JPH0316691A - Method for simultaneously removing plural kinds of heavy metal ions - Google Patents

Method for simultaneously removing plural kinds of heavy metal ions

Info

Publication number
JPH0316691A
JPH0316691A JP7040789A JP7040789A JPH0316691A JP H0316691 A JPH0316691 A JP H0316691A JP 7040789 A JP7040789 A JP 7040789A JP 7040789 A JP7040789 A JP 7040789A JP H0316691 A JPH0316691 A JP H0316691A
Authority
JP
Japan
Prior art keywords
membrane
heavy metal
metal ions
porous membrane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7040789A
Other languages
Japanese (ja)
Other versions
JP2733287B2 (en
Inventor
Kazuo Toyomoto
豊本 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13430585&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0316691(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP7040789A priority Critical patent/JP2733287B2/en
Priority to US07/493,751 priority patent/US5087372A/en
Priority to FR9003618A priority patent/FR2644772B1/en
Priority to DE4009453A priority patent/DE4009453A1/en
Publication of JPH0316691A publication Critical patent/JPH0316691A/en
Application granted granted Critical
Publication of JP2733287B2 publication Critical patent/JP2733287B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PURPOSE:To reduce the concn. of heavy metal ions having the highest adsorption equilibrium with chelate groups to <=1/10 of the initial concn. by carrying out filtration with a porous membrane of a polymer having the chelate groups bonding to heavy metal ions in the side chain. CONSTITUTION:When part of plural kinds of heavy metal ions in water are Ni and Co ions, the water is filtered with a porous membrane of a polymer having chelate groups bonding to the heavy metal ions in the side chain until the concn. of the heavy metal ions having the highest adsorption equilibrium with the chelate groups is reduced to <=1/10 of the initial concn. The polymer of the porous membrane has imidodiacetic acid groups in the side chain by >=3 milliequiv. per 1g of the membrane and the membrane is composed of hollow fibers and has 0.01-5mu average pore diameter, 20-90% porosity and 10mu-5 mm thickness. By this method, plural kinds of heavy metal ions contained in waste water from a nuclear power plant are simultaneously removed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、特に原子力発電の用廃水の中に含まれる各種
の重金属イオンを同時に効率良く除去する方法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is a method for simultaneously and efficiently removing various heavy metal ions contained in wastewater particularly from nuclear power generation.

〔従来の技術〕[Conventional technology]

従来、原子力発電の用廃水中に含まれる複数種類の重金
属イオンは、主として、イオン交換樹脂を用いて除去さ
れて来た。
Conventionally, multiple types of heavy metal ions contained in wastewater from nuclear power generation have been mainly removed using ion exchange resins.

ところがそれらのイオン交換樹脂では、比較的大きい数
十μ以上の粒径の球状ゲルの間を通って、水が脱イオン
されるために、これらの水流とゲルの内部との拡散(平
衡)によってイオンの吸着が行なわれる.そのため、交
換樹脂に対して異なる反応性を有する複数種類のイオン
の吸着には、脱着・吸着の複雑な反応が起るため使用上
、どうしても大量のイオン交換樹脂を必要とした。
However, with these ion-exchange resins, water is deionized by passing between relatively large spherical gels with particle sizes of several tens of microns or more, and due to diffusion (equilibrium) between these water flows and the inside of the gel. Ion adsorption takes place. Therefore, adsorption of a plurality of types of ions having different reactivities to the exchange resin requires a large amount of ion exchange resin because complex reactions of desorption and adsorption occur.

更にイオンのリーク性も問題になり、構造上極めて不利
なプロセスで操作されて来た。
Furthermore, ion leakage has become a problem, and the process has been extremely disadvantageous due to its structure.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、前記原子力発電用廃水中に複数種類含まれる
重金属イオンを同時にしかも効率良く一挙に除去吸着す
る事を目的とする。
The object of the present invention is to simultaneously and efficiently remove and adsorb a plurality of types of heavy metal ions contained in the nuclear power generation wastewater.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、前記の極めて非効率な問題点を解決するた
め鋭意検討した結果、以下の発明に達した. すなわちこの発明は、水中の複数種類の重金属イオンを
、該重金属イオンと結合するキレート基を側鎖に有する
多孔性膜で、キレート基と最も吸着平衡の高い重金属の
イオン濃度が初0濃度のl/10以下になるまで炉過処
理す・ることを特徴とする複数の重金属イオンを同時に
除去する方法である。
As a result of intensive studies to solve the above-mentioned extremely inefficient problem, the inventor has arrived at the following invention. That is, the present invention provides a porous membrane having a chelate group in its side chain that binds multiple types of heavy metal ions in water. This is a method for simultaneously removing a plurality of heavy metal ions, which is characterized by carrying out furnace overtreatment until the concentration of heavy metal ions reaches /10 or less.

