JP2003112060A - Ion adsorbing resin and ion adsorbing porous material - Google Patents

Ion adsorbing resin and ion adsorbing porous material

Info

Publication number
JP2003112060A
JP2003112060A JP2002004522A JP2002004522A JP2003112060A JP 2003112060 A JP2003112060 A JP 2003112060A JP 2002004522 A JP2002004522 A JP 2002004522A JP 2002004522 A JP2002004522 A JP 2002004522A JP 2003112060 A JP2003112060 A JP 2003112060A
Authority
JP
Japan
Prior art keywords
ion
resin
porous
adsorbent
adsorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002004522A
Other languages
Japanese (ja)
Inventor
Yosuke Koizumi
洋介 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Corp
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Corp
Priority to JP2002004522A priority Critical patent/JP2003112060A/en
Publication of JP2003112060A publication Critical patent/JP2003112060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ion adsorbing resin which can adsorb and remove ions in ultrapure water and shows little elution of fine particles, ions and TOC (total organic carbon), and a porous ion adsorbing material. SOLUTION: The ion adsorbing resin is prepared by introducing ion exchange groups into the surfaces of polymer resin particles having <=300 μm particle size and has 0.3 to 10 meq/g ion exchange capacity. The ion adsorbing porous material contains the ion adsorbing resin by 10 to 70 wt.% in the porous resin matrix including at least one thermoplastic resin particle having <=300 μm particle size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超純水製造プロセ
スにおいて、コロイド状物質、イオン類を極低濃度まで
吸着除去することの出来るイオン吸着樹脂およびそれを
含む多孔質イオン吸着体に関する。
TECHNICAL FIELD The present invention relates to an ion-adsorbing resin capable of adsorbing and removing colloidal substances and ions to an extremely low concentration in a process for producing ultrapure water, and a porous ion-adsorbing body containing the same.

【0002】[0002]

【従来の技術】超純水製造プロセスにおいて、水中のイ
オンの除去には、主にイオン交換樹脂が使われている。
半導体産業をはじめとする超純水を使用する分野では、
超純水の純度に対する要求が益々高くなりつつあり、ま
たイオン交換樹脂そのものからのTOC溶出が問題にな
っている。従来のイオン交換樹脂は一般的に粒径が12
00μm〜300μmに分布しており、このような樹脂
を樹脂塔に詰めて被処理水を通水した場合、樹脂間の隙
間(通水流路)が大きいため被処理水中のイオン類の樹
脂表面への接触確率が小さくなり、特に超純水のように
イオン濃度の低い水でのイオン除去効果が著しく悪い結
果となっていた。また、イオン交換樹脂の重合時に樹脂
内部に出来る有機系の不純物(超純水の場合はTOCと
して検出される)が樹脂内部に取り込まれ、樹脂の粒径
が大きくかつ高分子架橋体であるが故に、これらの不純
物の拡散速度が低く、洗浄が極めて困難であった。
2. Description of the Related Art In an ultrapure water production process, ion exchange resins are mainly used for removing ions in water.
In fields that use ultrapure water, including the semiconductor industry,
The demand for the purity of ultrapure water is increasing, and TOC elution from the ion exchange resin itself is becoming a problem. Conventional ion exchange resins generally have a particle size of 12
The resin is distributed in the range of 00 μm to 300 μm, and when such resin is packed in a resin tower and water to be treated is passed through, the gap (water passage) between the resins is large and the resin surface of ions in the water to be treated becomes large. The contact probability of was small, and the effect of removing ions was extremely poor, especially in water with a low ion concentration such as ultrapure water. Further, organic impurities (which are detected as TOC in the case of ultrapure water) formed inside the resin during the polymerization of the ion exchange resin are taken into the resin, and the resin has a large particle size and is a crosslinked polymer. Therefore, the diffusion speed of these impurities was low, and cleaning was extremely difficult.

【0003】そこで、TOC溶出が低く、高純度の超純
水の要求に応えるため新たな脱イオンの技術としてイオ
ン吸着膜による超純水製造システムが研究開発されてい
る(特開平5−209071号公報、特開平7−415
74号公報等)。このイオン吸着膜はイオン交換樹脂と
比較してイオン除去効率が高い、TOC溶出が少ないと
いう利点がある。イオン吸着膜には、平膜、繊維、中空
糸などの形状があるが、分離機能および透水能力、機械
強度などのバランスから製造できる孔径、膜厚の範囲が
限られ、表面積を大きくするために平膜はプリーツ状に
折り畳みカートリッジに、中空糸は束ねてモジュールに
成型している。イオン吸着体としては、破過特性が良
く、透水能力が高いものが望ましく、それには膜厚が厚
く、且つ孔径の大きいものが好ましいがイオン吸着膜で
は製造が困難であった。
Therefore, in order to meet the demand for high-purity ultrapure water with low TOC elution, an ultrapure water production system using an ion adsorption film has been researched and developed as a new deionization technique (Japanese Patent Laid-Open No. 5-209071). Japanese Patent Laid-Open No. 7-415
74, etc.). This ion adsorption membrane has advantages of higher ion removal efficiency and less TOC elution than an ion exchange resin. Ion adsorption membranes have shapes such as flat membranes, fibers, hollow fibers, etc., but the range of pore diameter and membrane thickness that can be manufactured is limited due to the balance of separation function, water permeability, mechanical strength, etc., to increase the surface area. The flat membrane is folded into a pleated cartridge and the hollow fibers are bundled into a module. As the ion adsorbent, one having good breakthrough characteristics and high water permeability is desirable, and one having a large film thickness and a large pore diameter is preferable, but it is difficult to manufacture the ion adsorbent.

【0004】[0004]

【発明が解決しようとする課題】本発明は、TOCの溶
出が極めて少ない、イオン除去性能に優れたイオン吸着
樹脂および多孔質イオン吸着体を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides an ion-adsorbing resin and a porous ion-adsorbing body having a very small TOC elution and excellent ion-removing performance.

【0005】[0005]

【課題を解決するための手段】本発明者は、粒径300
μm以下の高分子樹脂粒子の表面にイオン交換機能を持
つ官能基が導入されたイオン吸着樹脂およびこのイオン
吸着樹脂を含む多孔質イオン吸着体に着目し、本発明に
到達した。
DISCLOSURE OF THE INVENTION The present inventor has found that a particle size of 300
The present invention has been achieved by paying attention to an ion-adsorbing resin in which a functional group having an ion-exchange function is introduced on the surface of polymer resin particles of μm or less and a porous ion-adsorbing body containing the ion-adsorbing resin.

【0006】すなわち、本発明は下記の通りである。 (1)粒径300μm以下の高分子樹脂粒子の表面にイ
オン交換機能を持つ官能基が導入されたイオン吸着樹脂
であって、そのイオン交換容量が0.3〜10meq/
gであることを特徴とするイオン吸着樹脂。 (2)イオン交換機能を持つ官能基がカチオン交換基、
アニオン交換基、キレート交換基のいずれかであること
を特徴とする(1)に記載のイオン吸着樹脂。 (3)粒径300μm以下の高分子樹脂粒子に放射線グ
ラフト重合を利用してイオン交換機能を持つ官能基を導
入することを特徴とする(1)または(2)のいずれか
に記載のイオン吸着樹脂の製造方法。 (4)粒径300μm以下の熱可塑性樹脂粒子と、
(1)または(2)記載のイオン吸着樹脂の集合物が一
体化してなる多孔質樹脂マトリックス中に、イオン吸着
樹脂を該マトリックスの全質量中10〜70wt%含む
ことを特徴とする、多孔質イオン吸着体。 (5)多孔質イオン吸着体の平均孔径が1〜100μ
m、空孔率が20〜60%であることを特徴とする
(4)に記載の多孔質イオン吸着体。
That is, the present invention is as follows. (1) An ion-adsorbing resin in which functional groups having an ion-exchange function are introduced on the surface of polymer resin particles having a particle diameter of 300 μm or less, and the ion-exchange capacity is 0.3 to 10 meq /
An ion-adsorptive resin characterized by being g. (2) A functional group having an ion exchange function is a cation exchange group,
The ion adsorption resin according to (1), which is either an anion exchange group or a chelate exchange group. (3) The ion adsorption according to (1) or (2), wherein a functional group having an ion exchange function is introduced into polymer resin particles having a particle diameter of 300 μm or less by utilizing radiation graft polymerization. Resin manufacturing method. (4) Thermoplastic resin particles having a particle size of 300 μm or less,
(1) or (2) The ion-adsorbing resin is contained in the porous resin matrix integrally formed with the aggregate of the ion-adsorbing resin, and the ion-adsorbing resin is contained in an amount of 10 to 70 wt% of the total mass of the matrix. Ion adsorbent. (5) The average pore diameter of the porous ion adsorbent is 1 to 100 μm.
m, and the porosity is 20 to 60%, The porous ion adsorbent according to (4), characterized in that

