JP2002237284A - Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator - Google Patents

Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator

Info

Publication number
JP2002237284A
JP2002237284A JP2001031639A JP2001031639A JP2002237284A JP 2002237284 A JP2002237284 A JP 2002237284A JP 2001031639 A JP2001031639 A JP 2001031639A JP 2001031639 A JP2001031639 A JP 2001031639A JP 2002237284 A JP2002237284 A JP 2002237284A
Authority
JP
Japan
Prior art keywords
separator
alkaline storage
storage battery
group
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001031639A
Other languages
Japanese (ja)
Inventor
Minoru Kurokuzuhara
実 黒葛原
Masaharu Watada
正治 綿田
Kazuhiro Tachibana
一弘 立花
Sadao Miki
定雄 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIBASON KK
Yuasa Corp
Original Assignee
RIBASON KK
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIBASON KK, Yuasa Corp, Yuasa Battery Corp filed Critical RIBASON KK
Priority to JP2001031639A priority Critical patent/JP2002237284A/en
Publication of JP2002237284A publication Critical patent/JP2002237284A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a separator for an alkaline storage battery with an excellent hydrophilic property and a liquid retaining property in stable quality at a low cost. SOLUTION: A base material comprising a polymer which has carbon- hydrogen bond in molecular structure is treated under the irradiation of activated energy beams in reactant gas containing oxalyl chloride(COCl)2 or in the state of containing oxalyl chloride in the base material, to lead a chlorocarbonyl group into the molecular structure. The chlorocarbonyl group is changed into a carboxy group by hydrolysis, and then a sulfuric group is led in to make the separator hydrophilic.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル・カドミ
ウム電池やニッケル・水素(金属水素化物)電池などの
アルカリ蓄電池用セパレータとその製造方法及びそれを
用いたアルカリ蓄電池に関するものである。
The present invention relates to a separator for an alkaline storage battery such as a nickel-cadmium battery and a nickel-metal hydride (metal hydride) battery, a method for manufacturing the same, and an alkaline storage battery using the same.

【0002】[0002]

【従来の技術】近年、エレクトロニクスや通信の分野に
おいて、半導体の急速な進歩と共に電子機器の小型軽量
化が図られてきた。このような機器の進歩に伴って、駆
動源である電池に対しても高性能化が求められている。
これらの用途で現在実用化されている電池に、ニッケル
・カドミウム電池やニッケル・水素電池などのアルカリ
蓄電池がある。アルカリ蓄電池は正極と負極の間にセパ
レータを介在させ、電解液としてアルカリ水溶液を用い
て構成する。該電池の更なる高性能化や低価格化を図る
ため、前記構成材料に関する技術開発が盛んに行われて
いる。中でも、セパレータの改良に関する技術の重要性
が増している。
2. Description of the Related Art In recent years, in the field of electronics and communications, with the rapid progress of semiconductors, electronic devices have been reduced in size and weight. With the progress of such devices, there is a demand for higher performance of batteries as driving sources.
Alkaline storage batteries such as nickel-cadmium batteries and nickel-metal hydride batteries are currently in practical use for these applications. The alkaline storage battery is configured by interposing a separator between a positive electrode and a negative electrode and using an alkaline aqueous solution as an electrolytic solution. In order to further improve the performance and reduce the price of the battery, technical developments regarding the constituent materials have been actively conducted. Above all, the importance of technology for improving the separator is increasing.

【0003】現在、アルカリ蓄電池用セパレータの基材
として広く使用されているポリオレフィン系繊維不織布
は、本来疎水性である。従って、該基材に親水化処理を
加えてセパレータとしている。従来から、親水化処理方
法としてコロナ放電処理、グラフト重合処理、スルホン
化処理など各種の処理方法が提案されている。
[0003] Currently, polyolefin-based nonwoven fabrics widely used as base materials for alkaline storage battery separators are inherently hydrophobic. Therefore, the substrate is subjected to a hydrophilic treatment to form a separator. Conventionally, various treatment methods such as corona discharge treatment, graft polymerization treatment, and sulfonation treatment have been proposed as hydrophilic treatment methods.

【0004】コロナ放電処理やグラフト重合処理などの
親水化処理は初期の濡れ性を改善するが、コロナ放電処
理やグラフト重合処理によって導入されたOH基やCO
OH基は、電池内で発生する活性酸素により分解され易
いため、長期にわたり親水性を持続することが困難であ
る。
A hydrophilic treatment such as a corona discharge treatment or a graft polymerization treatment improves the initial wettability. However, OH groups or CO introduced by the corona discharge treatment or the graft polymerization treatment may be improved.
Since the OH group is easily decomposed by active oxygen generated in the battery, it is difficult to maintain hydrophilicity for a long time.

【0005】従来のアルカリ蓄電池用セパレータとし
て、電解液に対する親水性や保液性に優れたポリアミド
不織布の1種であるナイロン・セパレータが主に用いら
れていた。しかし、ポリアミド系セパレータは耐アルカ
リ性や耐酸化性が劣るため、高温下で電池を使用した場
合、ナイロン繊維が容易に酸化分解されて劣化する。そ
のため、電池の短絡や内部抵抗の増大を来たしたり、分
解生成物である窒素化合物が原因となって、電池の自己
放電を加速する等の欠点がある。
[0005] As a conventional separator for an alkaline storage battery, a nylon separator, which is a kind of polyamide nonwoven fabric, which is excellent in hydrophilicity and liquid retaining property for an electrolytic solution, has been mainly used. However, polyamide-based separators have poor alkali resistance and oxidation resistance. Therefore, when a battery is used at a high temperature, nylon fibers are easily oxidized and degraded. Therefore, there are disadvantages such as a short circuit of the battery and an increase in internal resistance, and acceleration of self-discharge of the battery due to a nitrogen compound which is a decomposition product.