さらに、上記方法において、水中の複数種類の重金属イ
オンの一部がニッケル、コバルトであり、多孔性膜が膜
1グラム当り3ξり当量以上のイごノジ酢酸基を側鎖に
有する平均孔径0.01〜5μ、空孔率20〜90%、
膜厚10μ〜5mmの中空糸状多孔膜である時に、この
発明の効果が高い事が判った. 次に、本発明を具体的に説明する. 本発明を適用することのできる複数種類の重合属イオン
とは、具体的には、鉄、銅、コバルト、ニッケル等であ
り、たとえばコバルトとニッケルの場合、酸性液の場合
は、ニッケルの方が圧倒的にイミノジ酢酸基に対して反
応性(吸着性)が高い。
Furthermore, in the above method, some of the plurality of types of heavy metal ions in the water are nickel and cobalt, and the porous membrane has an average pore diameter of 0.5 mm, having 3ξ equivalents or more of igonodiacetic acid groups in the side chains per gram of the membrane. 01~5μ, porosity 20~90%,
It has been found that the present invention is highly effective when the membrane is a hollow fiber-like porous membrane with a membrane thickness of 10 μm to 5 mm. Next, the present invention will be specifically explained. Specifically, the multiple types of polymerized metal ions to which the present invention can be applied include iron, copper, cobalt, nickel, etc. For example, in the case of cobalt and nickel, in the case of an acidic liquid, nickel is preferable. It has overwhelmingly high reactivity (adsorption) to iminodiacetic acid groups.

ここで、「最も吸着平衡の高いイオン」という意味は、
複数種類の重金属イオンを同モル濃度含む液に膜を浸漬
したとき、最も吸着量の高いイオンをいう. 複数種類のイオンは、結合するキレート基と反応性が大
きく異なっていても、全体としてのそれぞれのイオンの
吸着効果は、最も反応性の高いイオン(前述の場合は二
1ツケル)によってのみ規定される事が判った。
Here, the meaning of "ion with the highest adsorption equilibrium" is:
Refers to the ion with the highest adsorption amount when the membrane is immersed in a solution containing multiple types of heavy metal ions at the same molar concentration. Even though multiple types of ions differ greatly in their reactivity with the chelate group to which they bind, the overall adsorption effect of each ion is determined only by the most reactive ion (in the above case, 21 ions). It turns out that

この事は、イオンのイオン吸着性膜への吸着挙動が、イ
オン交換樹脂の場合と大きく異なり、原水側から層状に
時間と共に、膜への吸着が行なわれている事を示す. この事実は膜法での、複数の重金属イオンの除去精製の
優秀性を示すものである.膜中でのイオンと水素の平衡
による律速効果は、イオン交換樹脂の場合に比し、相当
に小さい。
This shows that the adsorption behavior of ions to the ion-adsorbent membrane is significantly different from that of ion-exchange resins, and adsorption to the membrane occurs in a layered manner from the raw water side over time. This fact shows the superiority of the membrane method in removing and purifying multiple heavy metal ions. The rate-limiting effect due to the balance of ions and hydrogen in the membrane is considerably smaller than in the case of ion exchange resins.

もちろん最も吸着の高いイオンの破過点に達する前に炉
過を止めても良い。
Of course, the furnace filtration may be stopped before the breakthrough point of the most highly adsorbed ions is reached.

本発明に使用される重金属と結合するキレート基の例と
しては、イミノジ酢酸が好ましい。
As an example of the chelate group that binds to heavy metals used in the present invention, iminodiacetic acid is preferred.

