JPH113694A - Manufacture of separator material for battery - Google Patents

Manufacture of separator material for battery

Info

Publication number
JPH113694A
JPH113694A JP9152146A JP15214697A JPH113694A JP H113694 A JPH113694 A JP H113694A JP 9152146 A JP9152146 A JP 9152146A JP 15214697 A JP15214697 A JP 15214697A JP H113694 A JPH113694 A JP H113694A
Authority
JP
Japan
Prior art keywords
gas
sulfuric acid
treatment
raw material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9152146A
Other languages
Japanese (ja)
Inventor
Akira Watanabe
渡邉  朗
Fumiichiro Oshima
文一郎 大島
Isao Kawakami
功 川上
Minoru Kayano
稔 柏野
Masayuki Watanabe
真之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP9152146A priority Critical patent/JPH113694A/en
Publication of JPH113694A publication Critical patent/JPH113694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a separator for battery, which has excellent charging and discharging characteristic, especially, self-discharging characteristic, with industrial advantage by performing the hydrophilic treatment to a surface of a polyolefin group resin raw material having excellent acid-resistance and alkali-resistance, and thereafter, dipping the raw material with sulfuric acid. SOLUTION: As a polyolefin group resin raw material, non-woven fabric, woven fabric or fine porous film, which is made of fiber mainly composed of polyethylene and polypropylene and to which the hydrophilic treatment is performed on a surface thereof, is used. A method with chemical means and a method with physical means such as plasma discharge is used as a method for hydrophilic treatment. A chemical processing with oxygen gas or sulfurous acid gas, which includes fluorine gas at 0.1-10 capacity %, is desirably used so as to form a radical to be required for efficient modulation. Continuously, the raw material is dipped with sulfuric acid solution having sulfuric acid concentration at 50-98 wt.% at a bathing temperature less than 100 deg.C. After the dipping, the raw material is neutralized by washing, and treated with the surface active agent so as to increase the intruding speed of the alkali solution. Self- discharging characteristic is thereby improved without deteriorating the raw material.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はポリオレフィン系樹
脂素材からなる電池セパレータ材料の製造方法に関す
る。特にアルカリ蓄電池用に適した、自己放電特性の改
良された電池セパレータ材料の製造方法に関する。
The present invention relates to a method for producing a battery separator material made of a polyolefin resin material. Particularly, the present invention relates to a method for producing a battery separator material having improved self-discharge characteristics, which is suitable for an alkaline storage battery.

【0002】[0002]

【従来の技術】従来、ニッケル−カドミウム二次電池、
ニッケル−水素二次電池等のセパレータとしては、主と
してナイロンが多く使用されてきた。ナイロンは適度な
強度、ガス透過性、親水性を有しているが、耐アルカリ
性、耐酸化性等の耐薬品性は十分では無く、特に、高温
で、電池を充電した場合には、電池内で発生した酸素に
よりナイロンが二酸化炭素、水、アンモニア等に分解さ
れ、これらが電池特性に悪影響を及ぼし、更に分解が進
むとセパレータとしての電気絶縁能力が失われる結果と
なる。これを解決するため、ポリオレフィン系樹脂の使
用が試みられている。ポリオレフィン系樹脂は、耐アル
カリ性、耐酸性に優れ、強度やガス透過性もナイロンと
同等であるが、親水性に乏しく、電解液との親和性、電
解液保持能力が劣る欠点があった。このため、ポリオレ
フィン系樹脂の表面を親水化処理することが提案されて
いる。例えばJACS,100:6,1948,Ma
r.(1978)、特公平4−7548(特開昭60−
109171)や特公平5−46056(特開昭60−
109171)等はフッ素を含むガスで表面処理したポ
リオレフィン不織布からなる電池用セパレータを提案し
ている。
2. Description of the Related Art Conventionally, nickel-cadmium secondary batteries,
Many nylons have been mainly used as separators for nickel-hydrogen secondary batteries and the like. Nylon has moderate strength, gas permeability, and hydrophilicity, but does not have sufficient chemical resistance such as alkali resistance and oxidation resistance, especially when batteries are charged at high temperatures. Nylon is decomposed into carbon dioxide, water, ammonia, etc. by the oxygen generated in the above, and these adversely affect the battery characteristics, and further decomposition leads to loss of the electrical insulation capacity as a separator. In order to solve this, use of a polyolefin resin has been attempted. Polyolefin-based resins are excellent in alkali resistance and acid resistance, and have the same strength and gas permeability as nylon, but have poor hydrophilicity, and are inferior in affinity for an electrolyte and poor electrolyte retention ability. For this reason, it has been proposed that the surface of the polyolefin resin be subjected to a hydrophilic treatment. For example, JACS, 100: 6, 1948, Ma
r. (1978), Japanese Patent Publication No. 4-7548 (Japanese Unexamined Patent Publication No.
109171) and Japanese Patent Publication No. 5-46056 (Japanese Unexamined Patent Publication No.
No. 109171) have proposed a battery separator made of a polyolefin nonwoven fabric surface-treated with a gas containing fluorine.

