is possible to use an ion exchange gas removal filter.

【0072】前記具体例は、他者が通常の知識により、
本発明の一般的特性を十分に示している。
The above-mentioned concrete example is
The general characteristics of the invention are fully demonstrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の芯鞘構造を有する繊維の断面図。FIG. 1 is a cross-sectional view of a fiber having a core-sheath structure of the present invention.

【図2】実施例で用いたガス吸着実験装置の概略構成
図。
FIG. 2 is a schematic configuration diagram of a gas adsorption experimental apparatus used in Examples.

【図3】実施例1のバッグ内アンモニア濃度の経時変化
を示すグラフ。
FIG. 3 is a graph showing the change over time in the ammonia concentration in the bag of Example 1.

【図4】実施例2のバッグ内アンモニア濃度の経時変化
を示すグラフ。
FIG. 4 is a graph showing changes over time in the ammonia concentration in the bag of Example 2.

【図5】実施例3の銅濃度の経時変化を示すグラフ。FIG. 5 is a graph showing changes with time of copper concentration in Example 3.

【図6】放射線照射線量と引張強度の減少率を示すグラ
フ。
FIG. 6 is a graph showing a radiation irradiation dose and a reduction rate of tensile strength.

【図7】芯鞘構造を有する繊維の鞘部にグラフト重合を
行い、次に官能基を導入する際に芯部と鞘部との寸法が
増加して鞘部が芯部から剥離する過程を示す図。
FIG. 7 shows a process of graft-polymerizing a sheath portion of a fiber having a core-sheath structure, and then, when a functional group is introduced, the dimensions of the core portion and the sheath portion increase and the sheath portion peels from the core portion. FIG.

【図8】グラフト前の芯部(PET)、鞘部(PE)の
複合繊維の断面写真を示す図。
FIG. 8 is a view showing a cross-sectional photograph of a composite fiber of a core part (PET) and a sheath part (PE) before grafting.

【図9】グラフト後の芯部(PET)、鞘部(PE)の
複合繊維の断面写真を示す図。
FIG. 9 is a view showing a cross-sectional photograph of the composite fiber of the core (PET) and the sheath (PE) after grafting.

【図10】グラフト後にスルホン化したの芯部(PE
T)、鞘部(PE)の複合繊維の断面写真を示す図。
FIG. 10: Sulfonated core after grafting (PE
The figure which shows the cross-section photograph of the composite fiber of T) and a sheath part (PE).

【図11】グラフト後にアミノ化したの芯部(PE
T)、鞘部(PE)の複合繊維の断面写真を示す図。
FIG. 11: Core part aminated after grafting (PE
The figure which shows the cross-section photograph of the composite fiber of T) and a sheath part (PE).

【符号の説明】[Explanation of symbols]

1:芯、2:鞘、3フッ素樹脂バック、4:ガラスカラ
ム、5:不織布繊維、6:ポンプ、7、8、9:サンプ
リング部、10:流量計
1: core, 2: sheath, 3 fluororesin bag, 4: glass column, 5: non-woven fiber, 6: pump, 7, 8, 9: sampling unit, 10: flow meter

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年8月30日[Submission date] August 30, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の芯鞘構造を有する繊維の断面図。FIG. 1 is a cross-sectional view of a fiber having a core-sheath structure of the present invention.

【図2】実施例で用いたガス吸着実験装置の概略構成
図。
FIG. 2 is a schematic configuration diagram of a gas adsorption experimental apparatus used in Examples.

【図3】実施例1のバッグ内アンモニア濃度の経時変化
を示すグラフ。
FIG. 3 is a graph showing the change over time in the ammonia concentration in the bag of Example 1.

【図4】実施例2のバッグ内アンモニア濃度の経時変化
を示すグラフ。
FIG. 4 is a graph showing changes over time in the ammonia concentration in the bag of Example 2.

【図5】実施例3の銅濃度の経時変化を示すグラフ。FIG. 5 is a graph showing changes with time of copper concentration in Example 3.

