JP2006265452A - Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material - Google Patents

Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material Download PDF

Info

Publication number
JP2006265452A
JP2006265452A JP2005088364A JP2005088364A JP2006265452A JP 2006265452 A JP2006265452 A JP 2006265452A JP 2005088364 A JP2005088364 A JP 2005088364A JP 2005088364 A JP2005088364 A JP 2005088364A JP 2006265452 A JP2006265452 A JP 2006265452A
Authority
JP
Japan
Prior art keywords
polymer material
spherical
compound
reactive
spherical polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005088364A
Other languages
Japanese (ja)
Inventor
Sadao Miki
定雄 三木
Kenzo Susa
憲三 須佐
Kenji Arimoto
憲二 有本
Gen Sugano
弦 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Trial Corp
Original Assignee
Kyoto Institute of Technology NUC
Trial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Trial Corp filed Critical Kyoto Institute of Technology NUC
Priority to JP2005088364A priority Critical patent/JP2006265452A/en
Publication of JP2006265452A publication Critical patent/JP2006265452A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To modify a spherical polymer material by imparting functionality thereto, particularly to introduce a reactive active species or a reactive functional group while retaining the high molecular weight and mechanical properties or the spherical shape of the material. <P>SOLUTION: The method for modifying the polymer material comprises an active species introduction step for introducing the reactive active species into the spherical polymer material by causing a first compound, which is excitable by an active radiation thereby to form a reactive species, to exist as a liquid phase and irradiating the compound with the active radiation in the coexistence of the spherical polymer material. The method may further comprise a functional group conversion step of causing the spherical polymer material to react with a second compound bearing a reactive functional group to convert the reactive active species into the reactive functional group. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は天然もしくは合成高分子からなる粒子の改質方法に関するものである。本発明は、詳しくは高分子からなる粒子に機能性を付与するための反応性官能基又は極性官能基を導入する球状高分子材料の改質方法及び球状改質高分子材料に関するものである。   The present invention relates to a method for modifying particles made of natural or synthetic polymers. More particularly, the present invention relates to a method for modifying a spherical polymer material in which a reactive functional group or a polar functional group for imparting functionality to a polymer particle is introduced, and a spherical modified polymer material.

従来、高分子材料に機能性を付与するために反応性官能基もしくは極性官能基を導入するには、合成高分子の場合には繰り返し単位となる重合性単量体(モノマー)に予め官能基を導入後、重合反応させる方法と、高分子材料を溶媒に溶解して導入すべき官能基を有する化合物と高分子との反応により導入する方法がある。機能性としては、ぬれ性(親水性、撥水性)、極性等がある。これらの高分子材料への官能基導入による高分子材料の改質とその方法については、例えば高分子学会高分子実験学編集委員会編の機能性高分子(共立出版株式会社、1974年7月初版発行)等の成書に述べられている。   Conventionally, in order to introduce a reactive functional group or a polar functional group in order to impart functionality to a polymer material, in the case of a synthetic polymer, a functional group is previously added to a polymerizable monomer (monomer) serving as a repeating unit. There are two methods: a method in which a polymerization reaction is carried out after introduction of a polymer, and a method in which a polymer material is dissolved in a solvent and introduced by a reaction between a compound having a functional group to be introduced and a polymer. Functionality includes wettability (hydrophilicity, water repellency), polarity and the like. Regarding the modification of polymer materials by introducing functional groups into these polymer materials and the method thereof, for example, a functional polymer (edited by Kyoritsu Publishing Co., Ltd., July 1974) It is stated in the books such as the first edition).

しかしながら、重合性単量体(モノマー)に予め導入する方法には、導入された官能基が重合反応を阻害し、重合度が高くならなかったり導入された官能基が重合中に反応し官能基量が低下したり、反応により架橋構造を作ることで折角機能付加させた高分子材料の溶媒溶解性を低下させたり、熱軟化温度を高くするために成形等の形状変化を難しくするといった問題があった。   However, in the method of introducing the monomer into the polymerizable monomer (monomer) in advance, the introduced functional group inhibits the polymerization reaction, the degree of polymerization does not increase, or the introduced functional group reacts during the polymerization. There are problems such as reducing the amount of solvent, lowering the solvent solubility of the polymer material to which the corner function is added by creating a crosslinked structure by reaction, and making it difficult to change the shape such as molding in order to increase the thermal softening temperature. there were.

さらに重合反応によっては導入される官能基が材料中に不均一にブロックとして存在するために充分な機能を発現しないといった問題もある。   Furthermore, depending on the polymerization reaction, there is a problem that the functional group to be introduced does not exhibit a sufficient function because it is present in the material as a non-uniform block.

また、高分子材料を溶媒に溶解して機能性官能基を有する低分子化合物との反応により官能基を導入する方法では、溶媒に溶解する材料にしか利用できず、また導入する官能基を有する低分子化合物が高分子材料と同じ溶媒に溶解しないと反応が良好に進行せず、また官能基導入反応が進行しても反応溶媒への溶解性が反応進行に伴って低下して析出等により充分な官能基量が導入できないといった問題もある。   In addition, the method of introducing a functional group by dissolving a polymer material in a solvent and reacting with a low molecular compound having a functional functional group can be used only for a material that dissolves in the solvent, and has a functional group to be introduced. If the low molecular weight compound is not dissolved in the same solvent as the polymer material, the reaction will not proceed well, and even if the functional group introduction reaction proceeds, the solubility in the reaction solvent will decrease with the progress of the reaction, resulting in precipitation, etc. There is also a problem that a sufficient amount of functional groups cannot be introduced.

上記の他に、高分子材料をフィルム、繊維もしくは繊維を依った紡糸を織った布帛や編んだ編み布等の構造体とした後に表面改質をする方法も、従来種々の分野で広く行われている。その方法は主として窒素、酸素、ヘリウム、アルゴン等のガスの存在下で電子線、プラズマ、コロナ放電といった処理等により高分子構造体(高分子材料)の表面に極性基を発生させる方法がある。例えば、布帛の表面をプラズマ処理して捺染時の染料水溶液の濡れ性を改良する方法が特許文献1及び2等に述べられている。   In addition to the above, a method of surface modification after forming a polymer material into a structure such as a film, a fiber or a fabric woven by spinning using fibers, or a knitted knitted fabric has been widely performed in various fields. ing. As the method, there is a method in which polar groups are generated on the surface of a polymer structure (polymer material) by treatment such as electron beam, plasma, corona discharge in the presence of a gas such as nitrogen, oxygen, helium and argon. For example, Patent Documents 1 and 2 describe a method for improving the wettability of an aqueous dye solution during printing by plasma treatment of the surface of the fabric.