【0003】ポリオレフィン系樹脂の表面にOH基、C
OOH基、SO3 H基等の極性基を導入し親水化処理す
る方法としては、フッ素ガス処理以外に、プラズマ放電
法、コロナ放電法、火炎法、電子線照射法、紫外線照射
法、放射線照射法、発煙硫酸法、三酸化硫黄ガスによる
スルフォン化法等が提案されている。而して、かかる手
段によりポリオレフィン系樹脂を処理した場合、確かに
樹脂表面に主として、水酸基やカルボキシル基等が導入
され、親水性、電解液との親和性は向上するものの、充
放電特性は十分でなく、電池セパレータとしての性能に
は未だ問題があった。
[0003] OH groups, C
As a method of introducing a polar group such as an OOH group or an SO 3 H group and performing a hydrophilic treatment, a plasma discharge method, a corona discharge method, a flame method, an electron beam irradiation method, an ultraviolet irradiation method, or a radiation irradiation may be used in addition to the fluorine gas treatment. Methods, fuming sulfuric acid method, sulfonation method using sulfur trioxide gas and the like have been proposed. Thus, when a polyolefin-based resin is treated by such means, hydroxyl groups, carboxyl groups, and the like are mainly introduced into the resin surface, and although the hydrophilicity and the affinity with the electrolytic solution are improved, the charge / discharge characteristics are sufficient. However, there was still a problem in the performance as a battery separator.

【0004】一方、特開昭56−3973、特開昭57
−191956、特公平07−32008(特開昭58
−175256)、特開昭62−115657、特開平
01−132042や特開平1−132044等には発
煙硫酸溶液、三酸化硫黄(SO3 )ガスあるいは熱硫酸
水溶液によるポリオレフィン系樹脂のスルホン化処理方
法が開示されている。これらの方法により付与されるス
ルフォン基が電池セパレータとして優れた親液性を保有
しており、充放電特性、特に自己放電特性に優れている
と言われている。しかしながら、これらの方法は、強い
酸処理の為ポリオレフィンの内部までスルフォン化され
てしまい、ポリオレフィン樹脂の強度が失われて、セパ
レータとして十分な強度が得られなくなり、或いは、表
面のスルフォン基が、電池製造工程中に脱離したり、酸
化されてしまい、必要とする良好な電池特性を示さなく
なるという欠点があった。これらの問題を解決するため
に、発煙硫酸法においては、処理後、希薄な硫酸水溶液
に徐々に浸漬するマイルドな後処理を採る方法が行われ
ているが、工程が簡素化されず、必ずしも工業的に優れ
たものではない。
On the other hand, JP-A-56-3973 and JP-A-57
-191956, JP-B-07-32008 (JP-A-58-1983)
175256), JP-A-62-115657, JP-A-01-130242 and JP-A-1-132244, etc. disclose a method of sulfonating a polyolefin resin with a fuming sulfuric acid solution, sulfur trioxide (SO 3 ) gas or a hot sulfuric acid aqueous solution. Is disclosed. It is said that the sulfone group provided by these methods has excellent lyophilicity as a battery separator, and is excellent in charge / discharge characteristics, particularly self-discharge characteristics. However, in these methods, the inside of the polyolefin is sulfonated due to the strong acid treatment, and the strength of the polyolefin resin is lost, so that sufficient strength cannot be obtained as a separator. There is a drawback that they are desorbed or oxidized during the manufacturing process and do not exhibit the required good battery characteristics. In order to solve these problems, the fuming sulfuric acid method employs a mild post-treatment method of gradually immersing in a dilute sulfuric acid aqueous solution after the treatment, but the process is not simplified and is not necessarily industrial. It is not excellent.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑みなされたものであって、耐酸性、耐アルカリ性に
優れた、ポリオレフィン系樹脂素材を用いて、充放電特
性、特に自己放電特性に優れた電池セパレータ材料を工
業的有利に製造する方法を提供することを目的とするも
のである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and uses a polyolefin resin material excellent in acid resistance and alkali resistance to improve charge and discharge characteristics, particularly self-discharge characteristics. It is an object of the present invention to provide a method for producing an excellent battery separator material in an industrially advantageous manner.