本発明に使用されるキレート基を側鎖に有する多孔性膜
としては、好ましくは基材となる多孔質膜の材質がポリ
オレフィン、オレフィンとハロゲン化オレフィンの共重
合体、ポリフッ化ビニリデンまたはポリスルホンであり
、多孔質膜の内外表面部および膜内部の孔の表面部の少
なくとも一部分に、キレート結合を有する官能基が化学
的に結合した多孔性膜を用いるのがよく、前記官能基の
多孔!膜への結合は、直接でもよく、また官能基を含有
する重合体が結合されている場合でもよい。
The porous membrane having a chelate group in its side chain used in the present invention is preferably made of a polyolefin, a copolymer of an olefin and a halogenated olefin, polyvinylidene fluoride, or polysulfone. It is preferable to use a porous membrane in which a functional group having a chelate bond is chemically bonded to the inner and outer surfaces of the porous membrane and at least a portion of the surface of the pores inside the membrane, and the pores of the functional group! The membrane may be bound directly or may be bound to a polymer containing a functional group.

更に好ましくは、多孔賞膜の膜の材質がポリオレフィン
であり、かつ膜構造が三次元網目構造をなし、膜の内外
両表面部および膜内部の孔の表面部の少なくとも一部分
または全面にわたってキレート結合基を有する官能基、
またはそれら官能基を有する重合体が化学的に結合して
いる多孔性膜を用いて処理精製するのがよい。
More preferably, the membrane material of the porous membrane is polyolefin, the membrane structure has a three-dimensional network structure, and the chelate bonding group is present on both the inner and outer surfaces of the membrane and at least a portion or the entire surface of the pores inside the membrane. a functional group having
Alternatively, treatment and purification may be carried out using a porous membrane to which polymers having these functional groups are chemically bonded.

この官能基はそれぞれが多孔性膜1g当たり3ミリ当量
以上のキレート基を含有していなければならない。この
範囲以下では膜のイオン除去能力の低下を招く。
Each of these functional groups must contain at least 3 milliequivalents of chelate groups per gram of porous membrane. Below this range, the ion removal ability of the membrane decreases.

多孔性膜の平均孔径は0,Ol〜5μ、好ましくは0.
01μ〜lμの範囲から選ばれる。この範囲より小さい
場合は透水能力が実用性能上充分でなく、またこれより
大きいところではイオン除去性が問題となってくる。
The average pore diameter of the porous membrane is 0.01 to 5μ, preferably 0.01μ.
It is selected from the range of 01μ to lμ. If it is smaller than this range, the water permeability is not sufficient for practical performance, and if it is larger than this range, ion removal becomes a problem.

平均孔径の測定には多くの方法があるが、本発明におイ
テは、ASTM  F−316−70に記載されている
.通常エアーフロー法と呼ばれる空気圧を変えた場合の
乾燥膜と湿潤膜の空気透過流束から測定する方法に準拠
する。
Although there are many methods for measuring average pore size, the method used in the present invention is described in ASTM F-316-70. It is based on a method called the air flow method, which measures the air permeation flux through the dry membrane and wet membrane when changing the air pressure.

多孔性膜の空孔率は20%〜90%、好ましくは50%
〜80%の範囲にあるものが用いられる.ここで空孔率
とは、あらかじめ膜を水等の液体に浸漬し、その後乾燥
させて、その前後の重量変化から測定したものである.
空孔率が上記範囲以外においては、それぞれ透過速度、
機械的性質の点で好ましくない. 多孔性膜の形状は、平膜状(プリーツ状、スパイラル状
を含む)、チューブ状、中空糸状等が使用されるが、特
に中空糸状のものが好ましいがススパイラル状平膜も使
用できる。
The porosity of the porous membrane is 20% to 90%, preferably 50%
Those within the range of ~80% are used. The porosity here is measured by immersing the membrane in a liquid such as water, then drying it, and measuring the weight change before and after.
When the porosity is outside the above range, the permeation rate and
Unfavorable in terms of mechanical properties. The shape of the porous membrane may be a flat membrane (including pleats or spirals), a tube, or a hollow fiber. Hollow fibers are particularly preferred, but spiral flat membranes can also be used.