【0006】そこで、耐アルカリ性や耐酸化性に優れた
ポリオレフィン系不織布を、アルカリ蓄電池、特にニッ
ケル・水素電池のセパレータとして適用するようになっ
た。しかしながら、ポリプロピレンやポリエチレンに代
表されるポリオレフィン系樹脂は本質的に疎水性であ
る。そのため、永続的な電解液に対する親水性や保液性
を、いかにして付与するかが大きな技術的課題となって
いる。
Accordingly, polyolefin-based nonwoven fabrics having excellent alkali resistance and oxidation resistance have been applied as separators for alkaline storage batteries, particularly nickel-metal hydride batteries. However, polyolefin resins represented by polypropylene and polyethylene are inherently hydrophobic. Therefore, it is a major technical problem how to impart permanent hydrophilicity and liquid retention to an electrolytic solution.

【0007】現在主流の親水化方法の1つに、ポリオレ
フィン繊維の表面に、熱濃硫酸や発煙硫酸を反応させ
て、ポリオレフィン系樹脂の分子構造にスルフォン酸基
を導入するスルフォン化処理がある。ポリオレフィン系
繊維に熱濃硫酸や発煙硫酸を反応させることによって、
スルフォン酸基を導入したものは、高温の雰囲気下で耐
酸化性を有し、スルフォン酸基が不純物を吸着するの
で、ニッケル・水素電池の自己放電を抑制する機能を有
する。しかしながら、このセパレータは吸液速度が遅い
ため、電解液の注液工程において、所定量注液を完了す
るまでに長時間を要する欠点があった。
One of the mainstream methods of hydrophilization is a sulfonation treatment in which the surface of polyolefin fibers is reacted with hot concentrated sulfuric acid or fuming sulfuric acid to introduce sulfonic acid groups into the molecular structure of the polyolefin resin. By reacting hot concentrated sulfuric acid or fuming sulfuric acid with polyolefin fiber,
The sulfonic acid group-introduced one has oxidation resistance in a high-temperature atmosphere, and has a function of suppressing self-discharge of the nickel-metal hydride battery because the sulfonic acid group adsorbs impurities. However, this separator has a drawback that it takes a long time to complete the injection of a predetermined amount in the electrolyte injection step because the separator has a low liquid absorption rate.

【0008】また、繊維の表面のみを改質したものであ
るために、セパレータに保持できる電解液量が十分でな
い。また、充放電サイクルの経過に伴ってニッケル電極
の活物質の細孔容積が増大すると、セパレータに保持さ
れた電解液がニッケル電極側に移行するため、セパレー
タ中の電解液が枯渇して電池を早期寿命に至らせるとい
う問題があった。このような状況から、従来のスルフォ
ン化処理に替わる方法であって、親水性、保液性に優
れ、製造工程が簡易で品質の制御が容易なアルカリ蓄電
池用セパレータの製造方法の開発が、強く望まれてい
る。
Further, since only the surface of the fiber is modified, the amount of electrolyte that can be held by the separator is not sufficient. In addition, when the pore volume of the active material of the nickel electrode increases with the progress of the charge / discharge cycle, the electrolyte held in the separator moves to the nickel electrode side, so that the electrolyte in the separator is depleted and the battery is depleted. There was a problem that the life was shortened. Under these circumstances, the development of a method for manufacturing a separator for an alkaline storage battery, which is an alternative to the conventional sulfonation treatment, is excellent in hydrophilicity and liquid retention, has a simple manufacturing process, and is easy to control the quality, has been strongly developed. Is desired.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑みなされたものであり、その目的とする
ところは、ポリオレフィン系不織布や多孔性フィルム等
の分子構造中に炭素・水素結合(CH)を有する高分子
から成る基材の分子中にカルボキシル基とスルフォン酸
基を導入し親水化を図る技術において、親水性および保
液性に優れ、且つ品質制御が容易で簡易な工程で製造可
能なアルカリ蓄電池用セパレータを提供するものであ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a carbon / hydrogen compound in a molecular structure of a polyolefin nonwoven fabric or a porous film. In a technology for introducing a carboxyl group and a sulfonic acid group into a molecule of a base material composed of a polymer having a bond (CH) to make it hydrophilic, the process is excellent in hydrophilicity and liquid retention, and easy and easy in quality control. It is intended to provide a separator for an alkaline storage battery which can be manufactured by the above method.

【0010】[0010]

【課題を解決するための手段】本発明は、前記の目的を
達成するために、分子構造中に炭素・水素結合(CH)
を持つ高分子材料で構成されるセパレータにおいて、該
高分子材料を、塩化オキサリル(COCl)2を含む反
応ガス中にて、あるいは高分子材料に塩化オキサリルを
含ませた状態にて、活性エネルギー線の照射で処理し、
水により加水分解することによって、カルボキシル基を
導入後、スルフォン酸基を導入したことを特徴とするア
ルカリ蓄電池用セパレ−タの製造方法である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for forming a carbon-hydrogen bond (CH) in a molecular structure.
In a separator composed of a polymer material having an oxalyl chloride (COCl) 2 or a polymer gas containing oxalyl chloride, an active energy ray Process by irradiation of
A method for producing a separator for an alkaline storage battery, wherein a sulfonic acid group is introduced after a carboxyl group is introduced by hydrolysis with water.

【0011】本発明において、前記反応ガスは主成分で
ある塩化オキサリルと不活性ガスとの混合ガスであり、
活性エネルギー線が紫外線からなる紫外光である。ま
た、前記スルフォン酸基は、カルボキシル基導入後の基
材を、硫酸または三酸化硫黄と反応させることによって
導入したものである。さらに、前記高分子材料は、ポリ
オレフィン系繊維の不織布、織布あるいはポリオレフィ
ン多孔性フィルムである。
In the present invention, the reaction gas is a mixed gas of oxalyl chloride as a main component and an inert gas,
The active energy rays are ultraviolet light composed of ultraviolet rays. The sulfonic acid group is introduced by reacting the base material after the introduction of the carboxyl group with sulfuric acid or sulfur trioxide. Further, the polymer material is a nonwoven fabric, a woven fabric or a polyolefin porous film of polyolefin fiber.