【0006】[0006]

【課題を解決するための手段】本発明者等はかかる目的
を達成するため、鋭意検討した結果、ポリオレフィン系
樹脂素材の表面に−OH,−COOH、SO3 Hもしく
は−COF,SO2 Fx基の少なくとも1つの官能基を
付与させる処理を実施後、更に硫酸溶液特に硫酸水溶液
に浸漬することにより、自己放電等充放電特性に優れた
耐久性の良好なアルカリ蓄電池用セパレータ材料が得ら
れることを見出し、本発明を達成した。即ち本発明の要
旨は、ポリオレフィン系樹脂素材の表面を親水化処理し
た後、硫酸に浸漬することを特徴とする電池セパレータ
材料の製造方法に存する。
Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that the surface of a polyolefin resin material has --OH, --COOH, SO 3 H or --COF, SO 2 Fx groups. After performing the treatment of imparting at least one functional group, by further immersing in a sulfuric acid solution, particularly a sulfuric acid aqueous solution, it is possible to obtain a highly durable alkaline storage battery separator material having excellent charge / discharge characteristics such as self-discharge. Heading, the present invention has been achieved. That is, the gist of the present invention resides in a method for producing a battery separator material, characterized in that a surface of a polyolefin-based resin material is subjected to a hydrophilic treatment and then immersed in sulfuric acid.

【0007】本発明者等の検討によれば、ポリプロピレ
ン、ポリエチレン等のポリオレフィン系フィルムをフッ
素ガス処理すると、カルボニル基、カルボキシル基、水
酸基あるいはスルフォフッ素基(SO2 Fx)の少なく
とも一つの官能基が付与されることが、FT−IR法に
よる吸収、化学修飾法によるESCA分析で確認されて
おり、ポリオレフィン系の不織布にも同様の官能基が付
与されると考えられる。
According to the study of the present inventors, when a polyolefin film such as polypropylene or polyethylene is treated with fluorine gas, at least one functional group of a carbonyl group, a carboxyl group, a hydroxyl group or a sulfofluorine group (SO 2 Fx) is obtained. It is confirmed by the absorption by the FT-IR method and the ESCA analysis by the chemical modification method, and it is considered that the same functional group is provided to the polyolefin-based nonwoven fabric.

【0008】これらの親水基が生成することにより、吸
水性(吸液速度、吸液高さ)等が大幅に改善することは
上記の公知文献等から明らかである。しかし、親水化さ
れた不織布サンプルをニッケル水素蓄電池用セパレータ
に供した場合、45℃×7日の容量維持率は50%程度
で、十分な自己放電特性は得られない。更に、スルフォ
フッ素基(SO2 Fx)を生成しているサンプルを熱ア
ルカリに浸漬し、スルフォン酸系塩(SO3 K等)に変
換することにより、イオン交換能(中性塩分解能)を
0.01〜0.06meq/gとして、ニッケル水素蓄
電池用セパレータに供しても十分な自己放電特性は得ら
れない。
It is clear from the above-mentioned known literatures that the generation of these hydrophilic groups significantly improves the water absorption (liquid absorption speed, liquid absorption height) and the like. However, when the hydrophilic nonwoven fabric sample is supplied to a nickel-metal hydride storage battery separator, the capacity retention rate at 45 ° C. × 7 days is about 50%, and sufficient self-discharge characteristics cannot be obtained. Further, the sample that produces sulfofluorine groups (SO 2 Fx) is immersed in hot alkali and converted into a sulfonic acid salt (such as SO 3 K) to reduce ion exchange capacity (neutral salt resolution) to zero. Even if it is used as a separator for a nickel-metal hydride storage battery at 0.01 to 0.06 meq / g, sufficient self-discharge characteristics cannot be obtained.