基材となる多孔1t膜の孔構造は、或形加工方法によっ
て、種々形戒できる。例えば、基材ポリマーがポリスル
ホンの場合は溶剤等を用いて混合溶液とした後、中空糸
状にノズルから吐出し、凝固剤等で或形するいわゆる湿
式法等を採用することにより三次元網目構造膜とするこ
とができる。ポリオレフィンの場合は延伸法や、電子線
照射後化学処理により作られ、いわゆるエッチング法等
により多孔質膜とすることも可能であるが、孔構造とし
ては延伸法やエッチング法などにより得られた直孔貫通
型の孔構造よりも、例えば特公昭59−37292号公
報、特公昭40−957号公報及び特公昭47−174
60号公報に示されたミクロ相分離法や混合抽出法など
により形成される三次元網目構造を有するものが実用性
能上好ましい. 特に、特開昭55−131028号公報に示された構造
を有する膜を用いるのが好ましい。
The pore structure of the porous 1t film serving as the base material can be shaped in various ways depending on a certain processing method. For example, if the base polymer is polysulfone, a three-dimensional network structure film can be created by using a so-called wet method, in which a mixed solution is prepared using a solvent, etc., and then it is discharged from a nozzle in the form of a hollow fiber, and then shaped with a coagulant, etc. It can be done. In the case of polyolefin, it is made by a stretching method or a chemical treatment after electron beam irradiation, and it is also possible to make a porous membrane by a so-called etching method. For example, Japanese Patent Publication No. 59-37292, Japanese Patent Publication No. 40-957, and Japanese Patent Publication No. 47-174, rather than a through-hole type hole structure.
Those having a three-dimensional network structure formed by the microphase separation method or mixed extraction method shown in Publication No. 60 are preferred from the viewpoint of practical performance. In particular, it is preferable to use a film having the structure shown in Japanese Patent Application Laid-Open No. 55-131028.

多孔質膜を構威する重合体の側鎖にキレート基を有する
官能基を導入する方法としては、公知の方法が採用され
る.例えば、ポリエチレンの側鎖にイミノジ酢酸基を導
入する方法としては、ポリエチレン膜を電子線等で放射
した後、スチレンを気相中でグラフトさせ、その後公知
の方法でイミノジ酢酸をグラフトさせる方法がとられる
A known method is used to introduce a functional group having a chelate group into the side chain of the polymer that makes up the porous membrane. For example, a method for introducing iminodiacetic acid groups into the side chains of polyethylene is to irradiate a polyethylene film with an electron beam or the like, graft styrene in a gas phase, and then graft iminodiacetic acid using a known method. It will be done.

また、あらかじめポリエチレン膜に電子線等を照射後、
グリシジルメタクリレートを気相中でグラフトさせ、そ
の後イミノジ酢酸を付加させる方法がとられる. 前記官能基を、多孔質膜を構成する重合体の側鎖へ導入
するには、膜に威形する前に導入することもできるが、
膜に或形した後膜の内外面及び孔の表面部の少なくとも
一部分に、化学的に付加結合させる方法が好ましい。官
能基は出来るだけ均一に、膜の各表面に結合させるのが
望ましいが、膜の孔の表面に優先的に結合させた方が良
い場合もある。
In addition, after irradiating the polyethylene film with an electron beam, etc.,
The method used is to graft glycidyl methacrylate in the gas phase and then add iminodiacetic acid. In order to introduce the functional group into the side chain of the polymer constituting the porous membrane, it can be introduced before forming the membrane, but
A preferred method is to form a membrane and then chemically bond it to at least a portion of the inner and outer surfaces of the membrane and the surfaces of the pores. Although it is desirable that the functional groups are bonded to each surface of the membrane as uniformly as possible, there are cases where it is better to bond them preferentially to the pore surfaces of the membrane.

本発明における官能基の量は、多孔性1!Ig当たりの
ミリ当量を指すが、ここで膜1gとは、膜のかなりマク
ロ的な重量を基準にした値のことであり、例えば、膜表
面の一部、又は内部の一部だけを取り出した重量のこと
ではない。膜の優れた機械的性質を保持したまま官能基
を結合させるには、出来るだけ膜の孔の表面に均一に、
より優先的に官能基を存在させた方が好ましいので、当
然部分的な不均質性は許容される。従って、ここで言う
膜1gと言う意味は、膜の全面にわたって平等に加味測
定された値を示しており、掻く微視的な観点での重量を
意味していない。
The amount of functional groups in the present invention is porosity 1! It refers to the milliequivalent per Ig, and here 1 g of membrane is a value based on the fairly macroscopic weight of the membrane, for example, when only a part of the membrane surface or a part of the inside is taken out. It's not about weight. In order to bond functional groups while maintaining the membrane's excellent mechanical properties, it is necessary to bind the functional groups as uniformly as possible to the surface of the membrane's pores.
Since it is preferable to have functional groups present more preferentially, partial heterogeneity is naturally allowed. Therefore, the meaning of 1 g of membrane here indicates the value measured evenly over the entire surface of the membrane, and does not mean the weight from a microscopic viewpoint.