この方法は確かに布帛表面の染料水溶液との濡れ性の改質には効果があるが、機能付与に充分な量の官能基は導入できていない。さらに所望の反応性もしくは極性官能基の導入はできないといった問題がある。   This method is effective in improving the wettability of the fabric surface with the aqueous dye solution, but a sufficient amount of functional groups for imparting a function cannot be introduced. Furthermore, there is a problem that desired reactivity or polar functional groups cannot be introduced.

また、ポリエチレンテレフタレートからなるフィルムの表面を空気中でコロナ放電処理しその処理面上に塗膜を形成させる方法により接着性を向上させる方法も公開されている。この方法もフィルム表面が改質され確かに塗膜との相互作用により接着性が改良されるが所望の官能基導入はできていない。 Also disclosed is a method for improving the adhesion by a method in which the surface of a film made of polyethylene terephthalate is subjected to corona discharge treatment in air and a coating film is formed on the treated surface. In this method, the film surface is modified and the adhesiveness is improved by the interaction with the coating film, but a desired functional group cannot be introduced.

また、これらの従来方法では場合により処理中の帯電によりゴミ等の異物を引きつけ易く、表面を汚染したりするといった問題点がある。さらにその効果の持続性は短く処理後すぐに次の工程に使用せねばならなかった。また高分子表面のみの改質であり、材料の内部もしくは裏側にまで効果を及ぼすことはできなかった。   In addition, in these conventional methods, there is a problem that foreign matters such as dust are easily attracted due to charging during processing, and the surface is contaminated. Furthermore, the sustainability of the effect was short and it had to be used in the next step immediately after treatment. Further, the modification was only on the polymer surface, and the effect could not be exerted on the inside or the back side of the material.

他に、積極的にオゾン存在下で布帛表面に紫外線を照射することで表面の極性を効率よく改良しようとする技術も公開されているが、充分な量の極性基が導入されず、その効果の持続性には問題があり、所望の官能基導入はできていない。   In addition, a technique for efficiently improving the polarity of the surface by actively irradiating the fabric surface with ultraviolet rays in the presence of ozone has been disclosed, but a sufficient amount of polar groups has not been introduced, and its effect There is a problem with the sustainability of the product, and a desired functional group cannot be introduced.

また、光C−H活性化を利用する方法がある。C−H活性化(C−H Activation)とは、飽和炭化水素などの不活性なC−H結合を開裂して直接に官能基を導入する手段であり、天然ガスへの塩素置換などがこれに当たる。通常、金属触媒などが用いられるが、光化学的な反応機構による方法もある。これらの反応は有機合成化学の反応としてはよく知られた例もあるが、反応位置の制御が困難との理由で工業的に広くは利用されていない。しかし、利用例として東レのカプロラクタム合成におけるシクロヘキサンの光ニトロソ化などがある。   There is also a method using photo-CH activation. C—H activation is a means for directly introducing a functional group by cleaving an inactive C—H bond such as a saturated hydrocarbon, such as chlorine substitution into natural gas. It hits. Usually, a metal catalyst or the like is used, but there is a method based on a photochemical reaction mechanism. Although these reactions are well known as organic synthetic chemistry reactions, they are not widely used industrially because of the difficulty in controlling the reaction position. However, examples of use include photonitrosation of cyclohexane in Toray's caprolactam synthesis.

しかしながら、このような光化学的な反応機構による方法では、主として低分子化合物の反応を実施しているため、液相中でも分子の拡散又は混合は充分に起こるが、高分子材料との反応では固体中での分子の拡散を充分に起させるためには、固体−液体よりは固体−気体の状態の方が拡散速度も速く、表面ばかりでなく、高分子材料内部の改質も効率よく実施できる。   However, in such a method based on a photochemical reaction mechanism, a reaction of a low-molecular compound is mainly carried out, so that diffusion or mixing of molecules occurs sufficiently even in a liquid phase. In order to sufficiently cause molecular diffusion in the solid-liquid state, the solid-gas state has a higher diffusion rate than the solid-liquid state, and not only the surface but also the internal reforming of the polymer material can be efficiently performed.

そこで、本発明者らの1人は固相−気相反応による光化学反応を利用して高分子材料の改質方法を開発した(特許文献3)。しかしながら、改質により導入される表面官能基濃度が用途によって不十分な場合があった。特に高分子材料からなる球状粒子の表面に均一かつ高濃度に反応性官能基を導入することは困難であった。   Accordingly, one of the present inventors has developed a method for modifying a polymer material using a photochemical reaction by a solid-gas phase reaction (Patent Document 3). However, the surface functional group concentration introduced by modification may be insufficient depending on the application. In particular, it has been difficult to introduce reactive functional groups uniformly and at a high concentration on the surface of spherical particles made of a polymer material.

特開平2−47378号公報JP-A-2-47378 特開平4−153381号公報JP-A-4-1533381 特開平9−316126号公報JP-A-9-316126

本発明が解決しようとする課題は、球状高分子材料に機能性を付与のための改質を行うこと、特に材料の高分子量及び機械的特性を維持した状態で、又球状の形態を維持した状態で、反応性活性種又は反応性官能基もしくは極性官能基(この両基を単に、「反応性官能基」ともいう。)を導入することである。   The problem to be solved by the present invention is to perform modification for imparting functionality to the spherical polymer material, in particular, while maintaining the high molecular weight and mechanical properties of the material and maintaining the spherical shape. In this state, a reactive active species or a reactive functional group or a polar functional group (both these groups are also simply referred to as “reactive functional groups”) is introduced.

さらに導入すべき官能基量も表面のみならず、必要に応じて粒子内部にも従来技術より多く導入し、その効果の持続性が長い球状高分子材料を提供することが、本発明の他の課題である。   Further, the amount of functional groups to be introduced is introduced not only on the surface but also inside the particles as needed, as compared with the prior art, and it is possible to provide a spherical polymer material having a long-lasting effect. It is a problem.

上記課題を解決するために鋭意検討した結果、本発明においては球状高分子材料の表面または内部の改質を特定化合物の液相中で活性反応種を生成させ、この反応性活性種を高分子材料に導入すること、さらにこれを種々の反応性官能基又は極性官能基に変換することが有効であることを、本発明者らは見出した。   As a result of intensive studies to solve the above problems, in the present invention, the surface or internal modification of the spherical polymer material is generated in a liquid phase of a specific compound, and this reactive active species is polymerized. The present inventors have found that it is effective to introduce it into a material and to convert it into various reactive functional groups or polar functional groups.