【0012】本発明は、正極と負極がセパレータを介し
て構成されるアルカリ蓄電池において、該セパレータが
分子構造中に炭素・水素結合(CH)を持つ高分子材料
で構成され、該高分子材料を、塩化オキサリルを含む反
応ガス中にて、あるいは高分子材料に塩化オキサリルを
含ませた状態にて活性エネルギー線の照射下で処理を
し、水により加水分解することでカルボキシル基を導入
後、スルフォン酸基を導入したことを特徴とするアルカ
リ蓄電池用セパレータの製造方法である。
According to the present invention, there is provided an alkaline storage battery in which a positive electrode and a negative electrode are provided via a separator, wherein the separator is composed of a polymer material having a carbon-hydrogen bond (CH) in a molecular structure. In a reaction gas containing oxalyl chloride, or in a state in which oxalyl chloride is contained in a polymer material, the mixture is treated under irradiation with active energy rays, and hydrolyzed with water to introduce a carboxyl group. A method for producing a separator for an alkaline storage battery, characterized by introducing an acid group.

【0013】本発明においては、セパレータの親水性、
保液性を評価する尺度としてイオン交換能(イオン交換
容量ともいう)を適用する。イオン交換能が高い方が親
水性および保液性に優れる。本発明におけるセパレータ
は、ポリオレフィン系不織布を基材とするものであっ
て、後述の理由により、そのイオン交換能はカリウムイ
オンの交換量にして0.02〜0.5ミリ等量/gであ
ることが望ましい。
[0013] In the present invention, the hydrophilicity of the separator,
Ion exchange capacity (also referred to as ion exchange capacity) is applied as a scale for evaluating liquid retention. The higher the ion exchange capacity, the better the hydrophilicity and liquid retention. The separator in the present invention is based on a polyolefin-based nonwoven fabric, and has an ion exchange capacity of 0.02 to 0.5 milliequivalent / g in terms of potassium ion exchange amount for the reason described below. It is desirable.

【0014】本発明は、分子構造中に炭素・水素結合
(CH)を持ち、分子中にカルボキシル基とスルフォン
酸基を導入した高分子材料で構成されるセパレータであ
って、該高分子材料を塩化オキサリル(COCl)2
含む反応ガス中にて、または塩化オキサリルを含有させ
た状態にて活性エネルギー線の照射下で処理をし、水に
より加水分解することでカルボキシル基を導入した後、
スルフォン酸基を導入したセパレータを備えたことを特
徴とするアルカリ蓄電池である。
The present invention provides a separator comprising a polymer material having a carbon-hydrogen bond (CH) in the molecular structure and having a carboxyl group and a sulfonic acid group introduced in the molecule. In a reaction gas containing oxalyl chloride (COCl) 2 or in a state where oxalyl chloride is contained, a treatment is performed under irradiation with active energy rays, and a carboxyl group is introduced by hydrolysis with water.
An alkaline storage battery including a separator into which a sulfonic acid group is introduced.

【0015】[0015]

【発明の実施の形態】本発明は、炭化水素構造を持つ高
分子材料から構成されるセパレータ基材を、塩化オキ
サリルを含む反応ガス中にて、あるいは基材に塩化オキ
サリルを含ませた状態にて、活性エネルギー線の照射下
で処理して、クロロカルボニル化した後に、水で加水
分解して前記クロロカルボニル基をカルボキシル基また
はその金属塩に変換した後、硫酸に浸漬、あるいは三
酸化硫黄と接触させて、スルホン酸基を導入すると同時
に前記金属塩をカルボキシル基に変換することによって
親水化するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to a method of preparing a separator substrate composed of a polymer material having a hydrocarbon structure in a reaction gas containing oxalyl chloride or in a state where oxalyl chloride is contained in the substrate. After being treated under irradiation with active energy rays and subjected to chlorocarbonylation, hydrolyzed with water to convert the chlorocarbonyl group to a carboxyl group or a metal salt thereof, and then immersed in sulfuric acid or mixed with sulfur trioxide. The metal salt is converted into a carboxyl group at the same time as the sulfonic acid group is brought into contact with the metal salt, thereby making the metal salt hydrophilic.

【0016】の反応は、次式に示すように、気相での
光化学反応であるので、セパレ−タ基材の形状を維持し
た状態で処理することが可能であり、基材の表面のみな
らず内部にまで均一に極性基を導入することができる。
The reaction is a photochemical reaction in the gas phase, as shown in the following equation, so that the treatment can be performed while maintaining the shape of the separator substrate. In addition, a polar group can be uniformly introduced into the inside.

【0017】塩化オキサリル〔(COCl)2 〕は、沸
点63℃の常温で液体の化合物であり、高い蒸気圧を持
つため、基材を常温において容易に処理することができ
る。一方、高分子材料を浸漬することで容易に塩化オキ
サリルを含ませることもできる。
Oxalyl chloride [(COCl) 2 ] is a compound that is liquid at room temperature with a boiling point of 63 ° C. and has a high vapor pressure, so that the substrate can be easily treated at room temperature. On the other hand, oxalyl chloride can be easily contained by immersing the polymer material.

【0018】反応ガスとしては、塩化オキサリルと窒
素、アルゴン、ヘリウムなどの不活性ガスとの混合気体
が望ましい。また、活性エネルギ−線としては、紫外線
の他にX線や電子線などが使用できるが、照射によって
基材を傷めることがないことから、紫外線からなる紫外
光を照射するのが最も好ましい。
As the reaction gas, a mixed gas of oxalyl chloride and an inert gas such as nitrogen, argon and helium is desirable. As the active energy rays, X-rays or electron beams can be used in addition to ultraviolet rays. However, it is most preferable to irradiate ultraviolet rays composed of ultraviolet rays because the irradiation does not damage the base material.

