JP2001283820A - Surface modifying method of synthetic resin and separator for battery - Google Patents

Surface modifying method of synthetic resin and separator for battery

Info

Publication number
JP2001283820A
JP2001283820A JP2000136485A JP2000136485A JP2001283820A JP 2001283820 A JP2001283820 A JP 2001283820A JP 2000136485 A JP2000136485 A JP 2000136485A JP 2000136485 A JP2000136485 A JP 2000136485A JP 2001283820 A JP2001283820 A JP 2001283820A
Authority
JP
Japan
Prior art keywords
synthetic resin
water
battery
separator
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136485A
Other languages
Japanese (ja)
Inventor
Hidetoshi Abe
英俊 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2000136485A priority Critical patent/JP2001283820A/en
Publication of JP2001283820A publication Critical patent/JP2001283820A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve affinity by modifying the surface of synthetic resin. SOLUTION: Synthetic resin, through reduction treatment after oxidization, can be reformed to be furnished with high affinity. Further, the separator for a battery made from this treated synthetic resin can also improve capacity retainability and cycle life characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、合成樹脂の表面改
質法および改質された合成樹脂を用いた電池用のセパレ
ータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for modifying the surface of a synthetic resin and a separator for a battery using the modified synthetic resin.

【0002】[0002]

【従来の技術】例えばポリエチレン等のポリオレフィン
からなる合成樹脂繊維を織布または不織布として蓄電池
のセパレータに使用した場合は、水との濡れ性が悪く、
従って蓄電池に使用される電解液との濡れが悪く、結
果、蓄電池の内部抵抗を高める等により、蓄電池の初期
容量が出難い等の問題があった。この問題を解決するた
めに、これら合成樹脂繊維からなるセパレータを濃硫酸
に浸漬する等してスルホン化処理したもや、界面活性剤
を塗布したものが提案され使用されている。このものは
電解液との濡れが良く、親水性が付与されセパレータと
して好ましいものである。
2. Description of the Related Art For example, when synthetic resin fibers made of polyolefin such as polyethylene are used as a woven or nonwoven fabric for a separator of a storage battery, the wettability with water is poor.
Therefore, the wettability with the electrolytic solution used for the storage battery is poor, and as a result, there is a problem that the initial capacity of the storage battery is hardly obtained due to an increase in the internal resistance of the storage battery. In order to solve this problem, separators made of these synthetic resin fibers are subjected to a sulfonation treatment by dipping them in concentrated sulfuric acid or coated with a surfactant. This has good wettability with the electrolytic solution and has good hydrophilicity, and is preferable as a separator.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このセ
パレータは長期の使用に対してはやがて親水性が低下す
る等し、結果蓄電池寿命の向上が図れない等の問題があ
る。
However, this separator has a problem that the hydrophilicity of the separator is gradually reduced after a long-term use, so that the life of the storage battery cannot be improved.

【0004】[0004]

【課題を解決するための手段】本発明は、より寿命の長
い蓄電池を得るべくなされたもので、合成樹脂を酸化処
理した後、還元剤による還元処理をし、或いは、還元剤
の存在下において、紫外線照射による光還元反応を行う
ことにより、これを蓄電池用セパレータとして用いたも
のである。更には、この様な処理をされた合成樹脂は、
親水性が改善され保水率が向上し、以って帯電防止効果
の向上期待し得るものであることを見出したものであ
る。
DISCLOSURE OF THE INVENTION The present invention has been made to obtain a storage battery having a longer service life. After oxidizing a synthetic resin, the synthetic resin is subjected to a reducing treatment with a reducing agent, or is performed in the presence of a reducing agent. By performing a photoreduction reaction by ultraviolet irradiation, this is used as a storage battery separator. Furthermore, the synthetic resin treated as described above is
It has been found that the hydrophilicity is improved and the water retention rate is improved, so that the antistatic effect can be expected to be improved.