本発明の上記課題は、以下の手段により解決された。
項1)活性放射線により励起されて反応性活性種を生成する第1の化合物を液相として存在せしめ球状高分子材料の共存下において活性放射線を照射することにより該球状高分子材料に該反応性活性種を導入する活性種導入工程を含むことを特徴とする高分子材料の改質方法。
The above-described problems of the present invention have been solved by the following means.
Item 1) The reactive property of the spherical polymer material is obtained by irradiating active radiation in the coexistence of the spherical polymer material in the presence of the first compound that is excited by actinic radiation to generate a reactive active species as a liquid phase. A method for modifying a polymer material, comprising an active species introduction step of introducing an active species.

上記の改質方法の好ましい実施態様を以下に列記する。
項2)該反応性活性種を導入した該球状高分子材料と、反応性官能基を有する第2の化合物とを反応させることにより該反応性活性種を該反応性官能基に変換する官能基変換工程を含む項1)記載の球状高分子材料の改質方法、
項3)反応性官能基が、−COCl,−COOH,−OH,−SH,−NH2,−R1NH,及び−R12Nよりなる群から選ばれた少なくとも1つの基を末端に有する基である項1)又は2)記載の球状高分子材料の改質方法、
項4)前記第1の化合物がハロゲン化オキザリルである項1)〜3)いずれか1つに記載の球状高分子材料の改質方法、
項5)前記第2の化合物が、球状高分子材料に導入されたハロゲン化カルボニル基と反応しうる活性水素を有する化合物又は水である項1)〜4)いずれか1つに記載の球状高分子材料の改質方法、
項6)前記第1の化合物が二塩化オキザリル及び/又は臭化オキザリルである項1)〜5)いずれか1つに記載の球状高分子材料の改質方法、
項7)前記活性放射線が紫外線である項1)〜6)いずれか1つに記載の球状高分子材料の改質方法、
項8)官能基変換工程を有機溶媒中で行う項2)〜7)いずれか1つに記載の球状高分子材料の改質方法、
項9)官能基変換工程を前記第2の化合物の気相中で行う項2)〜8)のいずれか1つに記載の球状高分子材料の改質方法、
項10)前記第2の化合物が分子構造中に2種以上の反応性官能基を有する項2)〜9)いずれか1つに記載の球状高分子材料の改質方法。
Preferred embodiments of the above reforming method are listed below.
Item 2) A functional group that converts the reactive active species into the reactive functional group by reacting the spherical polymer material into which the reactive active species has been introduced with a second compound having a reactive functional group Item 1. The method for modifying a spherical polymer material according to item 1 including a conversion step,
Item 3) The reactive functional group is terminated with at least one group selected from the group consisting of —COCl, —COOH, —OH, —SH, —NH 2 , —R 1 NH, and —R 1 R 2 N. The method for modifying a spherical polymer material according to item 1) or 2), which is a group contained in
Item 4) The method for modifying a spherical polymer material according to any one of Items 1) to 3), wherein the first compound is oxalyl halide,
Item 5) The spherical height according to any one of Items 1) to 4), wherein the second compound is a compound having active hydrogen capable of reacting with a carbonyl halide group introduced into a spherical polymer material or water. Modification method of molecular material,
Item 6) The method for modifying a spherical polymer material according to any one of Items 1) to 5), wherein the first compound is oxalyl dichloride and / or oxalyl bromide,
Item 7) The method for modifying a spherical polymer material according to any one of Items 1) to 6), wherein the active radiation is ultraviolet light,
Item 8) The method for modifying a spherical polymer material according to any one of Items 2) to 7), wherein the functional group conversion step is performed in an organic solvent,
Item 9) The method for modifying a spherical polymer material according to any one of Items 2) to 8), wherein the functional group conversion step is performed in a gas phase of the second compound.
Item 10) The method for modifying a spherical polymer material according to any one of Items 2) to 9), wherein the second compound has two or more reactive functional groups in the molecular structure.

本発明の上記課題は、以下の項11)に記載する手段により解決された。
項11)活性放射線により励起された第1の化合物により生成した反応性活性種が粒子表面に導入された球状高分子材料であることを特徴とする球状改質高分子材料。
The above problems of the present invention have been solved by means described in the following item 11).
Item 11) A spherical modified polymer material, wherein the reactive active species generated by the first compound excited by actinic radiation is a spherical polymer material introduced on the particle surface.

上記の球状改質高分子材料の好ましい実施態様を以下に列記する。
項12)項11)記載の改質球状高分子材料が有する反応性活性種を変換して得られる反応性官能基を有する球状改質高分子材料、
項13)該反応性官能基が、−COCl,−COBr,−COOH,−OH,−SH,−NH2,−R1NH,及び−R12N(R1及びR2は独立に水素原子、アルキル基又はアリール基を示す。)よりなる群より選ばれ、かつ高分子材料に共有結合で結合した基である項11)又は12)記載の球状改質高分子材料、
項14)反応性活性種が−COCl又は−COBrである項11)〜13)いずれか1つに記載の球状改質高分子材料。
Preferred embodiments of the above spherical modified polymer material are listed below.
Item 12) A spherical modified polymer material having a reactive functional group obtained by converting a reactive active species of the modified spherical polymer material according to Item 11),
Item 13) The reactive functional group is —COCl, —COBr, —COOH, —OH, —SH, —NH 2 , —R 1 NH, and —R 1 R 2 N (R 1 and R 2 are independently A hydrogen atom, an alkyl group, or an aryl group.) The spherical modified polymer material according to Item 11) or 12), which is a group selected from the group consisting of: and a group covalently bonded to the polymer material;
Item 14) The spherical modified polymer material according to any one of Items 11) to 13), wherein the reactive active species is -COCl or -COBr.

本発明によれば、PET微粒子、PE微粒子又はPP微粒子のような球状形態を有する高分子材料にもハロゲン化カルボニル基のような反応性活性種を導入することができ、この基を後続反応により他の反応性官能基に誘導することができる。   According to the present invention, a reactive active species such as a carbonyl halide group can be introduced into a polymer material having a spherical shape such as PET fine particles, PE fine particles, or PP fine particles, and this group can be converted by a subsequent reaction. It can be derivatized to other reactive functional groups.