【図6】放射線照射線量と引張強度の減少率を示すグラ
フ。
FIG. 6 is a graph showing a radiation irradiation dose and a reduction rate of tensile strength.

【図7】芯鞘構造を有する繊維の鞘部にグラフト重合を
行い、次に官能基を導入する際に芯部と鞘部との間の寸
法が増加して鞘部が芯部から剥離する過程を示す図。
FIG. 7: Graft polymerization is performed on the sheath portion of a fiber having a core-sheath structure, and when a functional group is introduced next, the dimension between the core portion and the sheath portion increases and the sheath portion separates from the core portion. The figure which shows a process.

【図8】グラフト前の芯部(PET)及び鞘部(PE)
を有する複合繊維の断面写真。
FIG. 8: Core part (PET) and sheath part (PE) before grafting
Of a cross section of a composite fiber having

【図9】グラフト後の芯部(PET)及び鞘部(PE)
を有する複合繊維の断面写真。
FIG. 9: Core part (PET) and sheath part (PE) after grafting
Of a cross section of a composite fiber having

【図10】グラフト後にスルホン化した芯部(PET)
及び鞘部(PE)を有する複合繊維の断面写真。
FIG. 10: Sulfonated core (PET) after grafting
And a cross-sectional photograph of a composite fiber having a sheath portion (PE).

【図11】グラフト後にアミノ化した芯部(PET)及
び鞘部(PE)を有する複合繊維の断面写真。
FIG. 11 is a cross-sectional photograph of a composite fiber having a core portion (PET) and a sheath portion (PE) that are aminated after grafting.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01D 5/34 // D03D 1/00 Z (72)発明者 嶋 弘之 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 藤原 邦夫 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D01D 5/34 // D03D 1/00 Z (72) Inventor Hiroyuki Shima Asahi-machi, Ota-ku, Tokyo No. 11-1 EBARA CORPORATION (72) Inventor Kunio Fujiwara 4-2-1 Honfujisawa, Fujisawa City, Kanagawa Prefecture EBARA Research Institute