【0009】そこで、本発明者等は硫酸の脱水能、エッ
チング能に注目した。硫酸は撥水性のポリオレフィンに
は濡れず、そのままでは処理効果は期待できない。ポリ
オレフィンを処理するには、通常、発煙硫酸法が考えら
れるが、無水硫酸の蒸気圧の取り扱いが問題であると同
時に、前述のように基材の劣化が大きな問題になる。我
々はこれらの機能を有効に発現させる為鋭意検討した結
果、ポリオレフィン素材を予じめ親水化してから硫酸処
理するという本発明に到達した。
Accordingly, the present inventors have paid attention to the dehydrating ability and etching ability of sulfuric acid. Sulfuric acid does not wet the water-repellent polyolefin, and the treatment effect cannot be expected as it is. In order to treat polyolefin, the fuming sulfuric acid method is usually considered. However, the handling of the vapor pressure of sulfuric anhydride is a problem, and the deterioration of the base material is a serious problem as described above. As a result of intensive studies to effectively express these functions, the present inventors have reached the present invention in which a polyolefin material is subjected to hydrophilization and then treated with sulfuric acid.

【0010】[0010]

【発明の実施の形態】本発明で使用されるポリオレフィ
ン系樹脂としては、ポリプロピレンあるいはポリエチレ
ンを主体とするものが挙げられる。かかる樹脂からなる
素材としては、特にその形体は限定されるものではな
く、例えばシート、フィルム、織布、不織布、微多孔性
フィルムやこれらを多層に張り合わせたラミネートシー
トなどが挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Examples of the polyolefin resin used in the present invention include those mainly composed of polypropylene or polyethylene. The material made of such a resin is not particularly limited in its shape, and examples thereof include a sheet, a film, a woven fabric, a nonwoven fabric, a microporous film, and a laminate sheet in which these are laminated in multiple layers.

【0011】具体的には、ポリプロピレン、ポリエチレ
ン、これらの共重合体あるいはポリマーブレンドのシー
ト、フィルム、或いは、ポリプロピレン、ポリエチレ
ン、エチレン−ビニルアルコール共重合体、エチレン−
酢酸ビニル共重合体等の単一成分からなる繊維や、ポリ
プロピレンを主材とするポリエチレン、ポリエチレン−
ビニルアルコール共重合体、ポリエチレン−酢酸ビニル
共重合体等やポリプロピレンとポリエチレンのブレンド
単独、或いはこれらよりなる複合繊維、例えば、芯成分
がポリプロピレンで、鞘成分がポリエチレンの構成から
なる複合繊維素材、また、これらの繊維の混合物などか
らなる織布、不織布が挙げられる。微多孔性フィルムで
は、超高分子ポリプロピレンの微多孔膜などがあげられ
る。
Specifically, a sheet or film of polypropylene, polyethylene, their copolymer or polymer blend, or polypropylene, polyethylene, ethylene-vinyl alcohol copolymer, ethylene-
Fiber consisting of a single component such as a vinyl acetate copolymer, polyethylene mainly composed of polypropylene, polyethylene-
Vinyl alcohol copolymer, polyethylene-vinyl acetate copolymer or the like, or a blend of polypropylene and polyethylene alone or a composite fiber composed of these, for example, a composite fiber material having a core component of polypropylene and a sheath component of polyethylene, or And woven and non-woven fabrics made of a mixture of these fibers. Examples of the microporous film include a microporous film of ultra-high molecular weight polypropylene.

【0012】セパレータに用いる素材としては、不織
布、織布、多孔質膜等が好適で、特に不織布が好まし
い。不織布の製法や、規格も特に限定されるものではな
く、電池セパレータ用に使用される製法、規格が適用さ
れるが、好ましくは、目付が100g/m2 以下であ
り、厚みは0.01〜5mm、好ましくは0.1〜1m
mである。これらのポリオレフィン素材を製造する方法
は公知の種々の技術が利用できる。
As the material used for the separator, a non-woven fabric, a woven fabric, a porous membrane and the like are suitable, and a non-woven fabric is particularly preferable. The manufacturing method and standard of the nonwoven fabric are not particularly limited, and the manufacturing method and standard used for the battery separator are applied. However, the basis weight is preferably 100 g / m 2 or less, and the thickness is 0.01 to 0.01 g / m 2. 5 mm, preferably 0.1 to 1 m
m. Various known techniques can be used for producing these polyolefin materials.