上記の課題を解決する手段を以下に具体的に述べる。
本発明者らは高分子材料の改質に関する前記課題を解決するために、鋭意検討をした結果、高分子材料の多くは飽和もしくは不飽和の炭化水素構造を有するため、C−H活性化反応を利用することで課題を解決することができることを見出した。そして、光C−H活性化により高分子材料のC−H結合に反応活性種を導入し、その特性を改質するために光化学反応を液相で行うことにより、種々の形態の高分子材料すなわち繊維、織布、フィルム、特に粒子形状を有する高分子材料でも改質することを可能とした。
Means for solving the above problems will be specifically described below.
As a result of intensive studies to solve the above-described problems related to the modification of polymer materials, the present inventors have found that most of the polymer materials have a saturated or unsaturated hydrocarbon structure. We found that the problem can be solved by using. Various types of polymer materials can be obtained by introducing reactive species into the C—H bonds of the polymer material by photo-CH activation and performing photochemical reaction in the liquid phase in order to modify its properties. That is, it is possible to modify even a fiber, a woven fabric, a film, particularly a polymer material having a particle shape.

すなわち、本発明は、活性放射線により励起されて反応性活性種を生成する第1の化合物を液相として存在せしめ球状高分子材料の共存下において活性放射線を照射することにより該球状高分子材料に該反応性活性種を導入する活性種導入工程を含むことを特徴とする球状高分子材料の改質方法に係る。
本発明は又、活性放射線により励起された第1の化合物により生成した反応性活性種が導入された球状高分子材料であることを特徴とする改質高分子材料に係る。
ここで、球状粒子の平均粒子直径は、0.1〜1,000μmが好ましく、0.5〜500μmがより好ましく、1〜100μmが特に好ましい。ここで平均とは、数平均を言う。
なお、球状粒子は真球状の他に球状に近い略球状の形状を含み、ここで略球形とは、形状係数SF−1により、100〜140の形状、好ましくは105〜130を意味する。形状係数SF1は、形状係数の平均値であり、次の方法で算出する。即ち、スライドグラス上に散布した球状粒子の光学顕微鏡像をビデオカメラを通じてルーゼックス画像解析装置に取り込み、100個以上のトナーについて、周囲長および投影面積から、下記式によりSF1を求め、平均値を得たものである。式中、MLはトナー粒子の最大長を示し、Aは粒子の投影面積を示す。
That is, the present invention provides a spherical polymer material by irradiating actinic radiation in the presence of a spherical polymer material in the presence of a first compound that is excited by actinic radiation to generate a reactive active species as a liquid phase. The present invention relates to a method for modifying a spherical polymer material, comprising an active species introduction step for introducing the reactive active species.
The present invention also relates to a modified polymer material characterized in that it is a spherical polymer material into which a reactive active species generated by a first compound excited by actinic radiation is introduced.
Here, the average particle diameter of the spherical particles is preferably 0.1 to 1,000 μm, more preferably 0.5 to 500 μm, and particularly preferably 1 to 100 μm. Here, the average means a number average.
The spherical particles include a substantially spherical shape close to a spherical shape in addition to a true spherical shape. Here, the substantially spherical shape means a shape of 100 to 140, preferably 105 to 130, according to a shape factor SF-1. The shape factor SF1 is an average value of the shape factors, and is calculated by the following method. That is, an optical microscope image of spherical particles dispersed on a slide glass is taken into a Luzex image analyzer through a video camera, and SF1 is obtained from the peripheral length and projected area for 100 or more toners by the following formula to obtain an average value. It is a thing. In the formula, ML represents the maximum length of toner particles, and A represents the projected area of the particles.

Figure 2006265452
Figure 2006265452

以下、本発明の理解を容易にするために、一実施形態として、二塩化オキザリルの光化学反応による、C−Hのクロロカルボニル化反応を用いた例を示す。この反応は、光化学的に発生する、反応性活性種(ラジカル種)を経る反応であり、化学量論的には式(1)に示すとおりである。   Hereinafter, in order to facilitate understanding of the present invention, an example using a chlorocarbonylation reaction of C—H by a photochemical reaction of oxalyl dichloride will be shown as one embodiment. This reaction is a reaction that occurs through a reactive active species (radical species) that occurs photochemically, and is stoichiometrically as shown in Formula (1).

Figure 2006265452
ここで、Rは球状高分子材料中の炭素原子残基を示す。
Figure 2006265452
Here, R represents a carbon atom residue in the spherical polymer material.

この反応は、各種の高分子材料中の炭化水素基のクロロカルボニル化反応に有効であり、例えば、ポリエチレンテレフタレートの基本構造を有する化合物では、メチレン鎖等の炭素原子がクロロカルボニル化された生成物が得られる。   This reaction is effective for chlorocarbonylation of hydrocarbon groups in various polymer materials. For example, in a compound having the basic structure of polyethylene terephthalate, a product in which carbon atoms such as methylene chains are chlorocarbonylated. Is obtained.

一般にC−H活性化に使用される活性放射線としては、第1の化合物を励起して、反応活性種(ラジカル種)を発生させる活性放射線であれば、いかなる種類も使用可能である。例えば、γ線,β線,X線などの電子線や放射線や紫外線等が例示できる。その中でも、紫外線を利用することが、使用場所の制限を受けず、小型化でき、安全性からも好ましい。紫外線は、ラジカル発生源である第1の化合物が吸収するUV波長成分を含むことが好ましい。   In general, any kind of actinic radiation can be used as the actinic radiation used for C—H activation as long as it is an actinic radiation that excites the first compound to generate a reactive species (radical species). For example, electron beams such as γ rays, β rays, and X rays, radiation, ultraviolet rays, and the like can be exemplified. Among these, use of ultraviolet rays is preferable from the viewpoint of safety because it can be downsized without being restricted by the place of use. The ultraviolet light preferably contains a UV wavelength component that is absorbed by the first compound that is a radical generation source.

また、反応性活性種を発生する第1の化合物としては、前述の活性エネルギー線により励起され反応性活性種を発生する化合物であればよいが、実施例に示す以外にも種々の化合物が使用可能であり、本発明は例示化合物以外にも効果があることはいうまでもなく、発明の範囲は実施例に限定されるものではない。第1の化合物としては例えば、塩化チオニル、臭化チオニル、塩化スルフリル、臭化スルフリル等があげられる。   The first compound that generates the reactive active species may be any compound that generates the reactive active species by being excited by the above-described active energy rays, but various compounds other than those shown in the examples are used. It goes without saying that the present invention is effective in addition to the exemplified compounds, and the scope of the invention is not limited to the examples. Examples of the first compound include thionyl chloride, thionyl bromide, sulfuryl chloride, sulfuryl bromide and the like.