【0005】[0005]

【発明の実施の形態】本発明の実施の形態を説明する
と、合成樹脂を酸化処理した後、水洗、乾燥して酸化剤
を除去後、還元剤による処理を行うものである。この処
理により、例えばポリエチレンを例にすると、酸化剤ま
たは酸素存在下の紫外線照射、プラズマ、グロー放電等
により直接的または発生するオゾンの活性酸素によっ
て、化1に示すように、分子中に水素が引き抜かれてカ
ルボニル基が生成する反応機構が推定される。この時、
少量のアルコール性水酸基と末端基にはカルボキシル基
が導入されることもある。これらは親水基であるが量が
少ないので充分な親水性を付与するまでには至らない。
また処理条件を過酷にすると、ある程度は親水性が向上
するが、主鎖の切断も同時に起こり機械的強度が減少す
る。酸化処理は適度に制御することが必要である。酸化
処理には、酸化剤として重クロム酸カリウム、過マンガ
ン酸カリウム、濃硫酸、硝酸、過酸化物等の水溶液やオ
ゾン、発煙硫酸、フッ素ガス、塩素ガス等の気体を使用
して処理することができる。また、酸化雰囲気中で紫外
線、プラズマ、グロー放電、放射線により酸化処理する
こともできる。反応を均一に行わせるためには少量の界
面活性剤を添加しても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiment of the present invention will be described in which a synthetic resin is oxidized, washed with water and dried to remove the oxidizing agent, and then treated with a reducing agent. By this treatment, for example, in the case of polyethylene, for example, hydrogen is included in the molecule by the active oxygen of ozone directly or generated by ultraviolet irradiation, plasma, glow discharge or the like in the presence of an oxidizing agent or oxygen, as shown in Chemical Formula 1. The reaction mechanism in which the carbonyl group is generated by extraction is presumed. At this time,
Carboxyl groups may be introduced into a small amount of alcoholic hydroxyl groups and terminal groups. Although these are hydrophilic groups, the amount is small, so that sufficient hydrophilicity cannot be provided.
When the processing conditions are severe, the hydrophilicity is improved to some extent, but the main chain is cut off at the same time, and the mechanical strength is reduced. The oxidation treatment needs to be appropriately controlled. For the oxidation treatment, use an aqueous solution of potassium dichromate, potassium permanganate, concentrated sulfuric acid, nitric acid, peroxide, or a gas such as ozone, fuming sulfuric acid, fluorine gas, or chlorine gas as the oxidizing agent. Can be. Further, the oxidation treatment can be performed by ultraviolet rays, plasma, glow discharge, or radiation in an oxidizing atmosphere. To make the reaction uniform, a small amount of a surfactant may be added.

【0006】[0006]

【化1】 Embedded image

【0007】酸化剤水溶液で処理したものは、水洗、乾
燥後、期待酸化剤で処理したものは酸化剤を出来るだけ
除去した後に、還元剤により処理を行って化2に示すよ
うにアルコール性水酸基を分子中に導入する。
Those treated with an aqueous solution of an oxidizing agent are washed with water and dried, and those treated with an expected oxidizing agent are treated with a reducing agent after removing the oxidizing agent as much as possible. Is introduced into the molecule.

【0008】[0008]

【化2】 Embedded image

【0009】この時、還元剤の強さに留意しなければな
らず、強すぎると炭化水素に戻ってしまい撥水化し、弱
すぎると充分な親水性が得られない。還元剤としてはホ
ルムアルデヒド、アセトアルデヒド、イソプロパノー
ル、アスコルピン酸等の有機還元剤や、演歌第一スズ等
の無機還元剤が使用できる。また、この時に紫外線を照
射すると光還元反応を起こすので、反応が円滑に進行す
る。紫外線の波長としてはカルボニル化合物の最低励起
一重項(S)状態にするために、n→π吸収帯であ
る300nm以上を使用すれば、不必要な分解反応等を
抑制できるので望ましい
At this time, attention must be paid to the strength of the reducing agent. If it is too strong, it returns to hydrocarbons and becomes water repellent. If it is too weak, sufficient hydrophilicity cannot be obtained. Organic reducing agents such as formaldehyde, acetaldehyde, isopropanol and ascorbic acid, and inorganic reducing agents such as stannous enka can be used as the reducing agent. Also, at this time, if ultraviolet rays are irradiated, a photoreduction reaction occurs, so that the reaction proceeds smoothly. It is desirable to use 300 nm or more, which is an n → π * absorption band, in order to make the carbonyl compound the lowest excited singlet (S 1 ) state as the wavelength of the ultraviolet light, because unnecessary decomposition reaction and the like can be suppressed.