本発明におけるキレート基を有する多孔性膜の役割は非
常に重要である。
The role of the porous membrane having chelate groups in the present invention is very important.

すなわち、前記キレート結合した側鎖を有する多孔性膜
を用いる場合は、イオン交換樹脂を用いる場合に比べて
一段で優れたイオン除去特性が得られると共に、使用膜
量も少なくてすみ何よりも再生液量が画期的に少なくて
すみ、かつ完全に再生処理される。この事は、溶出成分
を少なくするうえで極めて大きい利点である。
In other words, when using a porous membrane having chelate-bonded side chains, it is possible to obtain ion removal properties that are much better than when using an ion exchange resin, and the amount of membrane used can be reduced, which makes it possible to reduce the amount of regenerated liquid. The amount required is dramatically smaller, and it can be completely recycled. This is a huge advantage in reducing the amount of eluted components.

さらに、前記キレート結合基を有する膜は、イオン交換
樹脂に比して比較にならないはど孔径が小さい(樹脂は
数十μから百μであるのに比し、膜は5μ以下)ので、
溶出戒分のもれが少なくてすむ。
Furthermore, the membrane having the chelate binding group has an incomparably small pore diameter compared to ion exchange resins (resins have a diameter of several tens of microns to 100 microns, while membranes have a diameter of 5 microns or less).
There will be less leakage of precepts.

次に、以下に本発明を実施例によって説明するが、これ
らは本発明を限定するものではない。
Next, the present invention will be explained below with reference to Examples, but these are not intended to limit the present invention.

(実施例) 実施例および比較例 に  するカチオン        の星盟 微粉硅酸くニプシルV N 3 L P ) 22.1
重量部、ジブチルフタレー}(DBP)55.0重量部
、ポリエチレン樹脂粉末〔旭化威■製SH−800グレ
ード) 23.0重量部の組成物を予備混合した後、3
0ミリ2軸押出機で内径0.7am、厚み0.25mm
の中空糸状に押出した後、1.1. 1 − }リクロ
ロエタン〔クロロセンVG(商品名〕〕中に60分間浸
漬し、DBPを抽出した。更に温度60゜Cの苛性ソダ
40%水溶液中に約20分浸漬して微扮硅酸を抽出した
後、水洗、乾燥した. 得られた多孔膜に電子加速機(加圧電圧1 . 5Me
v、電子線電流1mA)を用いて窒素雰囲気下10Oκ
cyで電子線を照射した後、グリシジルメタクリレート
)を気相中でほぼ完全にグラフトさせて洗浄乾燥した。
(Example) Example and Comparative Example Cation Star League Fine Powder Nipsil Silicate V N 3 LP ) 22.1
After premixing the composition of 55.0 parts by weight, 55.0 parts by weight of dibutyl phthalate (DBP), and 23.0 parts by weight of polyethylene resin powder (SH-800 grade manufactured by Asahi Kaei),
0mm twin screw extruder with inner diameter of 0.7am and thickness of 0.25mm
After extruding into a hollow fiber shape, 1.1. 1-}Immersed in dichloroethane [Chlorocene VG (trade name)] for 60 minutes to extract DBP.Furthermore, immersed in a 40% aqueous solution of caustic soda at a temperature of 60°C for about 20 minutes to extract a small amount of silicic acid. After that, it was washed with water and dried.The obtained porous film was subjected to an electron accelerator (pressure voltage 1.5
100κ under nitrogen atmosphere using electron beam current 1 mA)
After electron beam irradiation with cy, glycidyl methacrylate (glycidyl methacrylate) was almost completely grafted in the gas phase and washed and dried.