【0013】本発明においては、ポリオレフィン系樹脂
素材は先ず、その表面を親水化処理される。親水化処理
は、例えば不織布の場合、原料繊維に対する表面処理或
いは不織布自体の表面処理のいずれも可能であるが、処
理工程の簡便さの点から不織布自体の表面処理が好まし
い。親水化する方法として、プラズマ放電法、コロナ放
電法、火炎法、電子線照射法、紫外線照射法、放射線照
射法等の物理的手段による方法、並びにフッ素ガス含有
混合ガスによるフッ素処理法等の化学的手段による方法
の何れをも適用できるが、好ましくはフッ素ガス含有ガ
スによる処理である。
In the present invention, the surface of the polyolefin resin material is first subjected to a hydrophilic treatment. In the case of a nonwoven fabric, for example, the surface treatment of the raw fibers or the surface treatment of the nonwoven fabric itself is possible, but the surface treatment of the nonwoven fabric itself is preferred from the viewpoint of simplicity of the treatment process. Examples of the method for hydrophilization include physical methods such as a plasma discharge method, a corona discharge method, a flame method, an electron beam irradiation method, an ultraviolet irradiation method, and a radiation irradiation method, and chemistry such as a fluorine treatment method using a mixed gas containing a fluorine gas. Although any of the methods by a suitable means can be applied, treatment by a fluorine gas-containing gas is preferable.

【0014】親水化処理に使用されるフッ素混合ガスの
濃度は特に限定されるものではないが、通常、フッ素ガ
スは0.01〜30容量%の範囲、より好ましくは0.
1〜10容量%の範囲で用いられる。フッ素ガスが0.
1容量%未満の濃度では、接触させるポリオレフィン表
面に、効率よく改質に必要なラジカルを形成させること
が困難となり、親水基の導入が困難になる。フッ素ガス
濃度が高くなると、ポリオレフィンとの発熱反応が無視
出来なくなり、基材の劣化の原因になる。また燃焼反応
を起こす畏れがあり、10%以下で利用することが望ま
しい。
The concentration of the fluorine mixed gas used for the hydrophilization treatment is not particularly limited, but usually, the fluorine gas is contained in the range of 0.01 to 30% by volume, more preferably 0.1 to 30% by volume.
It is used in the range of 1 to 10% by volume. Fluorine gas is 0.
When the concentration is less than 1% by volume, it is difficult to efficiently form radicals required for the modification on the surface of the polyolefin to be contacted, and it becomes difficult to introduce a hydrophilic group. When the fluorine gas concentration becomes high, the exothermic reaction with the polyolefin cannot be ignored and causes deterioration of the base material. In addition, there is a fear that a combustion reaction may occur, and it is desirable to use 10% or less.

【0015】フッ素ガスは、窒素或いはヘリウム等の不
活性ガスと混合して単独で親水化処理に使用することも
できるが、好ましくは、更に、酸素ガス及び又は亜硫酸
ガスを混合して使用することが好ましい。混合ガス中の
亜硫酸ガスは0〜30容量%、好ましくは0.1〜30
容量%、より好ましくは0.5〜20容量%の範囲の濃
度が用いられる。高濃度の亜硫酸ガスはフッ素と爆発的
な混合発熱をおこすので30%以内、望ましくは20%
以内にする。酸素ガスは親水性に有効に作用する一方、
フッ素ガスによるラジカル反応を抑制する働きがあり、
規定が難しい。一般に0〜95容量%、好ましくは、0
〜85容量%の濃度範囲から選択される。従って、フッ
素ガスの希釈ガスとして空気を使用することも出来る。
Fluorine gas can be used alone for the hydrophilization treatment by mixing it with an inert gas such as nitrogen or helium, but preferably, it is further used by mixing oxygen gas and / or sulfurous acid gas. Is preferred. Sulfurous acid gas in the mixed gas is 0 to 30% by volume, preferably 0.1 to 30% by volume.
%, More preferably a concentration in the range of 0.5 to 20% by volume. High-concentration sulfurous acid gas generates explosive mixed heat with fluorine, so it is within 30%, preferably 20%
Within. Oxygen gas effectively acts on hydrophilicity,
It has the function of suppressing the radical reaction caused by fluorine gas,
Regulation is difficult. Generally 0 to 95% by volume, preferably 0
It is selected from a concentration range of ~ 85% by volume. Therefore, air can be used as a diluting gas for fluorine gas.