【0010】以上のように、処理は主鎖の切断なしに結
合したアルコール性水酸基を多数存在させるために、強
度低下が少なく、良好な親水性が得られる。
As described above, in the treatment, since a large number of alcoholic hydroxyl groups bonded without breaking the main chain are present, a decrease in strength is small and good hydrophilicity is obtained.

【0011】親水性は第1の酸化処理条件によって調整
でき、目的に応じて条件を設定する。また、ポリエチレ
ンだけでなく、基本的に−CH−または、および>C
=Oを持つ分子全てに適応可能である。
The hydrophilicity can be adjusted by the first oxidation treatment condition, and the condition is set according to the purpose. In addition to polyethylene, basically -CH 2 - or, and> C
It is applicable to all molecules having OO.

【0012】また形状につても不織布や織布の他、フィ
ルムや板状および塗料の樹脂塗膜についても同様に適用
できる。そして、このように親水化した合成樹脂からな
る織布、不織布または微多孔性フィルム等を蓄電池用セ
パレータとして使用する時は、長期に渡り安定した性能
の電池が得られる。
In addition to the non-woven fabric and the woven fabric, the present invention can be similarly applied to films, plates, and resin coatings of paints. When a woven fabric, a nonwoven fabric, a microporous film, or the like made of a synthetic resin hydrophilized as described above is used as a storage battery separator, a battery having stable performance over a long period of time can be obtained.

【0013】[0013]

【実施例】本発明に係る合成樹脂の表面改質法につい
て、説明する。 (実施例1)芯がポリプロピレンでその表面をポリエチ
レンで鞘状に覆われている単繊維を抄紙して熱融着され
た不織布(目付85g/m、厚み0.23mm)を良
く水洗し、乾燥後、これを室温で1M重クロム酸カリウ
ム水溶液に浸漬して1時間放置して酸化処理をした。こ
の後これを取り出し、水洗、乾燥後、5%ホルムアルデ
ヒド水溶液に室温で24時間浸漬して還元処理を行い、
取り出して水洗、乾燥し、表面改質した合成樹脂を得
た。これを不織布Aとした。
EXAMPLES A method for modifying the surface of a synthetic resin according to the present invention will be described. (Example 1) A monofilament whose core is covered with polypropylene and the surface of which is sheathed with polyethylene is made into a paper, and a heat-sealed nonwoven fabric (having a basis weight of 85 g / m 2 and a thickness of 0.23 mm) is thoroughly washed with water. After drying, this was immersed in a 1M aqueous solution of potassium dichromate at room temperature and left for 1 hour to perform oxidation treatment. After that, it is taken out, washed with water, dried, and immersed in a 5% formaldehyde aqueous solution at room temperature for 24 hours to perform a reduction treatment.
It was taken out, washed with water and dried to obtain a surface-modified synthetic resin. This was designated as nonwoven fabric A.

【0014】(実施例2)実施例1で用いた熱融着され
た不織布を良く水洗し、乾燥後、室温で1M重クロム酸
カリウム水溶液に浸漬して1時間放置して酸化処理をし
た後、取り出して水洗、乾燥後、5%ホルムアルデヒド
水溶液に室温で浸漬し、この状態でパイレックスフィル
ターを装着した紫外線ランプを用いて波長313nmお
よび366nmを主とする紫外線を30分間照射して光
還元処理した後、水洗、乾燥して得たものを不織布Bと
した。
(Example 2) The heat-sealed nonwoven fabric used in Example 1 was thoroughly washed with water, dried, immersed in a 1 M aqueous solution of potassium dichromate at room temperature, and left for 1 hour for oxidation treatment. It was taken out, washed with water, dried, immersed in a 5% formaldehyde aqueous solution at room temperature, and irradiated with ultraviolet rays mainly having wavelengths of 313 nm and 366 nm for 30 minutes using an ultraviolet lamp equipped with a Pyrex filter in this state. Thereafter, the resultant was washed with water and dried to obtain a non-woven fabric B.