第1の化合物を含む溶液は、第1の化合物自身をそのままニートで使用することが好ましく、必要に応じて不活性溶媒を使用しても良い。不活性溶媒として、塩化メチレン,クロロホルム、四塩化炭素等のハロゲン化炭化水素等が例示できる。   In the solution containing the first compound, the first compound itself is preferably used neat as it is, and an inert solvent may be used if necessary. Examples of the inert solvent include halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride.

導入後の反応活性種を利用して高分子材料の特性を変えるためには、第1の化合物として、ハロゲン化オキザリルが好ましく、塩化オキザリル及び臭化オキザリルがより好ましく、二塩化オキザリルが特に好ましい。二塩化オキザリル及び二臭化オキザリルは常温で液体であり、そのまま反応処理容器に導入することで液相での処理が可能となる。   In order to change the properties of the polymer material using the reactive species after introduction, the first compound is preferably oxalyl halide, more preferably oxalyl chloride and oxalyl bromide, and particularly preferably oxalyl dichloride. Oxalyl dichloride and oxalyl dibromide are liquid at room temperature and can be processed in a liquid phase by being introduced into the reaction processing vessel as it is.

液相反応の際の雰囲気ガスとしては、空気でも可能であるが安定に処理するためには、湿度及び酸素含有量を制御するために窒素,ヘリウム,アルゴン等の不活性気体が好ましい。また、取り扱いの容易さからは乾燥窒素が好ましい。処理時の雰囲気ガス圧力は特に問題とはならないが、常圧処理で充分な効果が得られる。また装置の簡便さの点でも常圧処理が好ましい。   As the atmospheric gas in the liquid phase reaction, air can be used, but in order to stably perform the treatment, an inert gas such as nitrogen, helium, or argon is preferable in order to control humidity and oxygen content. Moreover, dry nitrogen is preferable from the ease of handling. The atmospheric gas pressure during the treatment is not particularly problematic, but a sufficient effect can be obtained by the normal pressure treatment. In view of simplicity of the apparatus, atmospheric pressure treatment is preferable.

改質処理する高分子材料としては、天然高分子材料も合成高分子材料も使用できる。その形態も特に制限されず、繊維、布帛、フィルム、粒子状が例示できる。布帛の状態としては、植物繊維,動物繊維,人造繊維等からなる織布や編布等が使用できる。植物繊維としては、綿花,麻よりなる布帛、動物繊維としては絹,羊毛よりなる布帛、人造繊維としては再生人造繊維と分類される繊維素系のビスコースレーヨン,ポリノジックレーヨン,銅アンモニウムレーヨン,蛋白質系等の布帛が挙げられる。また、人造繊維中合成繊維に分類されるポリアミド,ポリイミド,ポリウレタン,ポリビニルアルコール,ポリアクリル,ポリエステル,ポリプロピレン,塩化ビニル,塩化ビニリデン等からなる繊維よりなる布帛が挙げられる。これらの布帛はいずれも繊維状でも織物状並びに編物状の形態のいずれでも使用できる。これらを構成する繊維糸はフィラメント,ステープルの形態のいずれの形態でも構わない。またこれらの繊維は単独あるいは2種以上の混紡,混織,混編のいずれでも使用可能である。すなわち、これら繊維を構成する高分子材料の分子構造中にC−H結合を有していればいずれの場合にも使用可能である。
特に、本発明の液相法による改質方法は従来の気相法では改質しにくかったポリプロピレン、ポリエチレン等のポリオレフィン系の球状高分子材料に対して有効に作用する。
As the polymer material to be modified, a natural polymer material or a synthetic polymer material can be used. The form is not particularly limited, and examples thereof include fibers, fabrics, films, and particles. As the state of the fabric, a woven fabric or a knitted fabric made of vegetable fiber, animal fiber, artificial fiber, or the like can be used. Plant fibers include cotton and hemp fabrics, animal fibers are silk and wool fabrics, and artificial fibers are classified as recycled artificial fibers, viscose rayon, polynosic rayon, copper ammonium rayon, protein Examples thereof include fabrics such as series. Moreover, the cloth which consists of a polyamide, a polyimide, a polyurethane, a polyvinyl alcohol, polyacryl, polyester, a polypropylene, a vinyl chloride, vinylidene chloride etc. which are classified into the synthetic fiber in an artificial fiber is mentioned. Any of these fabrics can be used in the form of fibers, woven fabrics and knitted fabrics. The fiber yarns constituting them may be in the form of filaments or staples. These fibers can be used singly or in combination of two or more kinds of blends, woven fabrics, and knitted fabrics. That is, it can be used in any case as long as it has a C—H bond in the molecular structure of the polymer material constituting these fibers.
In particular, the modification method by the liquid phase method of the present invention effectively works on polyolefin-based spherical polymer materials such as polypropylene and polyethylene that are difficult to modify by the conventional gas phase method.

また、高分子材料の形態としては粒子ばかりでなく、不織布、フィルム、繊維もしくは板状の材料にも適応できる。これらを形成する材料としては、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN),ポリエチレン,ポリプロピレン,ポリイミド,ポリアミド,塩化ビニル,塩化ビニリデン等が挙げられる。またこれらの高分子材料のブレンドや貼り合わせ等の複合材料にも使用することができる。これら複合材料としては、各々の材料を混合してキャストしたフィルム,板やこれらフィルム,板を貼り合わせた表裏の材料が異なるもの、もしくはPET表面にポリウレタン樹脂等を塗布したフィルム等が挙げられる。   The polymer material can be applied not only to particles but also to non-woven fabrics, films, fibers, or plate-like materials. Examples of the material for forming these include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene, polypropylene, polyimide, polyamide, vinyl chloride, and vinylidene chloride. Moreover, it can be used also for composite materials, such as blend of these polymeric materials, and bonding. Examples of these composite materials include films obtained by mixing the respective materials, plates, those having different materials for the front and back surfaces of the films and the plates bonded together, or films obtained by applying a polyurethane resin or the like to the PET surface.