グリシジルメタクリレートの付加量はil1グラム当り
1 g (7.0 ξり当量)であった。(重量法によ
った) つぎに、炭酸ナトリウムでp}Iを12に調整したイミ
ノジ酢酸ナトリウムの0.4mo l / l水溶液中
に、このグラフト膜を浸して80℃で24時間反応させ
、イξノジ酢酸基が膜1g当たり1.7 −iiリモル
(3.4 ミリ当11)のキレート形威基を有する複合
機能炉過膜を得た。
The amount of glycidyl methacrylate added was 1 g per gram of il (7.0 ξ equivalents). (By gravimetric method) Next, this graft membrane was immersed in a 0.4 mol/l aqueous solution of sodium iminodiacetate in which p}I was adjusted to 12 with sodium carbonate, and reacted at 80°C for 24 hours. A multifunctional membrane was obtained in which the ξ-nodiacetic acid groups contained 1.7 -ii lmol (11 lmol per 3.4 mmol) of chelate-form groups per gram of membrane.

なお、イξノジ酢酸基の定量は重量法とコバルト吸着平
衡法の2つから計算した. つぎに、テストする原水としての硼酸2000ppm,
Li  O.2 ppm , Ni  O.5 ppa
+ , Co  0.5 ppmの多量の水中に、膜を
浸漬し、膜に吸着したNi、Coの吸着平衡を測定した
ところ、Niの吸着量は 0.4mol/kg膜、Co
の吸着量は0.05 woI!./kg膜であり、その
比は約8対lであった.つぎに、硼酸3000 ppm
 , Li  0.2 ppmを変えずにつぎの原水を
調整した。
The quantitative determination of ξinodiacetic acid groups was calculated using two methods: gravimetric method and cobalt adsorption equilibrium method. Next, 2000 ppm of boric acid as the raw water to be tested,
LiO. 2 ppm, NiO. 5ppa
When the membrane was immersed in a large amount of water containing 0.5 ppm of Co, and the adsorption equilibrium of Ni and Co adsorbed on the membrane was measured, the adsorption amount of Ni was 0.4 mol/kg of the membrane and Co.
The amount of adsorption is 0.05 woI! .. /kg membrane, and the ratio was approximately 8:1. Next, 3000 ppm of boric acid
, The following raw water was prepared without changing Li 0.2 ppm.

Ni濃度(ppm)   0.5   0.9Co濃度
(ppm)   0.5   0.1(イオン濃度測定
方法はワレーハレス原子吸光法によった.以下同じ)。
Ni concentration (ppm) 0.5 0.9 Co concentration (ppm) 0.5 0.1 (The ion concentration was measured by Walley-Hares atomic absorption spectrometry. The same applies hereinafter).

前記膜に、上記水を差圧1kgで炉遇したところ、以下
の除去性能を得た。
When the water was applied to the membrane at a differential pressure of 1 kg, the following removal performance was obtained.

Ni破過点近のNi除去レベル 1 ppb以下炉過容
量  4.7  ffi/1  mグラフ}膜Ni破過
点近の膜へのNi吸着12.3−iiリグラム/ 1 
mグラフト膜 CO?!過点近のCo除去レベル1 ppb以下枦過容
量  3.6  1/1+s   グラフト膜〃   
膜へのCo吸着量1.8ミリグラム/lmグラフト膜 Ni破過点時の Co除去レベル 0.2(炉水中濃度
/原水中濃度) Niのが水中濃度/原水濃度が0.25に達した時のC
o除去レベル 0,9 上記の結果はNiとCoの反応性比が8対lであるにか
かわらず、Niの破過点に達する時点でNiとCoの吸
着量比は2.3対1.7であり、極めて小差である。
Ni removal level near Ni breakthrough point 1 ppb or less Furnace overcapacity 4.7 ffi/1 m graph}Ni adsorption to membrane near Ni breakthrough point 12.3-ii gram/1
m-graft membrane CO? ! Co removal level near the limit 1 ppb or less Overcapacity 3.6 1/1+s Graft film
Amount of Co adsorbed to the membrane: 1.8 mg/lm Graft membrane Co removal level at Ni breakthrough point: 0.2 (concentration in reactor water/concentration in raw water) Ni concentration in water/concentration in raw water reached 0.25 C of time
o Removal level 0.9 The above result shows that even though the reactivity ratio of Ni and Co is 8:1, the adsorption amount ratio of Ni and Co is 2.3:1 at the time when the breakthrough point of Ni is reached. 7, which is an extremely small difference.