【0015】(実施例3)実施例1で用いた熱融着され
た不織布を良く水洗し、乾燥後、パイレックスフィルタ
ーを装着した紫外線ランプを用いて波長254nmの紫
外線を30分間照射して酸化処理した後、5%ホルムア
ルデヒド水溶液に室温で24時間浸漬して、水洗、乾燥
したものを不織布Cとした。
Example 3 The heat-fused nonwoven fabric used in Example 1 was thoroughly washed with water, dried, and then oxidized by irradiating with ultraviolet light having a wavelength of 254 nm for 30 minutes using an ultraviolet lamp equipped with a Pyrex filter. After that, it was immersed in a 5% formaldehyde aqueous solution at room temperature for 24 hours, washed with water and dried to obtain a nonwoven fabric C.

【0016】(実施例4)実施例1で用いた熱融着され
た不織布を良く水洗し、乾燥後、パイレックスフィルタ
ーを装着した紫外線ランプを用いて波長254nmの紫
外線を30分間照射後、5%ホルムアルデヒド水溶液に
室温で浸漬し、この状態でパイレックスフィルターを装
着した紫外線ランプを用いて波長313nmおよび36
6nmを主とする紫外線を30分間照射後、水洗、乾燥
したものを不職布Dとした。
Example 4 The heat-sealed nonwoven fabric used in Example 1 was thoroughly washed with water, dried, and irradiated with ultraviolet rays having a wavelength of 254 nm for 30 minutes using an ultraviolet lamp equipped with a Pyrex filter. The sample was immersed in an aqueous formaldehyde solution at room temperature, and in this state, a wavelength of 313 nm and a wavelength of 36 nm were measured using an ultraviolet lamp equipped with a Pyrex filter.
Irradiation with ultraviolet light mainly of 6 nm for 30 minutes, washing with water, and drying were regarded as non-woven cloth D.

【0017】上記本発明に係る合成樹脂繊維不織布の表
面を確認すべく、酸化処理後および還元処理後にFT−
IR(フーリエ変換赤外吸収スペクトル)による官能基
の定性を行った。酸化剤および紫外線による酸化処理後
は共に、処理前には出現しなかった1750cm−1
近のカルボニル基による吸収が表れ、酸化処理によって
ポリオレフィン分子が部分的に酸化してカルボニル基が
導入されたことがわかった。また同時に3500cm
−1付近に小さな水酸基による吸収ピークも出現した。
In order to confirm the surface of the synthetic resin fiber nonwoven fabric according to the present invention, FT-
The functional groups were qualitatively determined by IR (Fourier transform infrared absorption spectrum). Both after the oxidation treatment with the oxidizing agent and the ultraviolet light, absorption by the carbonyl group near 1750 cm −1 that did not appear before the treatment appeared, and the oxidation treatment partially oxidized the polyolefin molecule and introduced the carbonyl group. I understood. 3500cm at the same time
An absorption peak due to a small hydroxyl group also appeared around -1 .

【0018】次いで、還元処理後はカルボニル基のピー
クが小さくなり、水酸基のピークが大きくなったことか
ら、本処理によりポリオレフィン分子中に親水基である
アルコール性水酸基が導入されることが確認できた。ま
た、簡易的に親水性を評価するために、イオン交換水へ
の含浸を行った結果、酸化処理後も少しは水を吸収する
が、還元処理後は全て速やかに水を吸収することが認め
られた。
Next, after the reduction treatment, the peak of the carbonyl group became smaller and the peak of the hydroxyl group became larger. Thus, it was confirmed that the alcoholic hydroxyl group, which is a hydrophilic group, was introduced into the polyolefin molecule by this treatment. . In addition, as a result of impregnating with ion-exchanged water in order to easily evaluate hydrophilicity, it was found that water was slightly absorbed after the oxidation treatment, but all water was absorbed immediately after the reduction treatment. Was done.

【0019】尚、いずれの実施例も、不織布を酸化剤溶
液や還元剤溶液に浸漬する方法を採用したが、この方法
に限らず、酸化剤溶液や還元剤溶液を不織布に含浸させ
ても処理できる。
In each of the embodiments, the method of immersing the nonwoven fabric in the oxidizing agent solution or the reducing agent solution is adopted. However, the present invention is not limited to this method. it can.

【0020】(従来例1)実施例1で用いた熱融着され
た不織布を良く水洗し、乾燥後、110℃で濃硫酸に2
0分間浸漬してスルホン化した後、水洗、乾燥後のもの
を従来例1とした。不織布は茶色に変色した。
(Conventional Example 1) The heat-sealed nonwoven fabric used in Example 1 was thoroughly washed with water, dried, and then concentrated in concentrated sulfuric acid at 110 ° C. for 2 hours.
After immersion for 0 minutes for sulfonation, washing with water and drying were taken as Conventional Example 1. The nonwoven fabric turned brown.