【0019】前記の工程における、クロロカルボニル
基の導入量は、適用する反応ガス中の塩化オキサリルの
濃度や基材との接触時間、紫外線照射時間(照射線量)
を調整することで容易に制御できる。しかも本発明によ
れば極短時間で親水基を導入することができる。図2
は、本発明に係るセパレータのイオン交換量と紫外線照
射時間の関係を示したグラフである。図に示した如く、
数分〜10分の照射で十分なイオン交換能を持つセパレ
ータを得ることができる。
In the above step, the amount of the chlorocarbonyl group introduced is determined by the concentration of oxalyl chloride in the applied reaction gas, the contact time with the substrate, and the ultraviolet irradiation time (irradiation dose).
Can be easily controlled by adjusting. Moreover, according to the present invention, a hydrophilic group can be introduced in a very short time. FIG.
3 is a graph showing the relationship between the ion exchange amount of the separator according to the present invention and the ultraviolet irradiation time. As shown in the figure,
A separator having a sufficient ion exchange capacity can be obtained by irradiation for several minutes to 10 minutes.

【0020】高分子材料としては、ポリアミド、ポリビ
ニルアルコ−ル、ポリエステル、ポリプロピレン、ポリ
エチレンなどや、これらの共重合体などから構成される
不織布、織布、多孔性フィルムが適用し得る。しかし、
ニッケル水素電池用セパレ−タの基材としては、ポリオ
レフィン系樹脂を素材とするものが適しており、中でも
ポリプロピレン繊維を主とする不織布が好適である。該
不職布には、目付量:30〜100g/m2 、厚さ:
0.1〜0.3mm、通気度:6〜30cc/cm2 /
秒の範囲のものが用いられる。
As the polymer material, non-woven fabrics, woven fabrics, and porous films made of polyamide, polyvinyl alcohol, polyester, polypropylene, polyethylene and the like, and copolymers thereof can be used. But,
As the base material of the separator for a nickel-metal hydride battery, a material made of a polyolefin resin is suitable, and a nonwoven fabric mainly composed of polypropylene fibers is particularly preferable. The nonwoven cloth has a basis weight of 30 to 100 g / m 2 and a thickness of:
0.1-0.3mm, air permeability: 6-30cc / cm2 /
Those in the range of seconds are used.

【0021】前記の工程における反応は、次式に示す
ような加水分解反応であり、前記のクロロカルボニル化
したセパレ−タを水中に浸漬し、カルボキシル基とする
ものである。また、アルカリ水溶液中で処理してもよ
く、その場合には、アルカリ塩の形をとる。 R−COCl+H2 O → R−COOH+HCl R−COCl+2KOH → R−COOK+KCl+
2
The reaction in the above step is a hydrolysis reaction represented by the following formula, in which the chlorocarbonylated separator is immersed in water to form a carboxyl group. Further, the treatment may be carried out in an aqueous alkali solution, in which case it takes the form of an alkali salt. R-COCl + H 2 O → R-COOH + HCl R-COCl + 2KOH → R-COOK + KCl +
H 2 O

【0022】前記の工程における反応は、次式に示す
ような反応であり、前期のカルボキシル基に変換したセ
パレータを硫酸に浸漬し、さらにスルホン酸基を導入す
るものである。また、三酸化硫黄中にてスルホン酸基を
導入しても宜い。スルフォン化の工程における反応は下
記の反応式に従って進行する。 R−H+H2SO4 → R−SO3H+H2 O (R-Hは
高分子鎖を示す)
The reaction in the above step is a reaction represented by the following formula, in which the separator converted into the carboxyl group in the above is immersed in sulfuric acid, and a sulfonic acid group is further introduced. Further, a sulfonic acid group may be introduced into sulfur trioxide. The reaction in the sulfonation step proceeds according to the following reaction formula. RH + H 2 SO 4 → R-SO 3 H + H 2 O (RH indicates a polymer chain)

【0023】本発明によれば、スルフォン基導入に先だ
って、カルボキシル基を導入する。前記の如く、カルボ
キシル基の前駆体であるクロロカルボニル基は、気相で
の光化学反応によって導入されるので、カルボキシル基
導入後の基材は、繊維の内部まで親水性の極性基が付与
されている。従ってスルフォン酸基導入過程において、
基材の繊維表面のみでなく、繊維の内部にまで硫酸分子
やSO3分子が浸透してスルフォン酸基の導入が進む。
このように繊維内部にまでスルフォン酸基が導入される
と、従来の繊維の表面にのみスルフォン酸基が導入され
たものに比べ、保液率、吸液の速さが飛躍的に向上する
効果がある。
According to the present invention, a carboxyl group is introduced prior to introduction of a sulfone group. As described above, the chlorocarbonyl group, which is a precursor of the carboxyl group, is introduced by a photochemical reaction in the gas phase, so that the base material after the introduction of the carboxyl group is provided with a hydrophilic polar group up to the inside of the fiber. I have. Therefore, during the sulfonate group introduction process,
Sulfuric acid molecules and SO 3 molecules penetrate not only into the fiber surface of the base material but also into the interior of the fiber, and the introduction of sulfonic acid groups proceeds.
When the sulfonic acid group is introduced into the fiber as described above, the liquid retention rate and the speed of liquid absorption are dramatically improved as compared with the conventional case where the sulfonic acid group is introduced only on the surface of the fiber. There is.