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 異なる高分子からなる芯鞘構造を有する
繊維に電離性放射線を照射した後、その繊維に重合性単
量体をグラフトさせる分離機能性繊維の製造方法。
1. A method for producing a separation-functional fiber, which comprises irradiating a fiber having a core-sheath structure composed of different polymers with ionizing radiation and then grafting a polymerizable monomer on the fiber.
【請求項2】 前記重合性単量体がグリシジルメタクリ
レートであることを特徴とする請求項1に記載の分離機
能性繊維の製造法。
2. The method for producing a separation-functional fiber according to claim 1, wherein the polymerizable monomer is glycidyl methacrylate.
【請求項3】 前記芯鞘構造を有する繊維は、鞘部が電
離性放射線の照射によってラジカルの生成が可能な高分
子であり、芯部が電離性放射線の照射によってラジカル
の生成及び/又は高分子の崩壊を起こしにくい高分子で
あることを特徴とする請求項1に記載の分離機能性繊維
の製造方法。
3. The fiber having a core-sheath structure is a polymer whose sheath portion is capable of generating radicals upon irradiation with ionizing radiation, and whose core portion is capable of generating radicals and / or high radicals upon irradiation with ionizing radiation. The method for producing a separation-functional fiber according to claim 1, wherein the polymer is a polymer that is unlikely to cause molecular collapse.
【請求項4】 前記鞘部がポリオレフィンであり、芯部
がポリエステル類である請求項3に記載の分離機能性繊
維の製造方法。
4. The method for producing a separation-functional fiber according to claim 3, wherein the sheath portion is polyolefin and the core portion is polyester.
【請求項5】 前記芯鞘構造を有する繊維は、鞘/芯の
重量比が0.1〜10の範囲である請求項1に記載の分
離機能性繊維の製造方法。
5. The method for producing a separation-functional fiber according to claim 1, wherein the fiber having the core-sheath structure has a sheath / core weight ratio in the range of 0.1 to 10.
【請求項6】 前記グラフト重合中に、前記芯鞘構造を
有する繊維において芯部と鞘部の界面の少なくとも一部
が剥離するようになる請求項1に記載の分離機能性繊維
の製造方法。
6. The method for producing a separation-functional fiber according to claim 1, wherein during the graft polymerization, at least a part of the interface between the core portion and the sheath portion is separated in the fiber having the core-sheath structure.
【請求項7】 前記芯鞘構造を有する繊維が、単繊維、
織布若しくは不織布、又は前記単繊維若しくは織布若し
く不織布の加工品より選択されるものである請求項1乃
至6のいずれか1つに記載の分離機能性繊維の製造方
法。
7. The fiber having the core-sheath structure is a single fiber,
The method for producing a separation functional fiber according to any one of claims 1 to 6, which is selected from a woven fabric or a non-woven fabric, or a processed product of the single fiber, the woven fabric or a non-woven fabric.
【請求項8】 芯鞘構造を有する繊維の芯部及び鞘部が
異なる高分子成分からなり、スチレン以外の単量体を放
射線グラフト重合することを経て前記繊維の鞘部にイオ
ン交換基を導入することによって製造されたイオン交換
繊維。
8. A fiber having a core-sheath structure is composed of polymer components having different cores and sheaths, and an ion exchange group is introduced into the sheath of the fiber through radiation graft polymerization of a monomer other than styrene. Ion exchange fiber produced by
【請求項9】 グリシジルメタクリレートが前記放射線
グラフト重合によりグラフトされ、且つその後イオン交
換基が前記グリシジルメタクリレートに導入される請求
項8に記載のイオン交換繊維。
9. The ion exchange fiber according to claim 8, wherein glycidyl methacrylate is grafted by the radiation graft polymerization, and then ion exchange groups are introduced into the glycidyl methacrylate.
【請求項10】 前記鞘部がポリオレフィンであり、前
記芯部がポリエステルである請求項8に記載のイオン交
換繊維。
10. The ion exchange fiber according to claim 8, wherein the sheath portion is polyolefin and the core portion is polyester.
【請求項11】 芯鞘部が、その界面の少なくとも一部
においてお互いに剥離している請求項8に記載のイオン
交換繊維。
11. The ion exchange fiber according to claim 8, wherein the core-sheath portions are separated from each other at least at a part of the interface.
【請求項12】 単繊維、織布若しくは不織布、前記単
繊維若しくは織布若しくは不織布の多孔性加工品、又は
前記単繊維若しくは織布若しくは不織布の非多孔性加工
品の形状である請求項8に記載のイオン交換繊維。
12. The shape of a monofilament, a woven fabric or a non-woven fabric, a porous processed product of the monofilament, a woven fabric or a non-woven fabric, or a non-porous processed product of the monofilament, a woven fabric or a non-woven fabric. The ion exchange fiber described.
【請求項13】 隣接した繊維の鞘部がお互いに融着さ
れている請求項12に記載のイオン交換繊維。
13. The ion exchange fiber according to claim 12, wherein the sheath portions of adjacent fibers are fused to each other.
【請求項14】 前記芯鞘構造を有する繊維の構成成分
が、鞘成分としてポリエチレン、芯成分としてポリエチ
レンテレフタレートである請求項8に記載のイオン交換
繊維。
14. The ion exchange fiber according to claim 8, wherein the constituent component of the fiber having the core-sheath structure is polyethylene as the sheath component and polyethylene terephthalate as the core component.
【請求項15】 鞘部が電離放射線の照射によってラジ
カルの生成が容易な成分であり、芯部が電離放射線の放
射によってラジカルの生成及び/又は高分子の崩壊を起
こしにくい成分である、芯鞘構造を有する繊維に電離放
射線を照射した後、鞘部に重合性単量体をグラフトさせ
ることによって製造されたガス吸着材。
15. The core-sheath, wherein the sheath part is a component that easily generates radicals upon irradiation with ionizing radiation, and the core part is a component that does not easily generate radicals and / or polymer collapse upon irradiation of ionizing radiation. A gas adsorbent produced by irradiating fibers having a structure with ionizing radiation and then grafting a polymerizable monomer on the sheath.
【請求項16】 前記重合単量体がグリシジルメタアク
リレートである請求項15に記載のガス吸着材。
16. The gas adsorbent according to claim 15, wherein the polymerized monomer is glycidyl methacrylate.
【請求項17】 前記鞘部がポリオレフィンであり、芯
部がポリエステルである請求項15に記載のガス吸着
材。
17. The gas adsorbent according to claim 15, wherein the sheath portion is polyolefin and the core portion is polyester.
【請求項18】 前記芯鞘構造を有する繊維は、鞘/芯
の重量比が0.1−10の範囲である請求項15に記載
のガス吸着材。
18. The gas adsorbent according to claim 15, wherein the fiber having the core-sheath structure has a sheath / core weight ratio in the range of 0.1-10.
【請求項19】 前記芯鞘構造を有する繊維の断面形状
が、単芯で、且つ芯と鞘が同心に配置又は偏心に配置さ
れている請求項15に記載のガス吸着材。
19. The gas adsorbent according to claim 15, wherein the cross-sectional shape of the fiber having the core-sheath structure is a single core, and the core and the sheath are arranged concentrically or eccentrically.
【請求項20】 前記芯鞘構造を有する繊維は、単繊維
若しくはその加工品、単繊維の集合体である織布若しく
は不織布、又は前記織布若しくは不織布の加工品より選
択されたものであることを特徴とする請求項15に記載
のガス吸着材。
20. The fiber having the core-sheath structure is selected from a single fiber or a processed product thereof, a woven or non-woven fabric which is an aggregate of single fibers, or a processed product of the woven or non-woven fabric. The gas adsorbent according to claim 15, characterized in that.
JP14646595A 1994-11-22 1995-06-13 Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same Expired - Lifetime JP3386929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14646595A JP3386929B2 (en) 1994-11-22 1995-06-13 Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-288435 1994-11-22
JP28843594 1994-11-22
JP14646595A JP3386929B2 (en) 1994-11-22 1995-06-13 Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same