【0021】(従来例2)実施例1で用いた熱融着され
た不織布を良く水洗し、界面活性剤を塗布して乾燥した
ものを従来例2とした。
(Conventional Example 2) The heat-sealed nonwoven fabric used in Example 1 was thoroughly washed with water, coated with a surfactant and dried to obtain Conventional Example 2.

【0022】(比較例1)ニッケルカドミウム蓄電池等
にも使用されているナイロン製の不織布(目付95g/
、厚み0.22mm)を比較例1とした。
(Comparative Example 1) Nylon non-woven fabric (with a basis weight of 95 g /
m 2 , thickness 0.22 mm).

【0023】(比較例2)鉛蓄電池等に使用されている
ガラス繊維マットを準備し比較例2とした。
(Comparative Example 2) A glass fiber mat used for a lead storage battery or the like was prepared, and Comparative Example 2 was provided.

【0024】得られた各不織布の親水性を評価するため
に、吸水速度、保水率を測定した。吸水速度は水分平衡
状態の各不織布を2.5×20cmに裁断し、20℃に
おいて、下端を5mmだけイオン交換水中に漬かるよう
にして、30分で毛管現象によって上昇した高さを測定
した。保水率は各不織布を15×15cmに裁断し、イ
オン交換水中に1時間浸漬後、引き上げて10分後の重
量増加分を保持された水として、試料重量当たりの百分
率とした。表1に測定結果を示した。
In order to evaluate the hydrophilicity of each of the obtained nonwoven fabrics, the water absorption rate and the water retention were measured. The water absorption rate was determined by cutting each nonwoven fabric in a water equilibrium state into 2.5 × 20 cm, immersing the lower end in ion-exchanged water by 5 mm at 20 ° C., and measuring the height increased by capillary action in 30 minutes. The water retention rate was determined by cutting each nonwoven fabric to 15 × 15 cm, immersing it in ion-exchanged water for 1 hour, pulling it up, and keeping the weight increase after 10 minutes as water retained as a percentage per sample weight. Table 1 shows the measurement results.

【0025】次に強度を測定するために、各不織布を5
×20cmに裁断し、JIS L1068に準じ、つか
み間隔10cm、引張り速度30cm/分として、切断
した時の荷重を引張り強度とした。表1に測定結果を示
した。
Next, in order to measure the strength, each nonwoven fabric was
× 20 cm, cut according to JIS L1068, with a gripping interval of 10 cm and a tensile speed of 30 cm / min. Table 1 shows the measurement results.

【0026】[0026]

【表1】 [Table 1]

【0027】以上のように、本発明に係る不織布Aから
Dは、従来例1,2および比較例1に比し、大きな吸収
速度と保水率を持つことがわかった。また、非常に高い
親水性を持つガラス繊維から成る比較例2に匹敵する保
水率を持ち、硫酸電解液に安定なポリオレフィン系樹脂
であるために鉛蓄電池へも適用可能である。
As described above, it was found that the nonwoven fabrics A to D according to the present invention had a higher absorption rate and a higher water retention rate than the conventional examples 1 and 2 and the comparative example 1. In addition, since it is a polyolefin resin having a water retention comparable to that of Comparative Example 2 made of glass fiber having extremely high hydrophilicity and being stable in a sulfuric acid electrolyte, it can be applied to a lead storage battery.

【0028】スルホン化処理した比較例1の不織布の引
張り強度が低いのは、処理により、分子鎖が切れたこと
によると思われる。
The reason why the tensile strength of the nonwoven fabric of Comparative Example 1 subjected to the sulfonation treatment was low is considered to be that the molecular chain was broken by the treatment.