【0016】フッ素混合ガスとポリオレフィンの接触温
度は、直接フッ化反応あるいは樹脂の劣化が起きない条
件から選ばれるが、その範囲は、通常−70〜100
℃、好ましくは0〜80℃である。すなわち、0℃未満
ではフッ素の反応性が極端に減少し、80℃を越えると
ポリオレフィンの劣化が起きやすく、また、90℃より
高いとフッ化反応が起きやすくなる。フッ素混合ガスと
の接触時間は、適宜選ばれ、通常1秒から10日、好ま
しくは1秒から10時間の範囲から選ばれる。
The contact temperature between the fluorine-containing gas and the polyolefin is selected from conditions that do not cause direct fluorination reaction or resin deterioration, but the range is usually from -70 to 100.
° C, preferably from 0 to 80 ° C. That is, if the temperature is lower than 0 ° C., the reactivity of fluorine is extremely reduced. If the temperature exceeds 80 ° C., the polyolefin is liable to be deteriorated. If the temperature is higher than 90 ° C., the fluorination reaction is liable to occur. The contact time with the fluorine mixed gas is appropriately selected and is usually selected from the range of 1 second to 10 days, preferably 1 second to 10 hours.

【0017】フッ素混合ガスとポリオレフィン素材との
反応は、密閉された反応容器中にポリオレフィン素材を
導入し、容器内を脱気した後、混合ガスを導入するか、
あるいは予め混合ガスで反応容器内を置換した後、ポリ
オレフィン被処理材を導入し混合ガスと接触させる方
法、あるいは、気体シールの良好な処理室内に混合ガス
を満たし、その室内へ室外から被処理材を走行させる方
法等が挙げられる。この場合、混合ガスの接触効率を高
めるため、被処理材同士が接触しないように固定した
り、容器内でロール状シートの巻出し、巻取りを行うこ
とができる。
The reaction between the fluorine mixed gas and the polyolefin material is performed by introducing the polyolefin material into a closed reaction vessel, degassing the inside of the vessel, and then introducing the mixed gas.
Alternatively, after the inside of the reaction vessel is replaced with a mixed gas in advance, a polyolefin material to be treated is introduced and brought into contact with the mixed gas, or a mixed gas is filled in a processing chamber having a good gas seal, and the material to be treated is introduced into the chamber from outside. And the like. In this case, in order to increase the contact efficiency of the mixed gas, the materials to be treated can be fixed so as not to come into contact with each other, or the roll-shaped sheet can be unwound and wound in a container.

【0018】フッ素混合ガスの導入方法は、予めフッ素
ガスと不活性ガス、或いはフッ素ガスと亜硫酸ガスある
いは酸素ガスの少なくとも一方を所定の濃度に混合して
用いてもよいし、或いは予め亜硫酸ガスあるいは酸素ガ
スの少なくとも一方のガスをポリオレフィン素材と接触
させ、そこにフッ素ガスを導入してもよいし、亜硫酸ガ
スあるいは酸素ガスの少なくとも一方のガスをフッ素ガ
スと共に導入してもよい。フッ素ガス含有ガスと不織布
との反応終了後、未反応の混合ガスや副生するフッ化水
素などの排ガスを除去する。排ガスの無毒化方法は公知
の技術が利用できる。例えば、未反応のフッ素はアルミ
ナ粒子を封入した管を通過させてフッ化アルミとして固
定化する方法やアルカリ水溶液にガスを通過させる方法
が挙げられる。また、微量生ずるフッ化水素はフッ化ナ
トリウム粒子に吸着させる方法が挙げられる。
The method of introducing the fluorine mixed gas may be such that fluorine gas and an inert gas, or fluorine gas and at least one of a sulfurous acid gas and an oxygen gas are mixed at a predetermined concentration and used. At least one gas of oxygen gas may be brought into contact with the polyolefin material, and a fluorine gas may be introduced therein, or at least one of a sulfurous acid gas and an oxygen gas may be introduced together with the fluorine gas. After the reaction between the fluorine gas-containing gas and the nonwoven fabric is completed, unreacted mixed gas and by-product exhaust gas such as hydrogen fluoride are removed. Known techniques can be used for the method of detoxifying exhaust gas. For example, a method in which unreacted fluorine is passed through a tube in which alumina particles are sealed and immobilized as aluminum fluoride, or a method in which gas is passed through an alkaline aqueous solution is used. In addition, there is a method in which a small amount of hydrogen fluoride is adsorbed on sodium fluoride particles.