【0007】[0007]

【発明の実施の形態】本発明においては、粒径300μ
m以下の高分子樹脂粒子の表面にイオン交換機能を持つ
官能基を導入することにより、樹脂粒子間の被処理水流
路が狭く、従って被処理水中のイオンのイオン吸着樹脂
との接触効率が高くなりイオン除去効率に優れた(破過
特性に優れた)イオン吸着樹脂を得ることが出来る。ま
た、実質的にイオン交換機能を持つ官能基が樹脂表面に
のみ存在するため、樹脂再生後のリンスも容易であり、
TOC(夾雑有機物)の溶出も殆ど観測されない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the particle size is 300 μm.
By introducing a functional group having an ion exchange function to the surface of polymer resin particles of m or less, the flow path of the water to be treated between the resin particles is narrow, and therefore the efficiency of contact of ions in the water to be treated with the ion-adsorbing resin is high. It is possible to obtain an ion-adsorbing resin having excellent ion removal efficiency (excellent breakthrough property). Further, since the functional group having an ion exchange function substantially exists only on the resin surface, rinsing after resin regeneration is easy,
Almost no elution of TOC (contaminant organic matter) is observed.

【0008】また、本発明は少なくとも一つの粒径30
0μm以下の熱可塑性樹脂粒子とイオン吸着樹脂を含む
多孔質マトリックス中に、イオン吸着樹脂をマトリック
スの全質量中10〜70wt%含む多孔質イオン吸着体
を提供する。該多孔質イオン吸着体はシート状、ブロッ
ク状、パイプ状、円柱状等種々の形態に成型することが
可能であり、超純水のユースポイントにおける使用に際
し取り扱いの容易な形態とすることが出来るとともに、
イオン除去効果が高く、TOCの溶出も殆ど観測されな
い利点を併せ持つ。
The present invention also provides at least one particle size of 30
Provided is a porous ion adsorbent containing 10 to 70 wt% of the ion adsorption resin in the total mass of the matrix in a porous matrix containing thermoplastic resin particles of 0 μm or less and the ion adsorption resin. The porous ion adsorbent can be formed into various shapes such as a sheet shape, a block shape, a pipe shape, and a cylindrical shape, and can be made into a shape that can be easily handled when it is used at the point of use of ultrapure water. With
It also has the advantages of high ion removal effect and almost no TOC elution.

【0009】以下に本発明についてさらに詳しく説明す
る。本発明でいう高分子樹脂粒子とは、セルロース系等
の天然樹脂の他に、フェノール樹脂、ユリア樹脂、メラ
ミン樹脂、ポリエステル樹脂、アリル樹脂、エポキシ樹
脂等に代表される熱硬化性樹脂、ポリ塩化ビニル、ポリ
エチレン、ポリプロピレン、ポリスチレン、ポリメチル
メタアクリレート、ポリアミド、ポリアセタール、ポリ
カーボネート等に代表される熱可塑性樹脂等の粒子が挙
げられる。
The present invention will be described in more detail below. The polymer resin particles referred to in the present invention include, in addition to natural resins such as cellulose, thermosetting resins typified by phenol resins, urea resins, melamine resins, polyester resins, allyl resins, epoxy resins, polychlorinated resins, etc. Examples thereof include particles of a thermoplastic resin represented by vinyl, polyethylene, polypropylene, polystyrene, polymethylmethacrylate, polyamide, polyacetal, polycarbonate and the like.

【0010】これらの中でも耐薬品性に優れ、溶出物の
少ないことおよび樹脂粒子表面への官能基の導入方法を
勘案すると、ポリエチレン、ポリプロピレンに代表され
るポリオレフィン系樹脂がより好ましい。ポリオレフィ
ン系樹脂としては、ポリエチレン、ポリプロピレン、エ
チレン−プロピレン共重合体、エチレン−ブテン−1共
重合体、エチレン−ヘキセン−1共重合体、エチレン−
ペンテン−1共重合体、エチレン−オクテン−1共重合
体、エチレン−4−メチルペンテン−1共重合体、エチ
レン−酢酸ビニル共重合体、エチレン−(メタ)アクリ
ル酸共重合体、エチレン−(メタ)アクリル酸エステル
共重合体などが挙げられる。中でも、粒径300μm以
下の粉末が得やすいこと、耐薬品性に優れること、溶出
が少ないこと等の理由から、ポリエチレンがより好まし
い。
Of these, polyolefin resins typified by polyethylene and polypropylene are more preferable in view of their excellent chemical resistance, small amount of elution, and the method of introducing functional groups to the surface of resin particles. As the polyolefin resin, polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-butene-1 copolymer, ethylene-hexene-1 copolymer, ethylene-
Pentene-1 copolymer, ethylene-octene-1 copolymer, ethylene-4-methylpentene-1 copolymer, ethylene-vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, ethylene- ( Examples thereof include (meth) acrylic acid ester copolymers. Among them, polyethylene is more preferable because it is easy to obtain a powder having a particle size of 300 μm or less, has excellent chemical resistance, and has little elution.

【0011】また、本発明は、イオン交換基を導入する
手法の一つとして放射線照射によるグラフト重合を用い
てもよく、この方法でグラフト開始点となるラジカルの
発生率・保持率を考慮すると、ポリエチレン、ポリプロ
ピレン、およびエチレン−プロピレン共重合体に代表さ
れるポリオレフィンが好適で、中でもポリエチレンが特
に好適である。本発明の高分子樹脂粒子の粒径は、イオ
ン吸着効率の観点から300μm以下が望ましく、より
好ましくは、10〜100μmである。尚、平均粒径は
樹脂粒子の拡大写真から粒子50個以上について個々に
短径と長径とを測定し、その平均値をもって示した。
Further, in the present invention, graft polymerization by irradiation with radiation may be used as one of the methods for introducing an ion-exchange group. Considering the generation rate / retention rate of radicals as a graft initiation point in this method, Polyolefins represented by polyethylene, polypropylene, and ethylene-propylene copolymers are preferable, and polyethylene is particularly preferable. The particle size of the polymer resin particles of the present invention is preferably 300 μm or less from the viewpoint of ion adsorption efficiency, and more preferably 10 to 100 μm. The average particle diameter is shown by the average value of the minor axis and the major axis of 50 or more particles individually measured from an enlarged photograph of the resin particles.

【0012】イオン交換機能を持つ官能基を導入する方
法は、イオン交換基を高分子樹脂粒子表面に均一に導入
し得る方法が好ましい。例えば、高分子樹脂粒子の内部
まで均一にラジカルを生成させ、そのラジカルを開始点
としてモノマーおよび架橋剤をグラフトさせたのち交換
基を導入する方法が適当である。あるいは交換基を持つ
モノマーを直接グラフトさせる方法などである。ラジカ
ルを表面全体に均一に生成させる方法としては、プラズ
マによる方法、光による方法、放射線による方法または
各種ラジカル開始剤による方法が好ましいが、特に均一
性を確保することを意図した場合、放射線照射によるラ
ジカルを生成させる方法が最も好適である。
The method of introducing the functional group having an ion exchange function is preferably a method of uniformly introducing the ion exchange group onto the surface of the polymer resin particles. For example, a method in which radicals are uniformly generated even inside the polymer resin particles, the radicals are used as a starting point to graft a monomer and a crosslinking agent, and then an exchange group is introduced is suitable. Alternatively, there is a method of directly grafting a monomer having an exchange group. As a method for uniformly generating radicals on the entire surface, a method using plasma, a method using light, a method using radiation or a method using various radical initiators is preferable, but when it is particularly intended to ensure uniformity, irradiation with radiation is preferable. The most suitable method is to generate radicals.