【0024】アルカリ電池用セパレ−タとして充分な親
水性を保持するには、イオン交換能が、カリウムのイオ
ン交換で0.02〜0.5ミリ当量/gの範囲であれば
宜い。0.02ミリ当量/g未満では親水性・保液性が
乏しい。一方、0.5ミリ当量/gを超えると後述の如
くセパレータの機械的強度が低下して電池の組立に支障
が生じる他、基材の目付量の増大や通気性の低下を招く
虞がある。
In order to maintain sufficient hydrophilicity as a separator for an alkaline battery, it is sufficient that the ion exchange capacity is in the range of 0.02 to 0.5 meq / g by ion exchange of potassium. If it is less than 0.02 meq / g, hydrophilicity and liquid retention are poor. On the other hand, if it exceeds 0.5 meq / g, the mechanical strength of the separator will decrease as described later, which will hinder the assembly of the battery, and may cause an increase in the basis weight of the base material and a decrease in air permeability. .

【0025】このような本発明のセパレ−タは、親水性
および保液性に優れるために、アルカリ電池、例えば、
ニッケル・カドミウム電池、ニッケル水素電池、ニッケ
ル亜鉛電池、空気亜鉛電池、アルカリマンガン電池など
の1次電池および2次電池に適用した場合、長期にわた
って安定した性能を持続することができるものである。
以下に、本発明のセパレ−タの実施例を記載するが、本
発明はこれら実施例に限定されるものではない。
Such a separator of the present invention is excellent in hydrophilicity and liquid retention, so that it can be used in an alkaline battery, for example,
When applied to primary batteries and secondary batteries such as nickel-cadmium batteries, nickel-metal hydride batteries, nickel zinc batteries, air zinc batteries, and alkaline manganese batteries, stable performance can be maintained over a long period of time.
Hereinafter, embodiments of the separator of the present invention will be described, but the present invention is not limited to these embodiments.

【0026】[0026]

【実施例】(セパレータの作製と物性評価) (実施例)ポリオレフィン系繊維の不織布(ポリプロピ
レンとポリエチレンから成る複合分割形繊維を湿式抄造
し水流絡合したもので、厚さが0.10mm,目付量が
40g/m2)を基材として用いた。図1に示すような反
応装置を用いてクロロカルボニル基の導入を行った。基
材を図のガラス製の反応容器内に収容した後に、塩化オ
キサリルと乾燥窒素ガスの混合気体を常温、常圧下で反
応容器内に導入し、高圧水銀灯(300W)の硫酸銅水
溶液透過光(366nm)を30分間照射した。
(Example) (Preparation of separator and evaluation of physical properties) (Example) Nonwoven fabric of polyolefin-based fiber (composite splittable fiber composed of polypropylene and polyethylene was wet-formed and entangled with water, thickness 0.10 mm, weight per unit area) An amount of 40 g / m 2 ) was used as a substrate. A chlorocarbonyl group was introduced using a reactor as shown in FIG. After accommodating the base material in the glass reaction vessel shown in the figure, a mixed gas of oxalyl chloride and dry nitrogen gas was introduced into the reaction vessel at normal temperature and normal pressure, and the light transmitted through a copper sulfate aqueous solution of a high-pressure mercury lamp (300 W) ( (366 nm) for 30 minutes.

【0027】その後、クロロカルボニル基を導入した基
材を、水に浸漬し加水分解反応によって、クロロカルボ
ニル基をカルボキシル基に変えた。前記のようにしてカ
ルボキシル基を導入した基材を温度80℃の濃硫酸に3
0分間浸漬してスルフォン化処理をした。このようにし
て作製したセパレータのイオン交換能、電解液(7M/
lのKOH水溶液)に対する保液率および吸液速さを測
定した。
Thereafter, the substrate into which the chlorocarbonyl group was introduced was immersed in water, and the chlorocarbonyl group was changed to a carboxyl group by a hydrolysis reaction. The base material into which the carboxyl group was introduced as described above was placed in concentrated sulfuric acid at a temperature of 80 ° C for 3 hours.
It was immersed for 0 minutes to perform sulfonation. The ion exchange capacity of the separator thus prepared and the electrolytic solution (7 M /
1 KOH aqueous solution) and the liquid absorption rate were measured.

【0028】(比較例)実施例と同一の不織布から成る
基材を、前記のクロロカルボニル基の導入処理を施さ
ず、実施例と同一の条件でスルフォン化処理のみを行っ
た。実施例同様、作製したセパレータのイオン交換能、
保液率および吸液速さを測定した。
(Comparative Example) A substrate made of the same nonwoven fabric as in the example was not subjected to the above-mentioned treatment for introducing a chlorocarbonyl group, but was subjected only to sulfonation treatment under the same conditions as in the example. As in the example, the ion exchange capacity of the produced separator,
The liquid retention rate and liquid absorption speed were measured.

【0029】前記実施例および比較例に係るセパレータ
の物性値を下表に示す。
The physical properties of the separators according to the examples and comparative examples are shown in the following table.

【表1】 [Table 1]

【0030】表1に示したように本発明の実施例に係る
セパレータは比較例のセパレータに比べ、電解液に対す
る保液率、吸液速さ共に優れている。本発明に係る製造
方法によって製造したセパレータは、保液性に優れる。
本発明に係る製造方法を適用することによって、目付量
の小さい不織布や、多孔性フィルムでも、必要とする量
の電解液を保持できるので、本発明は、セパレータの薄
膜化を通じて電池の容量向上を図るのにも有効である。
As shown in Table 1, the separator according to the example of the present invention is superior to the separator of the comparative example in both the liquid retention rate and the liquid absorption rate with respect to the electrolytic solution. The separator manufactured by the manufacturing method according to the present invention is excellent in liquid retention.
By applying the manufacturing method according to the present invention, even a nonwoven fabric having a small basis weight and a porous film can hold a required amount of electrolyte, and therefore, the present invention improves the capacity of a battery through thinning the separator. It is also effective for planning.