高分子材料に導入された反応性活性種は、必要に応じて、反応性官能基に変換することができる。すなわち、本発明の改質方法において、反応性活性種を導入した該高分子材料と、反応性官能基を有する第2の化合物とを反応させることにより該反応性活性種を該反応性官能基に変換する官能基変換工程を施しても良い。
この第2の化合物としては、高分子材料に導入されたハロゲン化カルボニル基等と反応しうる活性水素を有する有機化合物又は水が例示できる。
さらに、本発明では改質された高分子材料の表面官能基を変更することで、使用する用途及び高分子材料に対して使用できる化合物の範囲を拡大できることも特徴である。すなわち、始めに導入された反応性活性種を第2の化合物と反応させて反応性官能基共有結合により有する化合物に変換することで、表面の官能基を変更することが可能である。例えば、式1で示した酸クロライド残基はさらにアミン類もしくはアルコール類,チオール類の化合物もしくは水と反応し、残基を変換することができる。そのとき塩基性化合物の存在下で反応させると導入率を向上させることもできる。
The reactive active species introduced into the polymer material can be converted into a reactive functional group as necessary. That is, in the modification method of the present invention, the reactive active species is reacted with the reactive functional group by reacting the polymer material into which the reactive active species has been introduced with the second compound having a reactive functional group. You may give the functional group conversion process converted into.
As this 2nd compound, the organic compound or water which has active hydrogen which can react with the halogenated carbonyl group etc. which were introduce | transduced into the polymeric material can be illustrated.
Further, the present invention is characterized in that the range of compounds that can be used for the polymer material can be expanded by changing the surface functional group of the modified polymer material. That is, it is possible to change the functional group on the surface by reacting the reactive active species introduced first with the second compound and converting it into a compound having a reactive functional group covalent bond. For example, the acid chloride residue represented by Formula 1 can be further reacted with amines, alcohols, thiol compounds or water to convert the residue. At that time, when the reaction is carried out in the presence of a basic compound, the introduction rate can be improved.

さらに、この時反応性官能基又は極性官能基を分子構造中に2個以上有する第1の化合物を使用すると表面の官能基を所望の残基とすることができるので好ましい。複数の官能基もしくは極性基は同じであっても異なっていても良いが、表面状態を同種官能基とするには同じ官能基であることが好ましい。   Further, at this time, it is preferable to use the first compound having two or more reactive functional groups or polar functional groups in the molecular structure because the surface functional group can be a desired residue. A plurality of functional groups or polar groups may be the same or different, but the same functional group is preferable in order to make the surface state the same functional group.

第2の化合物としては、エチレンジアミン,トリエチレンジアミン等のアミン類やエチレングリコール,ジエチレングリコール,ブタンジオール等のグリコール類やジエタノールアミン,ヒドロキシエチルアミン等の異種の官能基を有する化合物が例示できる。本発明は必ずしも例示した化合物ばかりでなく、反応性活性種と反応する官能基を有する化合物ならばいずれも使用することが可能である。   Examples of the second compound include amines such as ethylenediamine and triethylenediamine, glycols such as ethylene glycol, diethylene glycol and butanediol, and compounds having different functional groups such as diethanolamine and hydroxyethylamine. The present invention is not limited to the exemplified compounds, and any compound having a functional group that reacts with a reactive active species can be used.

反応性官能基に変換する反応は有機溶媒中で実施することが好ましい。有機溶媒としては、変換反応に不活性な溶媒の使用が好ましく、例えばベンゼン,トルエン,キシレン,ヘキサン,ヘプタン等の石油系炭化水素溶媒や塩化メチレン,クロロホルム四塩化炭素等のハロゲン化炭化水素等の溶剤中に第2の化合物を溶解して、改質されて酸クロライド残基等を有する高分子材料表面に浸漬することで処理することができる。またこの時に脱塩化水素のためにトリエチルアミンやピリジン等の三級アミン類や水酸化ナトリウム、ナトリウムアルコキシド等のアルカリ性試薬を共存させて反応させた後水洗して副成物を除去しても良い。   The reaction for converting to a reactive functional group is preferably carried out in an organic solvent. As the organic solvent, it is preferable to use a solvent inert to the conversion reaction, such as petroleum hydrocarbon solvents such as benzene, toluene, xylene, hexane and heptane, and halogenated hydrocarbons such as methylene chloride and chloroform tetrachloride. The treatment can be performed by dissolving the second compound in a solvent and immersing it in the surface of a polymer material that has been modified to have an acid chloride residue or the like. At this time, for dehydrochlorination, tertiary amines such as triethylamine and pyridine and alkaline reagents such as sodium hydroxide and sodium alkoxide may be allowed to coexist and then washed with water to remove by-products.

また、本反応は第2の化合物をガス状として導入した気相中でも達成できる。このような第2の化合物としては沸点が低く蒸気圧が比較的高いものか、もしくは加熱することで容易にガス状にできるものであれば可能であり洗浄等の処理を必要としないなどの利点を有する。このような第2の化合物の中でもガス状にして気相中で反応可能なものとしてはエチレンジアミン等の化合物が使用できる。   Further, this reaction can be achieved even in a gas phase in which the second compound is introduced as a gas. Such a second compound can be used as long as it has a low boiling point and a relatively high vapor pressure, or can be easily converted into a gaseous state by heating, and does not require a treatment such as washing. Have Among such second compounds, compounds that can be reacted in the gas phase in a gaseous state can be compounds such as ethylenediamine.

以下に実施例により具体的効果を説明する。
高分子材料が微小球体である場合の実施例を以下に示すが、本発明はこれらの実施例により何ら限定されるものではない。
Specific effects will be described below with reference to examples.
Examples in the case where the polymer material is a microsphere are shown below, but the present invention is not limited to these examples.

(実施例1)
粒子径が5〜30μmのポリプロピレンからなる微小球体(平均粒子径18μm、SF−1=110)を特開2001−114901に記載した溶融分相法により500g合成した。このうち0.5gをとって石英ガラス製の回転式反応容器に装填し、0.2gの2塩化オキザリル液を加えて窒素ガス雰囲気に切り替えた。ついで、32Wの低圧水銀灯から発生する紫外線を20分間照射したのち、50℃〜100℃の温度で10分間窒素ガスを流して反応官内の残留する2塩化オキザリル除去して試料を回収した。
Example 1
500 g of microspheres (average particle diameter 18 μm, SF-1 = 110) made of polypropylene having a particle diameter of 5 to 30 μm were synthesized by the melt phase separation method described in JP-A-2001-114901. Of this, 0.5 g was taken and loaded into a quartz glass rotary reaction vessel, and 0.2 g of oxalyl dichloride solution was added to switch to a nitrogen gas atmosphere. Then, after irradiating with ultraviolet rays generated from a 32 W low-pressure mercury lamp for 20 minutes, nitrogen gas was allowed to flow for 10 minutes at a temperature of 50 ° C. to 100 ° C. to remove residual oxalyl dichloride in the reaction mixture, and a sample was collected.