【0013】イオン交換基を多く導入するのに好適な放
射線グラフト重合に用いられる電離性放射線は、α、
β、γ線、電子線、紫外線などがあり何れも使用可能で
あるが、内部表面までより均一にラジカルを生成させる
にはγ線が適している。グラフト重合に十分なラジカル
の生成量が得られ、不必要な架橋や部分的な分解が起こ
らない経済的な照射線量は、10kGy〜300kGy
であり、好ましくは50kGy〜100kGyである。
Ionizing radiation used for radiation graft polymerization suitable for introducing many ion exchange groups is α,
There are β, γ rays, electron rays, ultraviolet rays, and the like, and any of them can be used, but γ rays are suitable for more uniformly generating radicals to the inner surface. An economical irradiation dose that provides a sufficient amount of radicals for graft polymerization and does not cause unnecessary crosslinking or partial decomposition is 10 kGy to 300 kGy.
And preferably 50 kGy to 100 kGy.

【0014】高分子樹脂粒子に放射線グラフトを行う方
法としては、高分子樹脂粒子とモノマーの共存下に放射
線を照射する同時照射法と、予め高分子樹脂粒子に放射
線を照射した後、モノマーと接触させる前照射法がある
が、モノマーの単独重合物の生成が少ない前照射法の方
が好ましい。イオン交換基としては、イオン交換性と熱
化学的安定性の観点から、カチオン交換基は強酸である
スルホン酸型が好ましく、アニオン交換基は強塩基であ
る4級アンモニウム塩型又はピリジニウム塩型が好まし
い。
As a method for performing radiation grafting on the polymer resin particles, a simultaneous irradiation method of irradiating the polymer resin particles with the monomer in the coexistence, or a method of irradiating the polymer resin particles with the radiation in advance and then contacting with the monomer There is a pre-irradiation method, but the pre-irradiation method is preferred because it produces less homopolymer of the monomer. As the ion exchange group, from the viewpoint of ion exchangeability and thermochemical stability, the cation exchange group is preferably a sulfonic acid type which is a strong acid, and the anion exchange group is a quaternary ammonium salt type or a pyridinium salt type which is a strong base. preferable.

【0015】導入するイオン交換容量は、イオン除去能
力の面から0.3〜10meq/gが好ましく、より好
ましくは、0.5〜5meq/gである。一般の超純水
中には金属イオンが1pptレベルの濃度で存在し、そ
の大部分はNaイオンである。Naイオンのような1価
でかつプロトンとの選択性が低いイオンは1pptレベ
ル(すなわち10-10eq/Lレベルの濃度)ではイオン
交換の際に競合するプロトンの濃度(およそ10-7eq
/L)に影響され、イオン交換基の利用効率が極めて低
くなる。(理論計算では約1/1000の利用効率)従っ
て、0.3meq/g以下のイオン交換容量ではかなり
大量のイオン吸着樹脂を用いないと殆どイオン除去効果
が観測されない。また、10meq/g以上にイオン交
換基を導入すると樹脂表面に導入されたイオン交換基の
層が厚くなりすぎて、合成時に混入する不純物の溶出を
抑制することが困難となる。
The ion exchange capacity to be introduced is preferably 0.3 to 10 meq / g, more preferably 0.5 to 5 meq / g, from the viewpoint of ion removal capacity. In general ultrapure water, metal ions are present at a concentration of 1 ppt level, and most of them are Na ions. An ion such as Na ion having a low valence with a proton and having a low selectivity with respect to a proton has a proton concentration (about 10 -7 eq) that competes during ion exchange at a 1 ppt level (that is, a concentration of 10 -10 eq / L level).
/ L), the utilization efficiency of ion-exchange groups becomes extremely low. (Theoretical calculation shows a utilization efficiency of about 1/1000) Therefore, at an ion exchange capacity of 0.3 meq / g or less, almost no ion removal effect is observed unless a considerably large amount of ion adsorption resin is used. Further, when the ion exchange group is introduced at 10 meq / g or more, the layer of the ion exchange group introduced on the resin surface becomes too thick, and it becomes difficult to suppress the elution of impurities mixed during the synthesis.

【0016】カチオン交換基の導入方法はどんな方法を
用いても良く、硫酸、発煙硫酸、三酸化硫黄、クロロ硫
酸、フルオロ硫酸、アミド硫酸などのスルホン化試剤を
用いて置換反応により芳香族化合物にスルホン酸基を導
入する方法や亜硫酸塩の付加による方法などがある。例
えば、γ線照射した高分子樹脂粒子へ、スチレンまたは
メタクリル酸グリシジルおよび架橋剤をグラフト重合し
た後、スチレンにはクロロスルホン酸を用い、メタクリ
ル酸グリシジルには亜硫酸ソーダ水溶液を反応させてス
ルホン基を導入する。スルホン酸基を有するモノマー、
例えばスチレンスルホン酸塩を直接グラフト重合させる
手法もある。
Any method may be used for introducing the cation exchange group. A sulfonation reagent such as sulfuric acid, fuming sulfuric acid, sulfur trioxide, chlorosulfuric acid, fluorosulfuric acid or amidosulfuric acid is used to form an aromatic compound by a substitution reaction. There are a method of introducing a sulfonic acid group and a method of adding a sulfite. For example, after polymerizing styrene or glycidyl methacrylate and a cross-linking agent onto γ-irradiated polymer resin particles, chlorosulfonic acid is used for styrene, and glycidyl methacrylate is reacted with an aqueous sodium sulfite solution to form a sulfo group. Introduce. A monomer having a sulfonic acid group,
For example, there is a method of directly graft-polymerizing styrene sulfonate.

【0017】アニオン交換基の導入方法も、どんな方法
を用いてもよい。例えば、γ線照射した高分子樹脂粒子
へクロルメチルスチレンまたはメタクリル酸グリシジル
をグラフト重合した後、4級アンモニウム基を導入す
る。クロルメチルスチレンの場合はトリメチルアミンに
よる処理により行う。メタクリル酸グリシジルの場合
は、トリメチルアミン塩酸塩との反応で4級アンモニウ
ム基を導入する。4級アンモニウム基を有するモノマ
ー、例えばビニルベンジルトリメチルアンモニウム塩を
高分子樹脂粒子に直接グラフト重合する方法もある。
Any method may be used for introducing the anion exchange group. For example, after chloromethylstyrene or glycidyl methacrylate is graft-polymerized on the polymer resin particles irradiated with γ-ray, a quaternary ammonium group is introduced. In the case of chloromethylstyrene, it is treated with trimethylamine. In the case of glycidyl methacrylate, a quaternary ammonium group is introduced by reaction with trimethylamine hydrochloride. There is also a method of directly graft-polymerizing a monomer having a quaternary ammonium group, for example, vinylbenzyltrimethylammonium salt, onto polymer resin particles.

【0018】キレート交換基の場合は、イミノジ酢酸
基、メルカプト基、エチレンジアミンなどの水中の金属
イオンとキレート形成する機能を持った官能基が導入可
能であればどんな方法を用いてもよい。例えば、γ線照
射した高分子樹脂粒子をメタクリル酸グリシジルおよび
ジビニルベンゼンを溶存させたエタノール溶液とグラフ
ト重合させた後、イミノジ酢酸ナトリウムを含むジメチ
ルスルホキシドと水との1対1の混合液を反応させキレ
ート交換基を導入する方法が挙げられる。
In the case of a chelate exchange group, any method may be used as long as a functional group having a function of forming a chelate with a metal ion in water such as iminodiacetic acid group, mercapto group and ethylenediamine can be introduced. For example, γ-irradiated polymer resin particles are graft-polymerized with an ethanol solution in which glycidyl methacrylate and divinylbenzene are dissolved, and then a 1: 1 mixture of dimethyl sulfoxide containing sodium iminodiacetate and water is reacted. A method of introducing a chelate exchange group can be mentioned.

【0019】本発明における多孔質イオン吸着体は、少
なくとも一つの粒径300μm以下の熱可塑性樹脂粒子
と本発明のイオン吸着樹脂からなる集合物を一体化して
なる多孔質樹脂マトリックス中に、本発明のイオン吸着
樹脂を、該マトリックスの全質量中10〜70wt%存
在させることにより得られる。すなわち、本発明のイオ
ン吸着樹脂と熱可塑性樹脂粒子を均一に混合し、金型に
入れて焼結させることによって得ることができる。ま
た、イオン吸着体の形状は、シート状、ブロック状、パ
イプ状、円柱状など特に限定される事はなく、任意の形
状が可能である。
The porous ion adsorbent of the present invention comprises a porous resin matrix formed by integrating at least one thermoplastic resin particle having a particle size of 300 μm or less and an aggregate of the ion adsorbent resin of the present invention. The ion-adsorbing resin (1) is present in an amount of 10 to 70 wt% in the total mass of the matrix. That is, it can be obtained by uniformly mixing the ion-adsorbing resin of the present invention and the thermoplastic resin particles, placing the mixture in a mold and sintering it. Further, the shape of the ion adsorbent is not particularly limited to a sheet shape, a block shape, a pipe shape, a cylindrical shape, and any shape is possible.