一方、Niの破過点を過ぎると、Coの吸着効率は極端
に落ち、30%増しを過ぎたところではもはやCoの除
去もなされなくなる。
On the other hand, beyond the breakthrough point of Ni, the adsorption efficiency of Co drops extremely, and after a 30% increase, Co is no longer removed.

NiとCoの平衡吸着量の比  29/lNi破過点近
の Ni除去レベル1 ppb以下〃       済
過容量  5.2  1/l  mグラフト膜//  
   N i吸着M4.0ミリグラム/lmグラフト膜 CO破過点近の Co除去レベルlρpb以下〃   
   炉過容量  4,9  Il/l  mグラフト
膜〃    CO吸着量0.4ミリグラム/lmグラフ
ト膜 Ni破過点近の CO除去レベル 0.3(済水中濃度
/原水中濃度) Niのが水中濃度/原水中濃度が0.15に達した時の
Coの除去レベル 1.05 (炉水中濃度/原水中濃度) 上記のデータは、Ni / C,o  O.5 /0.
5の場合とほぼ同じ結果を示している。
Equilibrium adsorption ratio of Ni and Co 29/l Ni removal level near the Ni breakthrough point 1 ppb or less Finished excess capacity 5.2 1/l m Graft membrane //
Ni adsorption M4.0 mg/lm Graft membrane Co removal level near CO breakthrough point lρpb or less
Furnace overcapacity 4,9 Il/l m Graft membrane CO adsorption amount 0.4 mg/lm Graft membrane CO removal level near Ni breakthrough point 0.3 (concentration in finished water/concentration in raw water) Concentration of Ni in water / Co removal level when the raw water concentration reaches 0.15 1.05 (Concentration in reactor water / Concentration in raw water) The above data is based on Ni / C, o O. 5/0.
The result is almost the same as in case 5.

〔発明の効果〕〔Effect of the invention〕

本発明は、複数種類の重金属の中で比較的反応性の小さ
いイオンを効率良く除く事が可能であり、特に原子力発
電中のGoイオンによる放射性廃液の処理の場合に特に
好適である。
The present invention is capable of efficiently removing ions with relatively low reactivity among multiple types of heavy metals, and is particularly suitable for the treatment of radioactive waste liquid using Go ions during nuclear power generation.

Claims (2)

【特許請求の範囲】[Claims] (1)水中の複数種類の重金属イオンを、該重金属イオ
ンと結合するキレート基を側鎖に有する多孔性膜で、キ
レート基と最も吸着平衡の高い重金属のイオン濃度が初
期濃度の1/10以下になるまで濾過処理することを特
徴とする複数の重金属イオンを同時に除去する方法
(1) A porous membrane that has a chelate group in its side chain that binds multiple types of heavy metal ions in water, and the ion concentration of the heavy metal that has the highest adsorption equilibrium with the chelate group is 1/10 or less of the initial concentration. A method for simultaneously removing multiple heavy metal ions characterized by filtering until
(2)水中の複数種類の重金属イオンの一部がニッケル
、コバルトであり、多孔性膜が膜1グラム当り3ミリ当
量以上のイミノジ酢酸基を側鎖に有する平均孔径0.0
1〜5μ、空孔率20〜90%、膜厚10μ〜5mmの
中空糸状多孔膜である請求項(1)記載の複数の重金属
イオンを同時に除去する方法
(2) Some of the multiple types of heavy metal ions in water are nickel and cobalt, and the porous membrane has an average pore size of 0.0 with iminodiacetic acid groups in the side chain of 3 milliequivalents or more per gram of membrane.
The method for simultaneously removing a plurality of heavy metal ions according to claim (1), wherein the hollow fiber porous membrane has a porosity of 1 to 5 μm, a porosity of 20 to 90%, and a thickness of 10 μ to 5 mm.
JP7040789A 1989-03-24 1989-03-24 Method for simultaneously removing multiple heavy metal ions Expired - Lifetime JP2733287B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7040789A JP2733287B2 (en) 1989-03-24 1989-03-24 Method for simultaneously removing multiple heavy metal ions
US07/493,751 US5087372A (en) 1989-03-24 1990-03-15 Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
FR9003618A FR2644772B1 (en) 1989-03-24 1990-03-21 PROCESS FOR REMOVING HEAVY METAL IONS FROM POLLUTED WATERS AND POROUS MEMBRANE FOR USE THEREFOR
DE4009453A DE4009453A1 (en) 1989-03-24 1990-03-23 METHOD FOR REMOVING HEAVY METAL IONS FROM CONTAMINATED WATER AND A POROESE MEMBRANE SUITABLE FOR THIS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7040789A JP2733287B2 (en) 1989-03-24 1989-03-24 Method for simultaneously removing multiple heavy metal ions