Publications (2)

Publication Number Publication Date
JPH08199480A true JPH08199480A (en) 1996-08-06
JP3386929B2 JP3386929B2 (en) 2003-03-17

Family

ID=26477298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14646595A Expired - Lifetime JP3386929B2 (en) 1994-11-22 1995-06-13 Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same

Country Status (1)

Country Link
JP (1) JP3386929B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294558A (en) * 2001-03-30 2002-10-09 Japan Vilene Co Ltd Ion-exchangeable fiber sheet and method for producing the same
US6659751B1 (en) 1998-08-12 2003-12-09 Ebara Corporation Apparatus for radiation-induced graft polymerization treatment of fabric webs
US6787117B1 (en) 1999-05-07 2004-09-07 Asai Germanium Research Institute Co., Ltd. Porous hollow fiber membrane having chelate formability and method for recovery of germanium oxide using the porous hollow fiber membrane
JP2007007575A (en) * 2005-06-30 2007-01-18 Ebara Corp Microorganism carrier and its production method
JP2007181816A (en) * 2006-12-04 2007-07-19 Asai Germanium Research Inst Porous hollow fiber membrane having complex forming group and method for recovering germanium oxide by using the same
WO2013084524A1 (en) * 2011-12-08 2013-06-13 国立大学法人福井大学 Conjugated fiber and fiber structure comprising said conjugated fiber
KR20150101419A (en) * 2014-02-24 2015-09-03 서울대학교산학협력단 Manufacture system for adsorbent
WO2018043462A1 (en) 2016-08-31 2018-03-08 東レ株式会社 Ion exchange fiber, water purification filter and water treatment method
US11027243B2 (en) 2015-07-30 2021-06-08 North Carolina State University Grafted islands-in-the-sea nonwoven for high capacity ion exchange bioseparation