【0029】次にこれら不織布を電池のセパレータとし
ての性能を確認すべく、各不織布を用いて、定格容量1
500mAのAAサイズのニッケル水素蓄電池を作成し
た。正極には、5%亜鉛と2%コバルトを固溶した水酸
化ニッケルと7.5%の酸化コバルトを0.5%CMC
水溶液で混練し、これを発泡ニッケル基板に充填塗布
し、乾燥、プレスして得られたペースト式ニッケル極を
用いた。負極には、AB系の水素吸蔵合金粉末とカー
ボンパウダーを1%CMC水溶液で混練したものをニッ
ケルメッキした鉄の多孔シートへ充填塗布し、乾燥、プ
レスした水素吸蔵合金電極を用いた。これら正極と負極
の間に各不織布を挟んで巻回して巻回極板群とし、ニッ
ケルメッキした鉄製の有底円筒缶に収納し、比重1.3
0の水酸化カリウムを主体とする電解液を注液後、蓋で
缶を封口して初充電を行い、本発明の不織布AからDを
用いた電池をそれぞれ電池Aから電池Dとし、従来例
1、2の不織布を用いた電池を、電池E、F、比較例1
の不織布を用いた電池を電池Gとした。
Next, in order to confirm the performance of these non-woven fabrics as a battery separator, each of the non-woven fabrics was used to obtain a rated capacity of 1%.
A nickel-metal hydride storage battery having an AA size of 500 mA was prepared. For the positive electrode, 5% zinc and 2% cobalt solid solution nickel hydroxide and 7.5% cobalt oxide 0.5% CMC
The resulting mixture was kneaded with an aqueous solution, filled and applied to a foamed nickel substrate, dried, and pressed to obtain a paste-type nickel electrode. The negative electrode was filled applying those kneading hydrogen absorbing alloy powder and carbon powder AB 5 system with 1% CMC aqueous solution to the perforated sheet iron plated with nickel, dry, using a hydrogen storage alloy electrode was pressed. Each non-woven fabric is wound between the positive electrode and the negative electrode to form a wound electrode plate group, which is housed in a nickel-plated iron bottomed cylindrical can and having a specific gravity of 1.3.
After injecting an electrolyte mainly composed of potassium hydroxide of 0, the can is sealed with a lid to perform initial charge, and batteries using the nonwoven fabrics A to D of the present invention are referred to as batteries A to D, respectively. The batteries using the nonwoven fabrics 1 and 2 were replaced with batteries E and F, Comparative Example 1
The battery using the nonwoven fabric was designated as Battery G.

【0030】これらの電池を用い、自己放電およびサイ
クル寿命特性を評価した。自己放電試験は初期の0.2
C放電容量を測定し、0.1Cで15時間の充電後、温
度40℃の環境下で1ケ月放置後に0.2C放電容量を
測定し、初期の0.2C放電容量と比較し容量維持率を
求めた。サイクル寿命試験は25℃の恒温槽中で、1C
の電流で充電し−ΔV検出により充電停止し、次いで1
Cの電流で電池電圧が1.0Vになるまでの放電を行
い、容量の変化を測定した。−ΔV検出とは電池の充電
末期に発生する酸素ガスを負極が吸収することにより電
池電圧が低下する現象を捉えて充電を制御する方式のこ
とで、一般的使用されている充電制御方式である。これ
らの結果を表2に示した。
Using these batteries, self-discharge and cycle life characteristics were evaluated. The self-discharge test was the initial 0.2
C discharge capacity was measured, after charging for 15 hours at 0.1 C, and left for one month in an environment at a temperature of 40 ° C., 0.2 C discharge capacity was measured, and the capacity retention ratio was compared with the initial 0.2 C discharge capacity. I asked. The cycle life test was performed in a 25 ° C constant temperature bath at 1C.
And stop charging by detecting -ΔV.
Discharge was performed with the current of C until the battery voltage reached 1.0 V, and the change in capacity was measured. -ΔV detection is a method of controlling charging by catching a phenomenon in which a negative electrode absorbs oxygen gas generated at the end of charging of a battery to lower the battery voltage, and is a commonly used charging control method. . Table 2 shows the results.