【0020】本発明の多孔質イオン吸着体を得るための
熱可塑性樹脂粒子としては、ポリ塩化ビニル、ポリエチ
レン、ポリプロピレン、ポリスチレン、ポリメチルメタ
アクリレート、ポリアミド、ポリアセタール、ポリカー
ボネート、ポリビニリデンフルオライド、エチレン−テ
トラフルオロエチレン共重合体等に代表される熱可塑性
樹脂等が挙げられる。本発明のイオン吸着樹脂は高温で
は分解が起こり易い。特に180℃以上の高温ではその
傾向が強いため分解が激しくなるため、焼結体を成形す
るときの加熱温度を180℃以下とするのが好ましい。
また、本発明が目的とする超純水への適用を考慮すれば
溶出の少ない熱可塑性樹脂を使用することが望ましく、
上記熱可塑性樹脂のなかでもポリオレフィン系の熱可塑
性樹脂やフッ素系樹脂の内比較的融点の低いポリビニリ
デンフルオライド等を用いることが好ましい。
The thermoplastic resin particles for obtaining the porous ion adsorbent of the present invention include polyvinyl chloride, polyethylene, polypropylene, polystyrene, polymethylmethacrylate, polyamide, polyacetal, polycarbonate, polyvinylidene fluoride, ethylene- Thermoplastic resins represented by tetrafluoroethylene copolymer and the like can be mentioned. The ion-adsorbing resin of the present invention easily decomposes at high temperatures. In particular, at a high temperature of 180 ° C. or higher, the tendency is strong and the decomposition becomes severe. Therefore, it is preferable to set the heating temperature at the time of molding the sintered body to 180 ° C. or lower.
Further, considering the application to ultrapure water which is the object of the present invention, it is desirable to use a thermoplastic resin with less elution,
Among the above thermoplastic resins, it is preferable to use a polyvinylidene fluoride or the like having a relatively low melting point among polyolefin thermoplastic resins and fluorine resins.

【0021】本発明のイオン吸着樹脂粒子を熱可塑性樹
脂粒子と混合する比率は、両者の合計の10〜70wt
%が好ましい。イオン吸着能力の観点から10wt%以
上が、多孔質イオン吸着体の強度の観点から70wt%
以下が好ましい。本発明の多孔質イオン吸着体の空孔率
は、処理水量と構造体の強度の観点から20〜60%が
好ましく、より好ましくは30〜50%である。尚、空
孔率は、水を含浸させた状態と乾燥状態の質量の差によ
り求める。すなわち、焼結体をエタノールに1時間浸漬
後純水中へ20分×5回浸漬し、焼結体表面の水を切っ
た後質量を測定する。その後、再びエタノールに浸漬し
た後50℃で10時間乾燥させ、乾燥後の質量を測定し
て両者の差から空孔率を求める。あるいは焼結体を構成
する樹脂部分の比重を比重ビンにより決定し、焼結体の
占める容積との関係で空孔率を決定することが出来る。
The ratio of the ion-adsorbing resin particles of the present invention mixed with the thermoplastic resin particles is 10 to 70 wt.
% Is preferred. 10 wt% or more from the viewpoint of ion adsorption capacity, 70 wt% from the viewpoint of strength of the porous ion adsorbent
The following are preferred. The porosity of the porous ion adsorbent of the present invention is preferably 20 to 60%, more preferably 30 to 50% from the viewpoint of the amount of treated water and the strength of the structure. The porosity is determined by the difference in mass between the state of being impregnated with water and the state of dryness. That is, the sintered body is dipped in ethanol for 1 hour and then dipped in pure water for 20 minutes × 5 times to remove water from the surface of the sintered body, and then the mass is measured. Then, it is again immersed in ethanol and dried at 50 ° C. for 10 hours, and the mass after drying is measured to determine the porosity from the difference between the two. Alternatively, the specific gravity of the resin portion forming the sintered body can be determined by the specific gravity bin, and the porosity can be determined in relation to the volume occupied by the sintered body.

【0022】本発明におけるイオン吸着樹脂を熱可塑性
樹脂粒子とのマトリックスとし多孔質イオン吸着体とす
る方法は、一般的には加熱焼結によって行われる。すな
わち上記樹脂粒子混合物を金型に充填し、熱可塑性樹脂
の融点以上に過熱し焼結する。金型への充填は市販の振
動装置を用いて均一に充填することが好ましい。加熱方
法としては制御可能な加熱手段の何れかを用いて行われ
る。熱風乾燥機や電気誘電加熱、電気抵抗過熱等の方法
がある。
The method of forming a porous ion adsorbent by using the ion adsorbent resin as a matrix with thermoplastic resin particles in the present invention is generally carried out by heating and sintering. That is, the above-mentioned resin particle mixture is filled in a mold, and heated above the melting point of the thermoplastic resin to be sintered. The mold is preferably filled uniformly using a commercially available vibration device. As the heating method, any controllable heating means is used. There are methods such as hot air dryer, electric dielectric heating, and electric resistance overheating.

【0023】カチオン吸着樹脂を焼結する場合、対イオ
ンとしてH型でも可能であるが、H型では高温で分解反
応が起こりやすいため、焼結温度が高い場合は、Na等
アルカリ金属塩やCa等アルカリ土類金属塩型で焼結を
行うほうが好ましい。同様にアニオン交換樹脂を焼結す
る場合はOH型よりCl等ハロゲン塩型で焼結を行うほ
うが高温による熱分解が起こりにくく好ましい。本発明
によるイオン吸着樹脂および多孔質イオン吸着体は、カ
チオン成分、アニオン成分、アルカリ及びアルカリ土類
金属、遷移金属類等のイオン成分を極低濃度まで除去す
ることができ、TOCの溶出が極めて少ないため、主に
超純水分野に適用できる。
When the cation adsorbing resin is sintered, the H type can be used as a counter ion. However, in the H type, a decomposition reaction easily occurs at a high temperature. Therefore, when the sintering temperature is high, an alkali metal salt such as Na or Ca is used. It is preferable to perform the sintering in an isoalkaline earth metal salt type. Similarly, in the case of sintering an anion exchange resin, it is preferable to perform sintering with a halogen salt type such as Cl rather than with an OH type because thermal decomposition does not occur at high temperatures. INDUSTRIAL APPLICABILITY The ion adsorbent resin and porous ion adsorbent according to the present invention can remove cation components, anion components, ionic components such as alkali and alkaline earth metals, and transition metals to a very low concentration, and TOC is extremely eluted. Since it is small, it can be applied mainly to the field of ultrapure water.

【0024】[0024]