【0019】各種物理的手段による親水化処理は、それ
自体公知の方法、例えば、特開平05−6760、特開
平07−134979、特開平07−142047、特
公平04−1774、特開平07−134980等に記
載の方法に準じて実施できる。表面を親水化処理された
ポリオレフィン素材は、次いで、硫酸に浸漬される。硫
酸浸漬の効果は高濃度、高温度である程顕著であるが、
一方で素材の劣化及び作業・設備耐久性環境の劣悪化と
いう問題を生じる。それ故、本発明で使用する硫酸は、
浴温度を100℃未満とし、硫酸濃度を50%以上98
%未満とすることが好ましい。硫酸濃度が98%以上に
なると無水硫酸の蒸発が無視出来なくなり、濃度管理、
品質管理、装置・作業管理が複雑になる。また100℃
以上の浴温度では水分の蒸発により無水硫酸が生成し作
業管理が複雑になる。浴温度は、通常室温程度で十分目
的を達成することが出来る。
The hydrophilization treatment by various physical means can be performed by a method known per se, for example, JP-A-05-6760, JP-A-07-134979, JP-A-07-142047, JP-B-04-1774, JP-A-07-134980. And the like. The polyolefin material whose surface has been hydrophilized is then immersed in sulfuric acid. The effect of sulfuric acid immersion is more pronounced at higher concentrations and higher temperatures,
On the other hand, there arises a problem that the material is deteriorated and the working and equipment durability environment is deteriorated. Therefore, the sulfuric acid used in the present invention is
The bath temperature should be less than 100 ° C and the sulfuric acid concentration should be 50% or more and 98%.
% Is preferable. When the sulfuric acid concentration exceeds 98%, evaporation of sulfuric anhydride cannot be ignored,
Quality control and equipment / work management become complicated. 100 ° C
At the above-mentioned bath temperature, sulfuric anhydride is generated due to evaporation of water, which complicates work management. The bath temperature is usually about room temperature to achieve the intended purpose.

【0020】浸漬処理時間は1秒から1日、好ましくは
10秒から5時間から選ばれる。その後、水洗等で中和
し、50℃から100℃の温度で乾燥することにより電
池セパレータに適した材料が得られる。本発明により得
られたセパレータ材料は、ポリオレフィン樹脂が本来有
する優れた耐薬品性、耐熱性、機械的強度等の特性を損
なうことなく、電池材料に適した性能、即ちアルカリ水
溶液親和性の増大、良好な自己放電特性を示す。
The immersion time is selected from 1 second to 1 day, preferably from 10 seconds to 5 hours. Thereafter, the material is neutralized by washing with water or the like, and dried at a temperature of 50 ° C to 100 ° C to obtain a material suitable for a battery separator. The separator material obtained according to the present invention is a polyolefin resin having excellent chemical resistance, heat resistance, without impairing properties such as mechanical strength, etc., performance suitable for battery materials, that is, an increase in alkali aqueous solution affinity, Shows good self-discharge characteristics.

【0021】なお、本発明方法により硫酸処理した材料
はアルカリ水溶液親和性の目安となるアルカリ水溶液し
み込み速度は、単に親水化処理のみを施した材料に比
べ、遅くなるが、自己放電特性が改良されていることか
ら、しみ込み難いが、抜けにくい、従って保液性は高く
なっていると考えられる。一方、親水化処理のみの場
合、しみ込み易いが抜けやすいものと考えられる。
The material treated with sulfuric acid according to the method of the present invention has a slower penetration rate of the alkaline aqueous solution, which is a measure of the affinity for the alkaline aqueous solution, as compared with a material simply subjected to a hydrophilic treatment, but has an improved self-discharge characteristic. Therefore, it is considered that it is difficult to permeate, but hard to come off, and therefore, the liquid retaining property is high. On the other hand, in the case of only the hydrophilization treatment, it is considered that it easily permeates but easily comes off.