(実施例2)
実施例1においてポリプロピレン粒子を使用した代わりにポリエチレン粒子を用いたほかは同条件で処理して試料を回収した。
(Example 2)
A sample was collected by treating under the same conditions except that polyethylene particles were used instead of polypropylene particles in Example 1.

(比較例1)
実施例2−1において2塩化オキザリル液に代えて2塩化オキザリルガスを使用し分圧100mmHg、Ar分圧660mmHgになるようにした他は同条件で処理して試料を回収した。
(Comparative Example 1)
A sample was collected by treating under the same conditions as in Example 2-1, except that oxalyl dichloride gas was used in place of the oxalyl dichloride solution so that the partial pressure was 100 mmHg and the Ar partial pressure was 660 mmHg.

以上の実施例1、2および比較例1の試料を反射FT−IRにより表面の赤外スペクトルにより塩化カルボニル基の特性吸収を測定した。さらに、それぞれの試料を50℃で100mlの水に30分間浸漬し、試料を濾過し濾液の特性をリトマス試験紙で測定した。また、濾別した試料を錠剤成型器でペレット状にしその表面に水滴を配置し濡れ性の指標である接触角を測定した。結果を表1に示す。   The samples of Examples 1 and 2 and Comparative Example 1 were subjected to reflection FT-IR, and the characteristic absorption of the carbonyl chloride group was measured from the surface infrared spectrum. Further, each sample was immersed in 100 ml of water at 50 ° C. for 30 minutes, the sample was filtered, and the characteristics of the filtrate were measured with a litmus paper. Further, the sample separated by filtration was formed into pellets with a tablet molding machine, water droplets were placed on the surface, and the contact angle, which is an index of wettability, was measured. The results are shown in Table 1.

Figure 2006265452
Figure 2006265452

以上の結果から、高分子材料の形態が粒子状である微小球体の場合にも気相反応に比べて本発明の液相反応で材料に多くの塩化カルボニル基等が導入され、水により加水分解され残液が強酸性を呈することがわかる。また、液相反応の有効性が濡れ性を示す接触角にも反映されている。   From the above results, even in the case of microspheres in which the polymer material is in the form of particles, more carbonyl chloride groups and the like are introduced into the material in the liquid phase reaction of the present invention than in the gas phase reaction, and hydrolysis is performed with water. It can be seen that the residual liquid is strongly acidic. The effectiveness of the liquid phase reaction is also reflected in the contact angle indicating wettability.

Claims (14)

活性放射線により励起されて反応性活性種を生成する第1の化合物を液相として存在せしめ球状高分子材料の共存下において活性放射線を照射することにより該球状分子材料に該反応性活性種を導入する活性種導入工程を含むことを特徴とする
球状高分子材料の改質方法。
The reactive active species is introduced into the spherical molecular material by irradiating active radiation in the presence of the spherical polymer material in the presence of the first compound that is excited by the active radiation to generate the reactive active species as a liquid phase. A method for modifying a spherical polymer material, comprising the step of introducing an active species.
該反応性活性種を導入した該球状高分子材料と、反応性官能基を有する第2の化合物とを反応させることにより該反応性活性種を該反応性官能基に変換する官能基変換工程を含む
請求項1記載の球状高分子材料の改質方法。
A functional group conversion step of converting the reactive active species into the reactive functional groups by reacting the spherical polymer material into which the reactive active species have been introduced and a second compound having a reactive functional group; A method for modifying a spherical polymer material according to claim 1.
反応性官能基が、−COCl,−COOH,−OH,−SH,−NH2,−R1NH,及び−R12Nよりなる群から選ばれた少なくとも1つの基を末端に有する基である
請求項1又は2記載の球状高分子材料の改質方法。
A group having a reactive functional group terminated with at least one group selected from the group consisting of —COCl, —COOH, —OH, —SH, —NH 2 , —R 1 NH, and —R 1 R 2 N The method for modifying a spherical polymer material according to claim 1 or 2.
前記第1の化合物がハロゲン化オキザリルである
請求項1〜3いずれか1つに記載の球状高分子材料の改質方法。
The method for modifying a spherical polymer material according to any one of claims 1 to 3, wherein the first compound is oxalyl halide.
前記第2の化合物が、球状高分子材料に導入されたハロゲン化カルボニル基と反応しうる活性水素を有する化合物又は水である
請求項1〜4いずれか1つに記載の球状高分子材料の改質方法。
5. The spherical polymer material according to claim 1, wherein the second compound is a compound having active hydrogen capable of reacting with a carbonyl halide group introduced into the spherical polymer material or water. Quality method.
前記第1の化合物が二塩化オキザリル及び/又は臭化オキザリルである
請求項1〜5いずれか1つに記載の球状高分子材料の改質方法。
The method for modifying a spherical polymer material according to any one of claims 1 to 5, wherein the first compound is oxalyl dichloride and / or oxalyl bromide.
前記活性放射線が紫外線である
請求項1〜6いずれか1つに記載の球状高分子材料の改質方法。
The method for modifying a spherical polymer material according to claim 1, wherein the active radiation is ultraviolet light.
官能基変換工程を有機溶媒中で行う
請求項2〜7いずれか1つに記載の球状高分子材料の改質方法。
The method for modifying a spherical polymer material according to any one of claims 2 to 7, wherein the functional group conversion step is performed in an organic solvent.
官能基変換工程を前記第2の化合物の気相中で行う
請求項2〜8いずれか1つに記載の球状高分子材料の改質方法。
The method for modifying a spherical polymer material according to any one of claims 2 to 8, wherein the functional group conversion step is performed in a gas phase of the second compound.
前記第2の化合物が分子構造中に2種以上の反応性官能基を有する請求項2〜9いずれか1つに記載の球状高分子材料の改質方法。   The method for modifying a spherical polymer material according to any one of claims 2 to 9, wherein the second compound has two or more types of reactive functional groups in the molecular structure. 活性放射線により励起された第1の化合物により生成した反応性活性種が導入された球状高分子材料であることを特徴とする球状改質高分子材料。   A spherical modified polymer material, which is a spherical polymer material into which a reactive active species generated by a first compound excited by actinic radiation is introduced. 請求項11記載の改質球状高分子材料が有する反応性活性種を変換して得られる反応性官能基を有する球状改質高分子材料。   A spherical modified polymer material having a reactive functional group obtained by converting a reactive active species of the modified spherical polymer material according to claim 11. 該反応性官能基が、−COCl,−COBr,−COOH,−OH,−SH,−NH2,−R1NH,及び−R12N(R1及びR2は独立に水素原子、アルキル基又はアリール基を示す。)よりなる群より選ばれ、かつ高分子材料に共有結合で結合した基である請求項11又は12記載の球状改質高分子材料。 The reactive functional group is —COCl, —COBr, —COOH, —OH, —SH, —NH 2 , —R 1 NH, and —R 1 R 2 N (R 1 and R 2 are independently hydrogen atoms, The spherical modified polymer material according to claim 11 or 12, which is a group selected from the group consisting of an alkyl group or an aryl group, and a group covalently bonded to the polymer material. 反応性活性種が−COCl又は−COBrである請求項11〜13いずれか1つに記載の球状改質高分子材料。   The spherical modified polymer material according to claim 11, wherein the reactive active species is —COCl or —COBr.
JP2005088364A 2005-03-25 2005-03-25 Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material Pending JP2006265452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005088364A JP2006265452A (en) 2005-03-25 2005-03-25 Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005088364A JP2006265452A (en) 2005-03-25 2005-03-25 Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material