【実施例1】旭化成(株)製ポリエチレン粉末「サンフ
ァインUH901」(商標)を200メッシュの金網で
篩い粒径100μm以下のポリエチレン粉末を得た。こ
の粉末250gをアルミ蒸着したポリエチレンの袋に入
れ窒素ガスで封じ、100kGyのγ線を照射した。ス
チレン300g、ジビニルベンゼン43.6g(純度5
5%)をイソプロピルアルコール1Lに溶解し、50℃
とし、30分窒素バブリングにより、溶存酸素を除去し
た。このモノマー溶液に、γ線照射後の「サンファイン
UH901」を窒素バブリング下に投入した。3時間攪
拌を行い、反応スラリーをブフナーロートで濾過し、ジ
クロロメタン3L、で洗浄し真空乾燥した。このグラフ
ト体の収量は410gであった。ジクロロメタン1Lに
クロルスルホン酸71gを溶解した反応液に、該グラフ
ト体200gを投入し3時間攪拌した。この反応液にイ
ソプロピルアルコール500mLを投入し、しばらく攪
拌した後、ブフナーロートで濾過、その後イソプロピル
アルコール1L、純水10Lで洗浄し、真空乾燥した。
得られたカチオン型イオン吸着樹脂の収量は約240g
であった。該イオン吸着樹脂の10gをとり純水に浸漬
した後、ガラス製のクロマトカラムにつめ、1規定Na
OH溶液、純水、1規定硝酸溶液、純水の順で洗浄し、
1規定NaCl溶液を通水して、得られた透過水を1規
定NaOHで滴定しイオン交換容量を求めた。該樹脂の
イオン交換容量は2.4meq/g、樹脂の湿潤体積で
換算すると0.87meq/mLであった。
Example 1 Polyethylene powder "Sunfine UH901" (trademark) manufactured by Asahi Kasei Co., Ltd. was sieved with a 200-mesh wire mesh to obtain polyethylene powder having a particle size of 100 μm or less. 250 g of this powder was put in a bag of polyethylene vapor-deposited with aluminum, sealed with nitrogen gas, and irradiated with 100 kGy of γ-rays. Styrene 300g, divinylbenzene 43.6g (purity 5
5%) is dissolved in 1 L of isopropyl alcohol and heated to 50 ° C.
Then, dissolved oxygen was removed by nitrogen bubbling for 30 minutes. "Sunfine UH901" after γ-ray irradiation was put into this monomer solution under nitrogen bubbling. After stirring for 3 hours, the reaction slurry was filtered through a Buchner funnel, washed with 3 L of dichloromethane, and dried under vacuum. The yield of this graft body was 410 g. 200 g of the grafted product was added to a reaction solution prepared by dissolving 71 g of chlorosulfonic acid in 1 L of dichloromethane, and the mixture was stirred for 3 hours. 500 mL of isopropyl alcohol was added to this reaction solution, and the mixture was stirred for a while, filtered through a Buchner funnel, then washed with 1 L of isopropyl alcohol and 10 L of pure water, and vacuum dried.
The yield of the obtained cation-type ion adsorption resin is about 240 g.
Met. After taking 10 g of the ion-adsorbing resin and immersing it in pure water, it was placed in a glass chromatographic column and 1 N Na was added.
Wash in order of OH solution, pure water, 1N nitric acid solution, pure water,
A 1N NaCl solution was passed through, and the resulting permeated water was titrated with 1N NaOH to determine the ion exchange capacity. The ion exchange capacity of the resin was 2.4 meq / g, and was 0.87 meq / mL when calculated in terms of the wet volume of the resin.

【0025】[0025]

【実施例2】実施例1で得たイオン吸着樹脂100mL
を内径15mmφのガラスカラムに詰め、1規定硝酸で
再生後、80℃熱超純水を100mL/minの流速で
48時間通水した。カラム入り口の超純水のTOCとカ
ラム出口のTOCをアナーテル社製TOCメーターA1
000XPで測定し、その差からΔTOCを求めた。洗
浄初期はΔTOCが500ppb程度であったが、24
時間以降ほぼ20ppbで安定した。その後、常温の超
純水を通水したところΔTOCは1ppb以下となっ
た。
[Example 2] 100 mL of the ion-adsorbing resin obtained in Example 1
Was packed in a glass column having an inner diameter of 15 mmφ, regenerated with 1N nitric acid, and hot ultrapure water at 80 ° C. was passed through at a flow rate of 100 mL / min for 48 hours. The TOC of the ultrapure water at the column inlet and the TOC at the column outlet are the TOC meter A1 manufactured by Anatelle.
It was measured at 000 XP, and ΔTOC was determined from the difference. ΔTOC was about 500 ppb at the beginning of washing, but 24
After the time, it became stable at about 20 ppb. After that, when ultrapure water at room temperature was passed through, ΔTOC became 1 ppb or less.

【0026】[0026]

【比較例1】実施例2のイオン吸着樹脂に変えて、三菱
化学(株)製イオン交換樹脂「ダイヤイオンPK21
2」(商標)を使った他は実施例2と同様にして、イオ
ン交換樹脂のΔTOCを評価した。熱超純水通水では4
8時間通水後も120〜150ppbのΔTOCであ
り、その後常温の超純水通水でのΔTOCは10〜15
ppbを観測した。
[Comparative Example 1] Instead of the ion-adsorbing resin of Example 2, an ion exchange resin "DIAION PK21" manufactured by Mitsubishi Chemical Corporation.
2 ”(trademark) was used, and ΔTOC of the ion exchange resin was evaluated in the same manner as in Example 2. 4 for hot ultrapure water
The ΔTOC was 120 to 150 ppb even after passing water for 8 hours, and the ΔTOC was 10 to 15 after passing ultrapure water at room temperature.
ppb was observed.

【0027】[0027]

【実施例3】実施例1と同様にして、旭化成(株)製ポ
リエチレン粉末「サンファインSH801」(商標)2
50gに100kGyのγ線を照射した。300gのク
ロロメチルスチレンおよび43.6gのジビニルベンゼ
ンを1Lのイソプロピルアルコールに溶解させた反応液
に、50℃で窒素バブリングを30分行い、γ線照射後
のポリエチレン粉末250gを投入した。3時間後、ブ
フナーロートで濾過し塩化メチレン1Lで洗浄し真空乾
燥した。得られたグラフト共重合体を、トリメチルアミ
ン30%を溶存させたイソプロピルアルコールに浸漬
し、35℃で50時間反応させ、4級アンモニュウム化
した。得られたアニオン型イオン吸着樹脂は、エタノー
ル、水で洗浄後、エタノール置換し真空乾燥機で乾燥し
た。アニオン型イオン吸着樹脂のイオン交換容量を滴定
法で求めた結果、3.26meq/g(湿潤体積換算
1.2meq/mL)であった。このアニオン型イオン
吸着樹脂のTOC溶出を実施例2と同様の方法で評価し
たところ、80℃熱超純水で48時間洗浄後のΔTOC
は1ppb以下であった。
[Example 3] As in Example 1, polyethylene powder "Sunfine SH801" (registered trademark) 2 manufactured by Asahi Kasei Corporation was used.
50 g was irradiated with 100 kGy gamma rays. 300 g of chloromethylstyrene and 43.6 g of divinylbenzene were dissolved in 1 L of isopropyl alcohol, nitrogen bubbling was carried out at 50 ° C. for 30 minutes, and 250 g of polyethylene powder after γ-ray irradiation was added. After 3 hours, the mixture was filtered through a Buchner funnel, washed with 1 L of methylene chloride, and dried under vacuum. The obtained graft copolymer was immersed in isopropyl alcohol in which 30% of trimethylamine was dissolved and reacted at 35 ° C. for 50 hours to form a quaternary ammonium. The obtained anion-type ion-adsorbing resin was washed with ethanol and water, replaced with ethanol, and dried with a vacuum dryer. The ion exchange capacity of the anion-type ion adsorption resin was determined by a titration method, and as a result, it was 3.26 meq / g (wet volume conversion 1.2 meq / mL). The TOC elution of this anion-type ion-adsorbing resin was evaluated by the same method as in Example 2. As a result, ΔTOC after washing with hot ultrapure water at 80 ° C. for 48 hours was evaluated.
Was less than 1 ppb.

【0028】[0028]

【実施例4】実施例1と同様にして、ポリエチレン粉末
250g(旭化成製サンファインSH801)に100
kGyのγ線を照射した。300gのメタクリル酸グリ
シジルおよび43.6gのジビニルベンゼンを1Lのイ
ソプロピルアルコールに溶解し、30℃で窒素バブリン
グにより、溶存酸素を除去し、γ線照射後のポリエチレ
ン粉末250gを投入した。0.5時間反応を行い、グ
ラフトされた樹脂粉末を取り出してイソプロピルアルコ
ールで洗浄した。得られたグラフト共重合体を、イミノ
ジ酢酸ナトリウム10wt%を溶存させたジメチルスル
ホキシドと水の容積比1対1の混合液に投入し、80℃
で72時間反応させた。このようにして得られたキレー
ト型イオン吸着樹脂のイオン交換容量は0.86meq
/g(湿潤体積換算0.34meq/mL)であった。
このキレート型イオン吸着樹脂のTOC溶出を実施例2
と同様の方法で評価したところ、80℃熱超純水で48
時間洗浄後のΔTOCは1ppb以下であった。
[Example 4] In the same manner as in Example 1, 250 g of polyethylene powder (Sun Fine SH801 manufactured by Asahi Kasei) was added to 100 g.
Irradiation with γ-rays of kGy. 300 g of glycidyl methacrylate and 43.6 g of divinylbenzene were dissolved in 1 L of isopropyl alcohol, dissolved oxygen was removed by nitrogen bubbling at 30 ° C., and 250 g of polyethylene powder after γ-ray irradiation was added. The reaction was carried out for 0.5 hour, and the grafted resin powder was taken out and washed with isopropyl alcohol. The obtained graft copolymer was put into a mixed solution of dimethylsulfoxide in which 10 wt% of sodium iminodiacetate was dissolved and water in a volume ratio of 1: 1 and the mixture was heated at 80 ° C.
And reacted for 72 hours. The ion exchange capacity of the chelate-type ion-adsorbing resin thus obtained was 0.86 meq.
/ G (wet volume conversion 0.34 meq / mL).
The TOC elution of this chelate-type ion-adsorbing resin was carried out in Example 2
When evaluated by the same method as in 48
ΔTOC after the time washing was 1 ppb or less.