【0031】[0031]

【表2】 [Table 2]

【0032】以上のように、本発明に係る不織布セパレ
ータを用いた電池AからDは良好な容量維持率を示し
た。電池Eは、スルホン化時に低分子量の副生成物が生
成し、これが電解液に溶出するために容量維持率が低く
なるものと思われる。電池Fの容量維持率は更に低くな
るが、これは界面活性剤が電解液中に溶出するためと思
われる。更に、電池Gはもっと悪くなるが、これはナイ
ロンが分解して窒素化合物(亜硝酸イオン、硝酸イオ
ン)が生成し、いわゆるシャトル反応が起きたことによ
ると推定される。
As described above, the batteries A to D using the nonwoven fabric separator according to the present invention exhibited good capacity retention. In the battery E, a low-molecular-weight by-product is generated at the time of sulfonation, and this is eluted into the electrolytic solution, so that the capacity retention is considered to be low. The capacity retention of the battery F was further reduced, presumably because the surfactant was eluted into the electrolyte. Further, the battery G becomes worse, which is presumed to be due to the decomposition of nylon to generate nitrogen compounds (nitrite ions and nitrate ions), causing a so-called shuttle reaction.

【0033】図1にサイクル寿命試験の結果を示した。
図からの明らかな通り、本発明にかかる不織布セパレー
タを用いた電池AからDは良好なサイクル寿命特性を示
した、これは、本発明に係る処理を施した不織布は高い
親水性を長期に渡り維持しているからで、この不織布が
電池のセパレータとして好ましいものであることが分か
る。電池EおよびGは徐々に容量が低下した。これは充
放電サイクルを繰り返すうちに、不織布の親水性が低下
することにより極板間抵抗が増大して放電容量が低下す
ると考えられる。また、電池Fは急激な容量低下を示し
たが、これは界面活性剤が早期に電解液に溶出して、親
水性に乏しいポリオレフィンが露出したことにより不織
布が撥水化したためと考えられる。
FIG. 1 shows the results of the cycle life test.
As is clear from the figure, batteries A to D using the nonwoven fabric separator according to the present invention exhibited good cycle life characteristics. This is because the nonwoven fabric treated according to the present invention exhibited high hydrophilicity over a long period of time. This indicates that the nonwoven fabric is preferable as a battery separator. The capacity of the batteries E and G gradually decreased. It is considered that, during the repetition of the charge / discharge cycle, the hydrophilicity of the nonwoven fabric decreases, so that the interelectrode resistance increases and the discharge capacity decreases. In addition, the battery F showed a rapid decrease in capacity. This is considered to be because the surfactant was eluted into the electrolyte solution early, and the non-woven fabric became water-repellent due to the exposure of the polyolefin poor in hydrophilicity.

【0034】[0034]

【発明の効果】以上の通り、本発明は、撥水性合成樹脂
の吸水速度や保水率を向上し得て親水性を付与できると
共に、これを電池用セパレータに用いた場合は、電池の
容量維持率やサイクル寿命の向上をなし得る等の効果を
奏するものである。
As described above, the present invention can improve the water absorption rate and water retention of the water-repellent synthetic resin to impart hydrophilicity, and when this is used for a battery separator, the capacity of the battery can be maintained. This has the effect of improving the efficiency and cycle life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 サイクル寿命特性図。FIG. 1 is a cycle life characteristic diagram.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 合成樹脂を酸化処理した後、還元剤によ
り還元処理を行うことを特徴とする合成樹脂の表面改質
法。
1. A method for modifying the surface of a synthetic resin, comprising oxidizing the synthetic resin and then performing a reduction treatment with a reducing agent.
【請求項2】 酸化処理した後、還元剤の存在下で紫外
線照射による光還元反応を行うことを特徴とする請求項
1記載の合成樹脂の表面改質法。
2. The method for modifying the surface of a synthetic resin according to claim 1, wherein after the oxidation treatment, a photoreduction reaction is carried out by irradiating ultraviolet rays in the presence of a reducing agent.
【請求項3】 合成樹脂を酸化処理後、還元剤により還
元処理を行うか、または、還元剤の存在下で紫外線照射
による光還元反応を行った表面改質された合成樹脂を用
いてなる電池用セパレータ。
3. A battery using a surface-modified synthetic resin obtained by subjecting a synthetic resin to an oxidation treatment and then performing a reduction treatment with a reducing agent, or performing a photoreduction reaction by ultraviolet irradiation in the presence of the reducing agent. For separator.
JP2000136485A 2000-03-30 2000-03-30 Surface modifying method of synthetic resin and separator for battery Pending JP2001283820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136485A JP2001283820A (en) 2000-03-30 2000-03-30 Surface modifying method of synthetic resin and separator for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136485A JP2001283820A (en) 2000-03-30 2000-03-30 Surface modifying method of synthetic resin and separator for battery