【0031】更に、実施例に係るセパレ−タの親水持続
性を見るために、7モル/lのKOH水溶液中で80℃
にて3ケ月間浸漬した後のイオン交換能を調べた。イオ
ン交換能の低下はほとんど認められず、親水性は持続さ
れることが判った。
Further, in order to observe the hydrophilicity persistence of the separator according to the example, the separation was carried out at 80 ° C. in a 7 mol / l KOH aqueous solution.
Was examined for ion exchange capacity after immersion for 3 months. Almost no decrease in ion exchange capacity was observed, indicating that the hydrophilicity was maintained.

【0032】前記実施例と同じ方法でクロロカルボニル
基導入のための反応時間(照射線量)を変え、次いで実
施例と同様の条件でカルボキシル化、スルフォン酸基の
導入を行うことによって、出来上がったセパレータのイ
オン交換能を変化させた。作製したセパレータについて
保液率および吸液速さを調べた。このようにして作製し
たセパレ−タは、イオン交換能が大きくなると保液率が
向上し、吸液が速くなる。セパレータのイオン交換能が
0.02ミリ当量/g未満ではアルカリ電解液の吸液速
度が遅く、且つ保液率が低かった。
The reaction time (irradiation dose) for introducing the chlorocarbonyl group was changed in the same manner as in the above-mentioned Example, and then the carboxylation and the introduction of the sulfonic acid group were carried out under the same conditions as in the Example. Was changed. The liquid retention rate and liquid absorption speed of the produced separator were examined. In the separator thus manufactured, when the ion exchange capacity is increased, the liquid retention rate is improved and the liquid absorption is increased. When the ion exchange capacity of the separator was less than 0.02 meq / g, the absorption rate of the alkaline electrolyte was low and the retention rate was low.

【0033】一方、イオン交換能を大きくすると基材の
機械的強度が低下する。イオン交換能が0.5ミリ当量
/gを超えると、引っ張り破断強度等の機械的強度が低
く破れ易いため、極板群組み立て時においてセパレータ
に張力が加わらないように工夫しないと組み立てが困難
になることが判った。このような理由から、本発明に係
るセパレータのイオン交換能は0.02〜0.5ミリ当
量/gであることが好ましい。
On the other hand, when the ion exchange capacity is increased, the mechanical strength of the substrate decreases. If the ion exchange capacity exceeds 0.5 meq / g, the mechanical strength such as the tensile breaking strength is low and easily broken. It turned out to be. For these reasons, the ion exchange capacity of the separator according to the present invention is preferably 0.02 to 0.5 meq / g.

【0034】液状の塩化オキサリルに浸漬して、塩化オ
キサリル液を含ませた基材を用いてクロロカルボニル基
導入処理を行った場合も、前記実施例と同様の物性を持
つセパレータが得られた。カルボキシル基導入後の基材
を、常温で三酸化イオウと接触させることによりスルフ
ォン化を行った場合も前記実施例と同様の物性を持つセ
パレータが得られた。
When a chlorocarbonyl group-introducing treatment was carried out by immersing in a liquid oxalyl chloride and using a substrate containing an oxalyl chloride solution, a separator having the same physical properties as in the above example was obtained. When the sulfonation was performed by bringing the base material after the introduction of the carboxyl group into contact with sulfur trioxide at room temperature, a separator having the same physical properties as in the above example was obtained.

【0035】(アルカリ蓄電池の作製と性能評価) (実施例)次に、前記のセパレ−タを用いて円筒型密閉
式ニッケル水素電池を作製して性能評価した。正極に
は、95%多孔度のニッケル繊維あるいは発泡状基板に
水酸化ニッケルを主成分とした活物質を充填し、所定の
寸法・厚みとしたニッケル電極を用いた。また、負極に
は、MmNiCoAlMn(Mmはミッシュメタルを示
す)の5元系の希土類系水素吸蔵合金粉末に導電剤とバ
インダ−を混合してペ−スト状とし、穿孔鋼板に塗布し
た後に、所定の寸法・厚みとした水素吸蔵合金電極を用
いた。これら正極と負極を前記セパレ−タを介して渦巻
状に巻いて、電槽に挿入し、7モル/lのKOH水溶液
を電解液として注液した後に、封口・密閉してAAAサ
イズ電池を作製した。
(Preparation of Alkaline Storage Battery and Performance Evaluation) (Example) Next, a cylindrical sealed nickel-metal hydride battery was prepared using the above separator to evaluate the performance. For the positive electrode, a nickel electrode having a predetermined size and thickness by filling a 95% porous nickel fiber or a foamed substrate with an active material mainly containing nickel hydroxide was used. The negative electrode is formed into a paste by mixing a conductive agent and a binder with a quinary rare earth-based hydrogen storage alloy powder of MmNiCoAlMn (Mm represents a misch metal), and applying the paste to a perforated steel sheet. A hydrogen storage alloy electrode having the dimensions and thickness of was used. The positive electrode and the negative electrode are spirally wound through the separator, inserted into a battery case, injected with a 7 mol / l KOH aqueous solution as an electrolytic solution, and then sealed and sealed to produce an AAA size battery. did.

【0036】(比較例)比較例として、従来のナイロン
・セパレ−タおよび前記実施例と同じポリオレフィン系
不織布製の基材をアニオン系界面活性剤にて親水化処理
したセパレータ用いて、前記と同様の電池を作製した。
前者を比較例電池A、後者を比較例電池Bとする。
(Comparative Example) As a comparative example, a conventional nylon separator and a base material made of the same polyolefin non-woven fabric as in the above-mentioned embodiment were used, and the same separator was used as described above, using a hydrophilic treatment with an anionic surfactant. Was prepared.
The former is referred to as Comparative Example Battery A, and the latter as Comparative Example Battery B.