【0029】[0029]

【実施例5】実施例1において合成したカチオン型イオ
ン吸着樹脂とポリエチレン粉末(「サンファインSH8
01」を200メッシュの金網で篩ったもの)を質量比
50/50で混合した。外径/内径=80mmφ/70
mmφのアルミ押出管の内側に外径/内径=60mmφ
/50mmφのアルミ押出管を同心円状に設置したもの
を金型とし、その隙間に上記粉末混合体を入れ(若干振
動をかけ充填を密にした)150℃の熱風乾燥器中に2
0分保持し焼結を行った。得られた円筒状のカチオン型
多孔質イオン吸着体の上下にポリエチレンで製作したプ
レートと濾過水口を融着し、図1の様なカートリッジ型
フィルターとした。このフィルターを市販のPFA製カ
ートリッジフィルターハウジングに設置し、1規定硝酸
を通液し再生した後、TOC溶出を実施例2と同様の方
法で評価したところ、80℃熱超純水で48時間洗浄後
のΔTOCは1ppb以下であった。また、得られたカ
チオン型多孔質イオン吸着体のイオン交換容量は0.7
2meq/gであった。
[Example 5] The cation-type ion-adsorbing resin and polyethylene powder synthesized in Example 1 ("Sunfine SH8
01 "was sieved with a 200-mesh wire net) and mixed at a mass ratio of 50/50. Outer diameter / inner diameter = 80mmφ / 70
Outside diameter / inner diameter = 60 mmφ inside an aluminum extruded tube of mmφ
/ 50mmφ aluminum extruded tubes are installed concentrically as a mold, and the powder mixture is put in the gap (the vibration is slightly vibrated to make the packing dense) in a hot air dryer at 150 ° C.
It hold | maintained for 0 minute and sintered. A plate made of polyethylene and a filtered water port were fused to the upper and lower sides of the obtained cylindrical cation type porous ion adsorbent to obtain a cartridge type filter as shown in FIG. This filter was placed in a commercially available PFA cartridge filter housing, and after regenerating by passing 1N nitric acid, TOC elution was evaluated in the same manner as in Example 2, and was washed with hot ultrapure water at 80 ° C. for 48 hours. The subsequent ΔTOC was 1 ppb or less. In addition, the ion exchange capacity of the obtained cation-type porous ion adsorbent was 0.7.
It was 2 meq / g.

【0030】[0030]

【実施例6】実施例1において合成したカチオン型イオ
ン吸着樹脂に変えて、実施例3で合成したアニオン型イ
オン吸着樹脂を用いる他は実施例5と同様にしてアニオ
ン型多孔質イオン吸着体を得た。このアニオン型多孔質
イオン吸着体のTOC溶出を実施例5と同様の方法で評
価したところ、80℃熱超純水で48時間洗浄後のΔT
OCは1ppb以下であった。また、得られたアニオン
型多孔質イオン吸着体のイオン交換容量は0.96me
q/gであった。
Example 6 An anionic porous ion adsorbent was prepared in the same manner as in Example 5, except that the anionic ion adsorbent resin synthesized in Example 3 was used instead of the cationic ion adsorbent resin synthesized in Example 1. Obtained. The TOC elution of this anion-type porous ion adsorbent was evaluated by the same method as in Example 5. As a result, ΔT after washing with hot ultrapure water at 80 ° C. for 48 hours was evaluated.
OC was 1 ppb or less. The ion exchange capacity of the obtained anion type porous ion adsorbent was 0.96 me.
It was q / g.

【0031】[0031]

【実施例7】実施例1において合成したカチオン型イオ
ン吸着樹脂に変えて、実施例4で合成したキレート型イ
オン吸着樹脂を用いる他は実施例5と同様にしてキレー
ト型多孔質イオン吸着体を得た。このキレート型多孔質
イオン吸着体のTOC溶出を実施例5と同様の方法で評
価したところ、80℃熱超純水で48時間洗浄後のΔT
OCは1ppb以下であった。また、得られた多孔質イ
オン吸着体のイオン交換容量は0.36meq/gであ
った。
Example 7 A chelate-type porous ion adsorbent was prepared in the same manner as in Example 5 except that the chelate-type ion adsorbent resin synthesized in Example 4 was used instead of the cation-type ion adsorbent resin synthesized in Example 1. Obtained. The TOC elution of this chelate-type porous ion adsorbent was evaluated in the same manner as in Example 5. As a result, ΔT after washing with hot ultrapure water at 80 ° C. for 48 hours was evaluated.
OC was 1 ppb or less. The ion exchange capacity of the obtained porous ion adsorbent was 0.36 meq / g.

【0032】[0032]

【実施例8】図2のように実施例5、7のフィルターを
超純水ラインに設置すると同時に、フィルター前後の水
質を測定するため、ペンシル型中空糸カチオン膜モジュ
ールを設置しフィルター前後での超純水中の金属イオン
を補足・濃縮した。通水条件は実施例5、7のフィルタ
ーへは20L/minでペンシル型中空糸カチオン膜モ
ジュールには50mL/minで50日間通水した。そ
の後ペンシル型中空糸カチオン膜モジュールを取り外
し、1規定の硝酸で溶離し、溶離液中のZnイオンおよ
びNaイオンを横河アナリティカルシステムズ製ICP
−MSにより定量し実施例5、7のフィルター前後のZ
nイオン濃度とNaイオン濃度を決定した。結果を表1
に示す。
Example 8 As shown in FIG. 2, the filters of Examples 5 and 7 were installed in the ultrapure water line, and at the same time, a pencil type hollow fiber cation membrane module was installed to measure the water quality before and after the filter. Metal ions in ultrapure water were captured and concentrated. Water was passed through the filters of Examples 5 and 7 at 20 L / min, and at 50 mL / min through the pencil-type hollow fiber cation membrane module for 50 days. After that, the pencil-type hollow fiber cation membrane module was removed and eluted with 1N nitric acid to remove Zn and Na ions in the eluent from ICP manufactured by Yokogawa Analytical Systems.
-Z before and after the filter of Examples 5 and 7 quantified by MS
The n-ion concentration and Na-ion concentration were determined. The results are shown in Table 1.
Shown in.

【0033】[0033]

【表1】 [Table 1]

【0034】カチオン型多孔質イオン吸着体およびキレ
ート型多孔質イオン吸着体において明らかに超純水中の
Zn濃度の低減が認められた。カチオン吸着体において
は、Na濃度の低減も見られた。
It was clearly observed that the concentration of Zn in ultrapure water was reduced in the cation type porous ion adsorbent and the chelate type porous ion adsorbent. In the cation adsorbent, a decrease in Na concentration was also seen.