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6659751B1 (en) 1998-08-12 2003-12-09 Ebara Corporation Apparatus for radiation-induced graft polymerization treatment of fabric webs
US6773654B2 (en) 1998-08-12 2004-08-10 Ebara Coporation Polymer substrates for radiation-induced graft polymerization and filter stock
US6818038B2 (en) 1998-08-12 2004-11-16 Ebara Corporation Polymer substrates for radiation-induced graft polymerization and filter stock
US6787117B1 (en) 1999-05-07 2004-09-07 Asai Germanium Research Institute Co., Ltd. Porous hollow fiber membrane having chelate formability and method for recovery of germanium oxide using the porous hollow fiber membrane
JP4538164B2 (en) * 2001-03-30 2010-09-08 日本バイリーン株式会社 Ion exchange fiber sheet and method for producing the same
JP2002294558A (en) * 2001-03-30 2002-10-09 Japan Vilene Co Ltd Ion-exchangeable fiber sheet and method for producing the same
JP2007007575A (en) * 2005-06-30 2007-01-18 Ebara Corp Microorganism carrier and its production method
JP2007181816A (en) * 2006-12-04 2007-07-19 Asai Germanium Research Inst Porous hollow fiber membrane having complex forming group and method for recovering germanium oxide by using the same
JP4499704B2 (en) * 2006-12-04 2010-07-07 株式会社浅井ゲルマニウム研究所 Aqueous adsorption / recovery material comprising a porous hollow fiber membrane having a complex-forming group, and a method for recovering germanium oxide using the aqueous solution / recovery material
WO2013084524A1 (en) * 2011-12-08 2013-06-13 国立大学法人福井大学 Conjugated fiber and fiber structure comprising said conjugated fiber
KR20150101419A (en) * 2014-02-24 2015-09-03 서울대학교산학협력단 Manufacture system for adsorbent
US11027243B2 (en) 2015-07-30 2021-06-08 North Carolina State University Grafted islands-in-the-sea nonwoven for high capacity ion exchange bioseparation
WO2018043462A1 (en) 2016-08-31 2018-03-08 東レ株式会社 Ion exchange fiber, water purification filter and water treatment method

Also Published As

Publication number Publication date
JP3386929B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
KR100389575B1 (en) Gas adsorbent
JP3238495B2 (en) Purification method of trace contaminated air in clean room
JP6912244B2 (en) Filter cartridge and filter
JPH02187136A (en) Production of iminodiacetyl-containing filtration membrane with composite function
JP2009235417A (en) Process for producing sintered body and resin particles
JP3386929B2 (en) Method for producing separation functional fiber and ion exchange fiber and gas adsorbent produced using the same
WO2001029104A1 (en) Organic polymeric material, process for producing the same, and heavy-metal ion remover comprising the same
JP2772010B2 (en) Method for producing chelating resin adsorbent having iminodiacetic acid group
JP4035441B2 (en) Ozone removing material and method for producing the same
JPH0620554B2 (en) Method for producing gas adsorbent
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
KR100742769B1 (en) Material having separating function
JPH0567325B2 (en)
JP3673452B2 (en) Pollution-resistant porous filtration membrane
JP2014133225A (en) Method for removing urea within pure water
JPH07106304B2 (en) Cobalt ion removal method
JP3960408B2 (en) Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same
JPH0763595B2 (en) New multi-functional membrane
JP2002177767A (en) Sulfur based gas removing material
JP7094874B2 (en) Boron adsorption cartridge filter and boron treatment method using it
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2008296155A (en) Cation adsorbent and its manufacturing method
JPH0259018A (en) Air cleaner
JP2002052312A (en) Ozone remover and ozone removing filter utilizing the same
JP2003024735A (en) Method for removing noxious gas component in air

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130110

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140110

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term