【0037】本発明電池と比較例電池を温度45℃にお
いて充放電サイクル試験に供した。該試験の結果を図3
に示す。ナイロン・セパレ−タおよび界面活性剤処理セ
パレ−タを使用した比較例電池Aおよび比較例電池B
は、早期に容量低下を来したのに対して、本発明電池
は、サイクルの経過に伴う容量低下が小さく、良好な特
性を示した。
The battery of the present invention and the battery of the comparative example were subjected to a charge / discharge cycle test at a temperature of 45 ° C. FIG. 3 shows the results of the test.
Shown in Comparative Example Battery A and Comparative Example Battery B Using Nylon Separator and Surfactant Treated Separator
The battery of the present invention showed a small decrease in capacity with the lapse of cycles, and exhibited good characteristics, whereas the battery had an early decrease in capacity.

【0038】電池を解体してセパレ−タを調べたとこ
ろ、ナイロン・セパレ−タは酸化分解し短繊維化してい
た。他方、界面活性剤処理により親水化したセパレ−タ
は、親水性および保液性の低下が認められ、電気抵抗が
著しく増大していた。本発明セパレ−タは初期と同様の
親水性、保液性、イオン交換能を保持しており、劣化は
ほとんど認められなかった。
When the battery was disassembled and the separator was examined, the nylon separator was oxidatively decomposed and shortened. On the other hand, in the separator hydrophilized by the surfactant treatment, the hydrophilicity and the liquid retention were reduced, and the electrical resistance was significantly increased. The separator of the present invention retained the same hydrophilicity, liquid retaining property and ion exchange ability as those of the initial stage, and almost no deterioration was observed.

【0039】また、充電状態の電池を放置した時の、電
池の容量保持特性(保存特性)においても、本発明電池
の優位性が認められた。充電後の電池を、温度45℃に
て7日間放置した後の容量を調べ、放置前の容量に対す
る比率(容量保持率)を求めた。容量保持率は、ナイロ
ン・セパレ−タを使用した比較例電池Aでは55%、本
発明電池では81%であり、本発明電池は自己放電が小
さく、保存特性が優れていることが判った。
The superiority of the battery of the present invention was also recognized in the capacity retention characteristics (storage characteristics) of the battery when the battery in a charged state was left. The capacity of the battery after charging was left for 7 days at a temperature of 45 ° C., and the ratio (capacity retention) to the capacity before leaving was determined. The capacity retention was 55% for the comparative battery A using the nylon separator, and 81% for the battery of the present invention. It was found that the battery of the present invention had small self-discharge and excellent storage characteristics.

【0040】[0040]

【発明の効果】以上詳述したように、本発明の請求項1
〜3によれば、製品品質を精密に制御でき、かつ簡素な
製造工程にて、親水性に優れたアルカリ蓄電池用セパレ
ータを作製することが可能である。本発明の請求項4〜
5によれば、高エネルギ−密度対応の薄型セパレ−タを
提供できる。また、本発明の請求項6によれば、充放電
サイクル性能および保存持性に優れたアルカリ電池を提
供できる。
As described in detail above, claim 1 of the present invention
According to (3), it is possible to precisely control the product quality and to produce an alkaline storage battery separator having excellent hydrophilicity in a simple manufacturing process. Claim 4 of the present invention
According to 5, a thin separator compatible with high energy density can be provided. Further, according to claim 6 of the present invention, an alkaline battery having excellent charge / discharge cycle performance and storage stability can be provided.

【0041】[0041]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るクロロカルボニル基導入用反応装
置の概略図である。
FIG. 1 is a schematic view of a reaction apparatus for introducing a chlorocarbonyl group according to the present invention.

【図2】本発明におけるセパレータのイオン交換能と反
応時間との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the ion exchange capacity of the separator and the reaction time in the present invention.