【0035】[0035]

【実施例9】実施例1において合成したカチオン型イオ
ン吸着樹脂を1規定−NaOH水溶液に浸漬し、濾過水
洗することでNa型とした。該Na型カチオン吸着樹脂
を真空乾燥機で乾燥したものとポリエチレン粉末(「サ
ンファインUH901」を200メッシュの金網で篩っ
たもの)を質量比50/50で混合した。外径/内径=
80mmφ/70mmφのアルミ押出管の内側に外径/
内径=60mmφ/50mmφのアルミ押出管を同心円
状に設置したものを金型とし、その隙間に上記粉末混合
体を入れ(若干振動をかけ充填を密にした)180℃の
熱風乾燥器中に20分保持し焼結を行った。得られた円
筒状の多孔質イオン吸着体の上下にポリエチレンで製作
したプレートと濾過水口を融着し、図1の様なカートリ
ッジ型フィルターとした。このフィルターを市販のPF
A製カートリッジフィルターハウジングに設置し、1規
定硝酸を通液し再生した後、TOC溶出を実施例2と同
様の方法で評価したところ、80℃熱超純水で48時間
洗浄後のΔTOCは1ppb以下であった。また、該多
孔質イオン吸着体のイオン交換容量は0.93meq/
gであった。
[Example 9] The cation-type ion-adsorbing resin synthesized in Example 1 was immersed in a 1N-NaOH aqueous solution and filtered to obtain Na-type. The Na-type cation adsorption resin dried in a vacuum dryer and polyethylene powder (“Sunfine UH901” sieved with a 200-mesh wire mesh) were mixed at a mass ratio of 50/50. Outer diameter / inner diameter =
80mmφ / 70mmφ aluminum extruded tube inside diameter /
An aluminum extruded tube having an inner diameter of 60 mmφ / 50 mmφ was installed concentrically, and the mold was used, and the powder mixture was put in the gap (the vibration was slightly vibrated to close the packing) in a hot air dryer at 180 ° C. It was held for minutes and sintered. A plate made of polyethylene and a filtered water port were fused to the upper and lower sides of the obtained cylindrical porous ion adsorbent to obtain a cartridge type filter as shown in FIG. This filter is a commercially available PF
After being placed in a cartridge filter housing made of A and regenerated by passing 1 N nitric acid, TOC elution was evaluated by the same method as in Example 2. ΔTOC after washing with hot ultrapure water at 80 ° C. for 48 hours was 1 ppb. It was below. The ion exchange capacity of the porous ion adsorbent is 0.93 meq /
It was g.

【0036】[0036]

【実施例10】実施例3で合成したアニオン型イオン吸
着樹脂を1規定塩酸水溶液に浸漬し、濾過水洗し、Cl
型とした。該Cl型アニオン吸着樹脂を真空乾燥機で乾
燥し、実施例9と同様にして、アニオン型多孔質イオン
吸着体を得た。このアニオン型多孔質イオン吸着体のT
OC溶出を実施例9と同様の方法で評価したところ、8
0℃熱超純水で48時間洗浄後のΔTOCは1ppb以
下であった。また、該多孔質イオン吸着体のイオン交換
容量は0.65meq/gであった。
Example 10 The anion-type ion-adsorbing resin synthesized in Example 3 was immersed in a 1N aqueous hydrochloric acid solution, filtered, washed with water, and washed with Cl.
Type The Cl-type anion adsorption resin was dried with a vacuum dryer, and an anion-type porous ion adsorption material was obtained in the same manner as in Example 9. T of the anion type porous ion adsorbent
When OC elution was evaluated in the same manner as in Example 9, it was 8
ΔTOC after washing with 0 ° C. hot ultrapure water for 48 hours was 1 ppb or less. The ion exchange capacity of the porous ion adsorbent was 0.65 meq / g.

【0037】[0037]

【発明の効果】本発明に係るイオン吸着樹脂は超純水中
の金属イオンを極低濃度まで低減できる。また、これを
焼結した多孔質イオン吸着体は、形状をシート状、ブロ
ック状、パイプ状、円柱状など自由に加工出来、高い透
水量が得られ、微粒子、コロイド状物質、金属イオンを
0.1ppt桁のレベルまで吸着除去できる。
The ion-adsorbing resin according to the present invention can reduce metal ions in ultrapure water to an extremely low concentration. Further, the porous ion adsorbent obtained by sintering this can be freely processed into a sheet shape, a block shape, a pipe shape, a columnar shape, etc., and a high water permeation rate can be obtained, and fine particles, colloidal substances and metal ions can be eliminated. Can be adsorbed and removed to the level of 1 ppt digit.

【図面の簡単な説明】[Brief description of drawings]

【図1】多孔質イオン吸着体によるカートリッジ型フィ
ルターの概要図。
FIG. 1 is a schematic view of a cartridge type filter using a porous ion adsorbent.

【図2】多孔質イオン吸着体フィルターのイオン吸着能
力を測定するためのフロー図。
FIG. 2 is a flow chart for measuring the ion adsorption capacity of a porous ion adsorbent filter.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08J 5/20 CER C08J 5/20 CER CEZ CEZ 9/24 9/24 // C08L 101:00 C08L 101:00 Fターム(参考) 4F071 AA02 AA03 AA09 AA15 AA15X AA20 AA20X AA21 AA21X AA22 AA24 AA28 AA28X AA32 AA32X AA33 AA33X AA40 AA41 AA42 AA43 AA50 AA54 AA76 AG05 AG14 FA05 FA10 FC12 FD04 4F074 AA02 AA17 AA24 AA25 AA26 AA32 AA35 AA41 AA47 AA48 AA57 AA59 AA63 AA64 AA65 AA70 AA71 AA97 CA52 CB91 CC12Y DA59 4G066 AA32D AA45D AB07D AB09D AB13D AC13A AC13D AC14A AC31B AC33B AC35B AC37B AE10 BA01 BA03 BA22 CA16 CA45 DA07 EA20 FA07 FA22 FA28 4J026 AA02 AA11 AA12 AA13 AA14 AA17 AA25 AA38 AA40 AA43 AA45 AB01 AB04 AB07 AB17 AB18 AB28 BA05 BA06 BA07 BA30 DB05 DB36 EA09 FA02 GA06 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08J 5/20 CER C08J 5/20 CER CEZ CEZ 9/24 9/24 // C08L 101: 00 C08L 101: 00 F term (reference) 4F071 AA02 AA03 AA09 AA15 AA15X AA20 AA20X AA21 AA21X AA22 AA24 AA28 AA28X AA32 AA32 AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA 4 AA63 AA64. AB18 AB28 BA05 BA06 BA07 BA30 DB05 DB36 EA09 FA02 GA06

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 粒径300μm以下の高分子樹脂粒子の
表面にイオン交換機能を持つ官能基が導入されたイオン
吸着樹脂であって、そのイオン交換容量が0.3〜10
meq/gであることを特徴とする、イオン吸着樹脂。
1. An ion adsorption resin having functional groups having an ion exchange function introduced on the surface of polymer resin particles having a particle diameter of 300 μm or less, and having an ion exchange capacity of 0.3 to 10.
An ion-adsorbing resin, which is meq / g.
【請求項2】 イオン交換機能を持つ官能基が、カチオ
ン交換基、アニオン交換基、キレート交換基のいずれか
であることを特徴とする、請求項1に記載のイオン吸着
樹脂。
2. The ion adsorption resin according to claim 1, wherein the functional group having an ion exchange function is any of a cation exchange group, an anion exchange group and a chelate exchange group.
【請求項3】 粒径300μm以下の高分子樹脂粒子に
放射線グラフト重合を利用してイオン交換機能を持つ官
能基を導入することを特徴とする、請求項1または2の
いずれかに記載のイオン吸着樹脂の製造方法。
3. The ion according to claim 1, wherein a functional group having an ion exchange function is introduced into the polymer resin particles having a particle diameter of 300 μm or less by utilizing radiation graft polymerization. Method for producing adsorbent resin.
【請求項4】 粒径300μm以下の熱可塑性樹脂粒子
と、請求項1または2記載のイオン吸着樹脂の集合物が
一体化してなる多孔質樹脂マトリックス中に、イオン吸
着樹脂を該マトリックスの全質量中10〜70wt%含
むことを特徴とする、多孔質イオン吸着体。
4. A porous resin matrix in which thermoplastic resin particles having a particle diameter of 300 μm or less and an aggregate of the ion adsorption resin according to claim 1 or 2 are integrated, and the ion adsorption resin is contained in the total mass of the matrix. A porous ion adsorbent characterized by containing 10 to 70 wt% thereof.
【請求項5】 多孔質イオン吸着体の平均孔径が1〜1
00μm、空孔率が20〜60%であることを特徴とす
る、請求項4に記載の多孔質イオン吸着体。
5. An average pore diameter of the porous ion adsorbent is 1 to 1.
The porous ion adsorbent according to claim 4, which has a porosity of 00 μm and a porosity of 20 to 60%.
JP2002004522A 2001-08-02 2002-01-11 Ion adsorbing resin and ion adsorbing porous material Pending JP2003112060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004522A JP2003112060A (en) 2001-08-02 2002-01-11 Ion adsorbing resin and ion adsorbing porous material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-234813 2001-08-02
JP2001234813 2001-08-02
JP2002004522A JP2003112060A (en) 2001-08-02 2002-01-11 Ion adsorbing resin and ion adsorbing porous material