Publications (1)

Publication Number Publication Date
JP2001283820A true JP2001283820A (en) 2001-10-12

Family

ID=18644417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136485A Pending JP2001283820A (en) 2000-03-30 2000-03-30 Surface modifying method of synthetic resin and separator for battery

Country Status (1)

Country Link
JP (1) JP2001283820A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182516A (en) * 2002-12-02 2004-07-02 Tokai Univ Method of photochemically modifying solid material surface
WO2005083816A1 (en) * 2004-02-27 2005-09-09 Nippon Sheet Glass Company, Limited Separator for lead acid storage battery
JP2008094923A (en) * 2006-10-11 2008-04-24 Kanto Gakuin Univ Surface Engineering Research Institute Surface modification method of cycloolefin polymer material, surface-modified cycloolefin polymer material obtained using the same, method for forming metallic film on surface-modified cycloolefin polymer material, and cycloolefin polymer material with metallic film
JP2010185085A (en) * 2010-04-30 2010-08-26 Masataka Murahara Method of photochemically reforming surface of solid material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004182516A (en) * 2002-12-02 2004-07-02 Tokai Univ Method of photochemically modifying solid material surface
WO2005083816A1 (en) * 2004-02-27 2005-09-09 Nippon Sheet Glass Company, Limited Separator for lead acid storage battery
US7939204B2 (en) 2004-02-27 2011-05-10 Nippon Sheet Glass Company, Limited Separator for lead-acid battery
JP4789801B2 (en) * 2004-02-27 2011-10-12 日本板硝子株式会社 Lead-acid battery separator
JP2008094923A (en) * 2006-10-11 2008-04-24 Kanto Gakuin Univ Surface Engineering Research Institute Surface modification method of cycloolefin polymer material, surface-modified cycloolefin polymer material obtained using the same, method for forming metallic film on surface-modified cycloolefin polymer material, and cycloolefin polymer material with metallic film
JP4738308B2 (en) * 2006-10-11 2011-08-03 株式会社関東学院大学表面工学研究所 Method for producing cycloolefin polymer material with metal film and cycloolefin polymer material with metal film obtained by using the method
JP2010185085A (en) * 2010-04-30 2010-08-26 Masataka Murahara Method of photochemically reforming surface of solid material

Similar Documents

Publication Publication Date Title
RU2568667C2 (en) Improvements in design of lead-acid accumulator
JP3221337B2 (en) Alkaline storage battery separator
JP2001250529A (en) Alkaline secondary battery
JP2001283820A (en) Surface modifying method of synthetic resin and separator for battery
JP3216592B2 (en) Alkaline storage battery
JPH10116600A (en) Alkaline electrolyte secondary electro-chemical cell
JPH06187961A (en) Grafted fine-crystalline separator for electrochemical battery and its manufacture
JP3306412B2 (en) Surface treatment method for polyphenylene sulfide fiber or polysulfone fiber
JP3400927B2 (en) Method for producing positive electrode for alkaline secondary battery
US6033803A (en) Hydrophilic electrode for an alkaline electrochemical cell, and method of manufacture
JP3709160B2 (en) Method for modifying surface of synthetic resin material and method for producing battery separator
JP2762443B2 (en) Manufacturing method of battery separator
JPH113694A (en) Manufacture of separator material for battery
JPH07130392A (en) Alkaline storage battery
JPH07262979A (en) Separator for alkaline secondary battery
KR100331433B1 (en) Separator for secondary battery and sealed alkali-zinc secondary battery
JP2002203532A (en) Separator for battery and its manufacturing method as well as battery using the same
JP2950935B2 (en) Alkaline storage battery
JP2003282066A (en) Current collector component for battery and battery using the same
JPH06140018A (en) Separator for alkali battery and its manufacture
JP3742256B2 (en) Method for producing separator for alkaline battery and method for producing alkaline battery
JPH07134980A (en) Alkaline secondary battery and its manufacture
JP3722278B2 (en) Hydrophilized olefin composition and method for producing the same
JPH07192715A (en) Separator for alkaline storage battery and alkaline storage battery using this separator
JP2001202956A (en) Active material for nickel electrode of alkaline battery, alkaline battery and initial chemical processing method of alkaline battery