【図3】本発明電池と比較例電池の温度45℃での充放
電サイクル性能を示すグラフである。
FIG. 3 is a graph showing charge / discharge cycle performance at a temperature of 45 ° C. of a battery of the present invention and a battery of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 綿田 正治 大阪府高槻市古曽部町2丁目3番21号 株 式会社ユアサコーポレーション内 (72)発明者 立花 一弘 兵庫県神戸市垂水区本多聞6丁目23番5号 (72)発明者 三木 定雄 京都府京都市左京区上高野山ノ橋町20−1 Fターム(参考) 5H021 BB09 BB15 CC00 CC02 EE04 EE18 HH07 5H028 AA05 BB10 EE01 EE05 EE06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shoji Watada 2-3-1-21, Kosobe-cho, Takatsuki-shi, Osaka Inside Yuasa Corporation (72) Inventor Kazuhiro Tachibana 6-23 Hondamon, Tarumizu-ku, Kobe-shi, Hyogo Prefecture No. 5 (72) Inventor Sadao Miki 20-1 Kamikoya Yamanohashicho, Sakyo-ku, Kyoto, Kyoto F-term (reference) 5H021 BB09 BB15 CC00 CC02 EE04 EE18 HH07 5H028 AA05 BB10 EE01 EE05 EE06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】分子構造中に炭素・水素結合(CH)を持
ち、該分子構造中にカルボキシル基とスルフォン酸基を
導入した高分子材料で構成されるアルカリ蓄電池用セパ
レータの製造方法であって、前記分子構造中にクロロカ
ルボニル基を導入後、該クロロカルボニル基を加水分解
反応によってカルボキシル基またはその金属塩に変え、
次いで、スルフォン酸基を導入することを特徴とするア
ルカリ蓄電池用セパレータの製造方法。
1. A method of manufacturing a separator for an alkaline storage battery comprising a polymer material having a carbon-hydrogen bond (CH) in a molecular structure and having a carboxyl group and a sulfonic acid group introduced in the molecular structure. After introducing a chlorocarbonyl group into the molecular structure, the chlorocarbonyl group is converted into a carboxyl group or a metal salt thereof by a hydrolysis reaction,
Next, a method for producing a separator for an alkaline storage battery, comprising introducing a sulfonic acid group.
【請求項2】前記分子構造中に炭素・水素結合を持つ高
分子から成る基材を塩化オキサリル(COCl)2を含
む反応ガス中にて、または塩化オキサリルを含ませた状
態にて活性エネルギー線の照射下で処理をすることによ
って、分子構造中にクロロカルボニル基を導入すること
を特徴とする請求項1記載のアルカリ蓄電池用セパレー
タの製造方法。
2. The method according to claim 1, wherein said substrate comprising a polymer having a carbon-hydrogen bond in the molecular structure is exposed to an active energy ray in a reaction gas containing oxalyl chloride (COCl) 2 or in a state containing oxalyl chloride. The method for producing a separator for an alkaline storage battery according to claim 1, wherein the chlorocarbonyl group is introduced into the molecular structure by performing the treatment under the irradiation of (1).
【請求項3】前記スルフォン酸基が硫酸または三酸化硫
黄(SO3)との反応によって導入されたことを特徴と
する請求項1記載のアルカリ蓄電池用セパレータの製造
方法。
3. The method according to claim 1, wherein the sulfonic acid group is introduced by a reaction with sulfuric acid or sulfur trioxide (SO 3 ).
【請求項4】前記高分子材料が、請求項1記載の方法に
よってポリオレフィン系繊維の不織布、織布または多孔
性のポリオレフィンフィルムの高分子中にカルボキシル
基とスルフォン酸基を導入したものであることを特徴と
するアルカリ蓄電池用セパレータ。
4. The polymer material according to claim 1, wherein a carboxyl group and a sulfonic acid group are introduced into a polymer of a nonwoven fabric, a woven fabric or a porous polyolefin film of a polyolefin fiber. A separator for an alkaline storage battery, comprising:
【請求項5】前記セパレータが、ポリオレフィン系繊維
の不織布を基材とし、そのイオン交換能がカリウムイオ
ン交換において0.02〜0.5ミリ当量/gであるこ
とを特徴とする請求項4記載のアルカリ蓄電池用セパレ
ータ。
5. The separator according to claim 4, wherein the separator is made of a nonwoven fabric of a polyolefin fiber and has an ion exchange capacity of 0.02 to 0.5 meq / g in potassium ion exchange. For alkaline storage batteries.
【請求項6】分子構造中に炭素・水素結合(CH)を持
ち、分子中にカルボキシル基とスルフォン酸基を導入し
た高分子材料で構成されるセパレータであって、該高分
子材料を塩化オキサリル(COCl)2を含む反応ガス
中にて、または塩化オキサリルを含有させた状態にて活
性エネルギー線の照射下で処理をし、水により加水分解
することでカルボキシル基を導入した後、スルフォン酸
基を導入したセパレータを備えたことを特徴とするアル
カリ蓄電池。
6. A separator comprising a polymer material having a carbon-hydrogen bond (CH) in the molecular structure and having a carboxyl group and a sulfonic acid group introduced in the molecule, wherein the polymer material is formed of oxalyl chloride. After treatment in a reaction gas containing (COCl) 2 or containing oxalyl chloride under irradiation with active energy rays and hydrolysis with water to introduce a carboxyl group, then a sulfonic acid group An alkaline storage battery comprising a separator into which is introduced.
JP2001031639A 2001-02-08 2001-02-08 Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator Pending JP2002237284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031639A JP2002237284A (en) 2001-02-08 2001-02-08 Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031639A JP2002237284A (en) 2001-02-08 2001-02-08 Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator

Publications (1)

Publication Number Publication Date
JP2002237284A true JP2002237284A (en) 2002-08-23

Family

ID=18895699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031639A Pending JP2002237284A (en) 2001-02-08 2001-02-08 Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator

Country Status (1)

Country Link
JP (1) JP2002237284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265452A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material
JP2006265451A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Magnetic microsphere having functional group on surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265452A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Method for modifying spherical polymer material by liquid-phase chemical reaction and modified spherical polymer material
JP2006265451A (en) * 2005-03-25 2006-10-05 Kyoto Institute Of Technology Magnetic microsphere having functional group on surface

Similar Documents

Publication Publication Date Title
TW508862B (en) Alkali rechargeable batteries and process for the production of said rechargeable batteries
JP2001217000A (en) Nickel-hydrogen secondary battery
US20090233173A1 (en) Cobalt oxyhydroxide, method for producing the same and alkaline storage battery using the same
JP3221337B2 (en) Alkaline storage battery separator
US6623809B2 (en) Battery separator and manufacturing method thereof, and alkali secondary battery having the separator incorporated therein
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JP2001250529A (en) Alkaline secondary battery
JP2002237284A (en) Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator
JP4717192B2 (en) Secondary battery and manufacturing method thereof
CN108539187A (en) Alkaline secondary cell
JP3742256B2 (en) Method for producing separator for alkaline battery and method for producing alkaline battery
US6033803A (en) Hydrophilic electrode for an alkaline electrochemical cell, and method of manufacture
JPH11135096A (en) Nickel-hydrogen secondary battery
JPH07130392A (en) Alkaline storage battery
JPH1064502A (en) Battery separator and battery
JPH113694A (en) Manufacture of separator material for battery
JP2000138050A (en) Nickel/hydrogen secondary battery
JP2001283820A (en) Surface modifying method of synthetic resin and separator for battery
JPH11283604A (en) Alkaline accumulator, separator therefor and manufacture thereof
JP3061303B2 (en) Method for producing sintered nickel electrode for alkaline secondary battery
JP2001273879A (en) Nickel - hydrogen secondary battery
JP3993718B2 (en) Hydrophilization treatment method and battery separator production method
JP2023069245A (en) Alkali storage battery
JPH107829A (en) Production of highly hydrophilic polyolefin material
JPH08241704A (en) Buttery separator and alkaline secondary battery using this separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20080731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090115