Publications (1)

Publication Number Publication Date
JP2003112060A true JP2003112060A (en) 2003-04-15

Family

ID=26619833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004522A Pending JP2003112060A (en) 2001-08-02 2002-01-11 Ion adsorbing resin and ion adsorbing porous material

Country Status (1)

Country Link
JP (1) JP2003112060A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206911A (en) * 2005-01-28 2006-08-10 Arkema Method for grafting polyamide powder by means of gamma irradiation
JP2006265452A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material
WO2008038624A1 (en) * 2006-09-29 2008-04-03 Trial Corporation Coated particles, process for production thereof, cation adsorbents, and water treatment system
JPWO2007069714A1 (en) * 2005-12-15 2009-05-28 東燃化学株式会社 Hydrophilic composite microporous membrane and method for producing the same
JP2010001393A (en) * 2008-06-20 2010-01-07 Nhv Corporation Granular anion exchanger and method for producing it
JP2010001392A (en) * 2008-06-20 2010-01-07 Nhv Corporation Anion exchanger and method for producing it
JP2010254841A (en) * 2009-04-27 2010-11-11 Nippon Filcon Co Ltd Metal-adsorptive sintered porous body and method for producing the same
JP2013127071A (en) * 2005-12-14 2013-06-27 Ube Industries Ltd Powder consisting of inorganic compound-supported polyamide porous particle
JP2014055120A (en) * 2012-09-13 2014-03-27 Japan Organo Co Ltd Method and apparatus for purifying alcohol
JP2014159547A (en) * 2013-01-23 2014-09-04 Kuraray Co Ltd Ethylene-vinyl alcohol-based graft copolymer particle, method for producing the same and metal ion adsorbent
JP2015039698A (en) * 2013-08-21 2015-03-02 株式会社 環境浄化研究所 Environmentally friendly anion exchanger and method for manufacturing the same
JP2016141756A (en) * 2015-02-03 2016-08-08 スリーエム イノベイティブ プロパティズ カンパニー Porous molding, gelatinous molding and filter
US9943825B2 (en) 2012-10-30 2018-04-17 Kuraray Co., Ltd. Porous graft copolymer particles, method for producing same, and adsorbent material using same
KR20180058706A (en) * 2015-09-30 2018-06-01 쿠리타 고교 가부시키가이샤 Metal antifouling agent, metal antifouling film, metal pollution prevention method, and product cleaning method
CN111615427A (en) * 2018-01-09 2020-09-01 3M创新有限公司 Filter, metal ion removing method, and metal ion removing apparatus
WO2021045956A1 (en) 2019-09-03 2021-03-11 Fujifilm Electronic Materials U.S.A., Inc. Systems and methods for purifying solvents
US11498033B2 (en) 2018-11-21 2022-11-15 Fujifilm Electronic Materials U.S.A., Inc. Chemical liquid manufacturing apparatus and manufacturing method of chemical liquid
WO2023062925A1 (en) * 2021-10-14 2023-04-20 オルガノ株式会社 Acid solution purification method
US11786841B2 (en) 2020-01-16 2023-10-17 Fujifilm Electronic Materials U.S.A., Inc. Systems and methods for purifying solvents

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006206911A (en) * 2005-01-28 2006-08-10 Arkema Method for grafting polyamide powder by means of gamma irradiation
JP2006265452A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material
JP2013127071A (en) * 2005-12-14 2013-06-27 Ube Industries Ltd Powder consisting of inorganic compound-supported polyamide porous particle
JPWO2007069714A1 (en) * 2005-12-15 2009-05-28 東燃化学株式会社 Hydrophilic composite microporous membrane and method for producing the same
WO2008038624A1 (en) * 2006-09-29 2008-04-03 Trial Corporation Coated particles, process for production thereof, cation adsorbents, and water treatment system
JPWO2008038624A1 (en) * 2006-09-29 2010-01-28 トライアル株式会社 Coated particle, production method thereof, cation adsorbent, and water treatment system
JP2010001393A (en) * 2008-06-20 2010-01-07 Nhv Corporation Granular anion exchanger and method for producing it
JP2010001392A (en) * 2008-06-20 2010-01-07 Nhv Corporation Anion exchanger and method for producing it
JP2010254841A (en) * 2009-04-27 2010-11-11 Nippon Filcon Co Ltd Metal-adsorptive sintered porous body and method for producing the same
JP2014055120A (en) * 2012-09-13 2014-03-27 Japan Organo Co Ltd Method and apparatus for purifying alcohol
US9943825B2 (en) 2012-10-30 2018-04-17 Kuraray Co., Ltd. Porous graft copolymer particles, method for producing same, and adsorbent material using same
JP2014159547A (en) * 2013-01-23 2014-09-04 Kuraray Co Ltd Ethylene-vinyl alcohol-based graft copolymer particle, method for producing the same and metal ion adsorbent
JP2015039698A (en) * 2013-08-21 2015-03-02 株式会社 環境浄化研究所 Environmentally friendly anion exchanger and method for manufacturing the same
JP2016141756A (en) * 2015-02-03 2016-08-08 スリーエム イノベイティブ プロパティズ カンパニー Porous molding, gelatinous molding and filter
KR20180058706A (en) * 2015-09-30 2018-06-01 쿠리타 고교 가부시키가이샤 Metal antifouling agent, metal antifouling film, metal pollution prevention method, and product cleaning method
KR102627526B1 (en) * 2015-09-30 2024-01-19 쿠리타 고교 가부시키가이샤 Metal contamination prevention agent, metal contamination prevention film, metal contamination prevention method and product cleaning method
CN111615427A (en) * 2018-01-09 2020-09-01 3M创新有限公司 Filter, metal ion removing method, and metal ion removing apparatus
CN111615427B (en) * 2018-01-09 2023-09-01 3M创新有限公司 Filter, metal ion removal method, and metal ion removal apparatus
US11998864B2 (en) 2018-01-09 2024-06-04 Solventum Intellectual Properties Company Filter and metal ion removing method
US11498033B2 (en) 2018-11-21 2022-11-15 Fujifilm Electronic Materials U.S.A., Inc. Chemical liquid manufacturing apparatus and manufacturing method of chemical liquid
WO2021045956A1 (en) 2019-09-03 2021-03-11 Fujifilm Electronic Materials U.S.A., Inc. Systems and methods for purifying solvents
US11786841B2 (en) 2020-01-16 2023-10-17 Fujifilm Electronic Materials U.S.A., Inc. Systems and methods for purifying solvents
WO2023062925A1 (en) * 2021-10-14 2023-04-20 オルガノ株式会社 Acid solution purification method

Similar Documents

Publication Publication Date Title
US8110289B2 (en) Sintered body, resin particles and method for producing the same
JP2003112060A (en) Ion adsorbing resin and ion adsorbing porous material
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
US20070007196A1 (en) Filter cartridge for fluid for treating surface of electronic device substrate
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP2003251118A (en) Filter cartridge having high performance metal capturing capacity
US20050218068A1 (en) Filter cartridge
JP2003251120A (en) Filter cartridge for precise filtering of fine particles/ metal impurities
JP2796995B2 (en) Anion-selective adsorptive porous membrane and its production method
JPH11279945A (en) Polyethylene material graft-polymerized with radiation
EP1231231B1 (en) Use of a material having separating function
KR100454093B1 (en) Ion exchange textile for electrodeionization process
JPH0889954A (en) Point-of-use module system
JP3555967B2 (en) Method for producing elution-resistant anion-adsorbing membrane and membrane thereof
JP3659716B2 (en) Use point filter system
JP2733287B2 (en) Method for simultaneously removing multiple heavy metal ions
JP2001038202A (en) Gas adsorbent
JP2002355564A (en) Ion adsorbing body
JP2002346400A (en) Anion exchanger and method for manufacturing the same
JP3960408B2 (en) Hydrogen sulfide removing material, manufacturing method thereof, and filter using the same
JP3017244B2 (en) Method for simultaneously removing multiple heavy metal ions
JPH05192593A (en) Novel anion adsorptive membrane and production thereof
JPH02233193A (en) Pure water preparation method
JPH07185544A (en) Extrapure water production system having silica removing function