Publications (1)

Publication Number Publication Date
JP2006265452A true JP2006265452A (en) 2006-10-05

Family

ID=37201744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005088364A Pending JP2006265452A (en) 2005-03-25 2005-03-25 Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material

Country Status (1)

Country Link
JP (1) JP2006265452A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912901A (en) * 1982-07-13 1984-01-23 Asahi Chem Ind Co Ltd Preparation of high polymer containing functional group
JPH08511284A (en) * 1993-03-18 1996-11-26 オレゴン州 Chemical functionalization of polymers
JPH09316126A (en) * 1996-05-24 1997-12-09 Konica Corp Method for modifying polymeric material by vapor-phase photochemical reaction, polymeric material modified thereby, and method for dyeing
JP2001076705A (en) * 1999-09-08 2001-03-23 Yuasa Corp Separator for alkaline battery and alkaline battery using it
JP2001114901A (en) * 1999-10-22 2001-04-24 Technology Resources Incorporated:Kk Method for manufacturing spherical composite powder
JP2001342377A (en) * 2000-05-30 2001-12-14 Nippon Shokubai Co Ltd Composite particles and manufacturing method therefor
JP2002237284A (en) * 2001-02-08 2002-08-23 Yuasa Corp Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator
JP2003112060A (en) * 2001-08-02 2003-04-15 Asahi Kasei Corp Ion adsorbing resin and ion adsorbing porous material
JP2004002410A (en) * 2002-05-07 2004-01-08 Xerox Corp Method for producing polymer microspheres
WO2004067609A1 (en) * 2003-01-31 2004-08-12 Trial Corporation Fine particles having controlled density

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912901A (en) * 1982-07-13 1984-01-23 Asahi Chem Ind Co Ltd Preparation of high polymer containing functional group
JPH08511284A (en) * 1993-03-18 1996-11-26 オレゴン州 Chemical functionalization of polymers
JPH09316126A (en) * 1996-05-24 1997-12-09 Konica Corp Method for modifying polymeric material by vapor-phase photochemical reaction, polymeric material modified thereby, and method for dyeing
JP2001076705A (en) * 1999-09-08 2001-03-23 Yuasa Corp Separator for alkaline battery and alkaline battery using it
JP2001114901A (en) * 1999-10-22 2001-04-24 Technology Resources Incorporated:Kk Method for manufacturing spherical composite powder
JP2001342377A (en) * 2000-05-30 2001-12-14 Nippon Shokubai Co Ltd Composite particles and manufacturing method therefor
JP2002237284A (en) * 2001-02-08 2002-08-23 Yuasa Corp Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator
JP2003112060A (en) * 2001-08-02 2003-04-15 Asahi Kasei Corp Ion adsorbing resin and ion adsorbing porous material
JP2004002410A (en) * 2002-05-07 2004-01-08 Xerox Corp Method for producing polymer microspheres
WO2004067609A1 (en) * 2003-01-31 2004-08-12 Trial Corporation Fine particles having controlled density

Similar Documents

Publication Publication Date Title
US11247191B2 (en) Amidoxime-functionalized materials and their use in extracting metal ions from liquid solutions
Cooper Polymer synthesis and processing using supercritical carbon dioxide
Sharif et al. Graft copolymerization of glycidyl methacrylate onto delignified kenaf fibers through pre-irradiation technique
CN1185755A (en) Bench top UV-activated odor filtration device
Babukutty et al. Poly (vinyl chloride) surface modification using tetrafluoroethylene in atmospheric pressure glow discharge
JP2006026588A (en) Method for recovering and removing useful or harmful metal dissolved in hot-spring water
JP4670001B2 (en) Emulsion graft polymerization and its products
Mayer‐Gall et al. Textile Catalysts—An unconventional approach towards heterogeneous catalysis
JPS59122521A (en) Method of fluorinating surface of thermoplastic molded body
AlAbduljabbar et al. TiO2 nanostructured coated functionally modified and composite electrospun chitosan nanofibers membrane for efficient photocatalytic degradation of organic pollutant in wastewater
WO2001029104A1 (en) Organic polymeric material, process for producing the same, and heavy-metal ion remover comprising the same
CA2675120C (en) Material comprising polyazacycloalkanes grafted onto polypropylene fibres method for production thereof and method for removal of metal cations from a liquid
Selambakkannu et al. Preparation and optimization of thorium selective ion imprinted nonwoven fabric grafted with poly (2-dimethylaminoethyl methacrylate) by electron beam irradiation technique
JP2006265452A (en) Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material
JPH08259716A (en) Method for modifying surface of fluoropolymer by irradiation with light with aliphatic amine
JP3823283B2 (en) Alkyl halide removing agent and method for producing the same
JP4050801B2 (en) Method for modifying polymer material by gas phase photochemical reaction, modified polymer material and dyeing method
Ojah et al. Graft copolymerization of methyl methacrylate onto Bombyx mori initiated by semiconductor-based photocatalyst
Chaudhari et al. Sorption of acid and basic dyes on radiation-grafted Teflon scrap: equilibrium and kinetic sorption studies
KR101875737B1 (en) Sheets for eliminating formaldehyde and fabrication method thereof
Couturaud et al. Surface-initiated reversible addition–fragmentation chain transfer polymerization from “clickable” polypropylene surface modified by iodine plasma activation
Maddah et al. Preparation of N, N-dichloropolystyrene sulfonamide nanofiber as a regenerable self-decontaminating material for protection against chemical warfare agents
JP2021066855A (en) Cellulose powder and method for producing the same
JP2006307381A (en) Heat-resistant cross-linked polyester fiber
WO2022090506A1 (en) Supported metal oxides as depolymerization catalysts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110803