Publications (2)

Publication Number Publication Date
JPH0316691A true JPH0316691A (en) 1991-01-24
JP2733287B2 JP2733287B2 (en) 1998-03-30

Family

ID=13430585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7040789A Expired - Lifetime JP2733287B2 (en) 1989-03-24 1989-03-24 Method for simultaneously removing multiple heavy metal ions

Country Status (1)

Country Link
JP (1) JP2733287B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721244B2 (en) 2001-01-30 2004-04-13 Nec Corporation Focusing servo pull-in apparatus
JP2007181816A (en) * 2006-12-04 2007-07-19 Asai Germanium Research Inst Porous hollow fiber membrane having complex forming group and method for recovering germanium oxide by using the same
CN101838067A (en) * 2010-04-07 2010-09-22 中国科学院南京土壤研究所 Method for treating high-concentration sodium chloride in N-(Phosphonomethyl)iminodiacetic acid waste water
JP2012127949A (en) * 2010-12-15 2012-07-05 Electric Power Research Inst Inc Light water reactor primary coolant radioactivity cleanup

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721244B2 (en) 2001-01-30 2004-04-13 Nec Corporation Focusing servo pull-in apparatus
JP2007181816A (en) * 2006-12-04 2007-07-19 Asai Germanium Research Inst Porous hollow fiber membrane having complex forming group and method for recovering germanium oxide by using the same
JP4499704B2 (en) * 2006-12-04 2010-07-07 株式会社浅井ゲルマニウム研究所 Aqueous adsorption / recovery material comprising a porous hollow fiber membrane having a complex-forming group, and a method for recovering germanium oxide using the aqueous solution / recovery material
CN101838067A (en) * 2010-04-07 2010-09-22 中国科学院南京土壤研究所 Method for treating high-concentration sodium chloride in N-(Phosphonomethyl)iminodiacetic acid waste water
JP2012127949A (en) * 2010-12-15 2012-07-05 Electric Power Research Inst Inc Light water reactor primary coolant radioactivity cleanup

Also Published As

Publication number Publication date
JP2733287B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
US8110289B2 (en) Sintered body, resin particles and method for producing the same
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
JP2003112060A (en) Ion adsorbing resin and ion adsorbing porous material
JP2003251118A (en) Filter cartridge having high performance metal capturing capacity
US20050218068A1 (en) Filter cartridge
JPH0321390A (en) Removal of heavy metal ion in water
JPH01224004A (en) Permselective microfilter and its production
JPH0316691A (en) Method for simultaneously removing plural kinds of heavy metal ions
JPS63240902A (en) Treating method
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
CN113000034B (en) Preparation method of uranium ion affinity membrane based on natural plant polyphenol composite coating
CN112973467B (en) Preparation method of composite nanofiltration membrane and composite nanofiltration membrane
JP2921763B2 (en) Ultrapure water production method
JPH0290991A (en) Ion removing method
JPS62210005A (en) Novel composite functional membrane
JP3175846B2 (en) Method for measuring the concentration of dilute ion solution
CN114425309B (en) Nano silicate mineral-polyamidoxime double-network hydrogel adsorption material, preparation thereof and application thereof in enrichment of uranium in seawater
JP2002355564A (en) Ion adsorbing body
JPS62201604A (en) Method for removing cobalt ion
JPH02233193A (en) Pure water preparation method
JPH05309243A (en) Regeneration method
JP2000210671A (en) Continuously regenerating type desalting system
JPS63296803A (en) Condensate purification method
Ritchie et al. Polymeric Ligand-Based