【0022】本発明に従って、表面親水化処理及び硫酸
浸漬処理を施されたポリオレフィン素材は、必要に応
じ、界面活性剤処理することにより、アルカリ水溶液し
み込み速度を大巾に増大させることが出来る。界面活性
剤処理は、例えば、ポリオキシエチレンノニルフェニル
エーテル、ドデシルベンゼンスルフォン酸ソーダ等の界
面活性剤を、0.7〜1.0重量%程度の濃度の水溶液
として、表面親水化処理及び硫酸浸漬処理を施されたポ
リオレフィン素材を浸漬、或いはその表面に塗布すれば
よい。
According to the present invention, the polyolefin material subjected to the surface hydrophilization treatment and the sulfuric acid immersion treatment can be treated with a surfactant, if necessary, to greatly increase the penetration rate of the aqueous alkali solution. The surfactant treatment is performed, for example, by subjecting a surfactant such as polyoxyethylene nonyl phenyl ether, sodium dodecylbenzene sulfonate or the like to an aqueous solution having a concentration of about 0.7 to 1.0% by weight, surface-hydrophilizing treatment and sulfuric acid immersion. The treated polyolefin material may be dipped or applied to the surface.

【0023】本発明方法によりポリオレフィン系樹脂素
材の自己放電特性が向上する機構は明らかではないが、
以下のように推定される。本発明の硫酸処理は、濃硫酸
によるポリオレフィン中に含まれる不純物、微量添加物
の除去・固定化あるいはエッチングに効果があると考え
ており、スルフォン基の生成は必須条件では無いと考え
られる。後記実施例に示す様に本発明方法で得られた材
料の表面のスルホン基は0.01meq/g以下と極め
て少量で、従来の発煙硫酸処理で得られた材料とは異な
る構造と考えられる。本発明は、ポリオレフィン樹脂素
材を親水化処理することにより、穏和な条件で硫酸処理
することを可能にし、素材の劣化を抑制し、しかも、自
己放電性能の向上に関し、発煙硫酸を用いる場合と同様
の効果を得ることに成功したものと考えられる。
Although the mechanism by which the self-discharge characteristic of the polyolefin resin material is improved by the method of the present invention is not clear,
It is estimated as follows. The sulfuric acid treatment of the present invention is considered to be effective for removing and fixing impurities and trace additives contained in polyolefin by concentrated sulfuric acid or for etching, and it is considered that the formation of sulfone groups is not an essential condition. As shown in the Examples below, the sulfone groups on the surface of the material obtained by the method of the present invention are extremely small at 0.01 meq / g or less, which is considered to be a structure different from that of the material obtained by the conventional fuming sulfuric acid treatment. The present invention, by hydrophilizing the polyolefin resin material, enables sulfuric acid treatment under mild conditions, suppresses deterioration of the material, and further improves self-discharge performance, as in the case of using fuming sulfuric acid. It is considered successful in obtaining the effect.

【0024】[0024]

【実施例】次に、本発明を実施例により詳細に説明する
が、本発明はその要旨を越えない限り、以下の実施例に
限定されるものでは無い。なお、以下の諸例において、
各測定は次の方法によって行った。
Next, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. In the following examples,
Each measurement was performed by the following method.

【0025】(1)XRF測定 理学電機株式会社製蛍光X線分析計RIX3001を使
用し、Rh管球を一次X線源として、40kV−70m
Aの条件下で真空中で、F−Kα線およびO−Kα線に
は同社製分光結晶RX40を用い、S−Kα線には同社
製Geを用いて強度(kcps)を測定した。尚、強度
の値は同装置付属のソフトウェアにより出力された値を
用いている。
(1) XRF Measurement Using a fluorescent X-ray analyzer RIX3001 manufactured by Rigaku Denki Co., Ltd. and using a Rh tube as a primary X-ray source, 40 kV-70 m
In vacuum under the conditions of A, the intensity (kcps) was measured by using the company's spectral crystal RX40 for the F-Kα line and the O-Kα line, and using the company's Ge for the S-Kα line. In addition, the value of the intensity used the value output by the software attached to the apparatus.

【0026】(2)30%KOH染み込み速度 温度24℃、湿度65%の環境で、水平に静置した不織
布に10μlの電解液(30重量%の水酸化カリウム水
溶液)を滴下したとき、電解液がサンプルに全て染み込
むまでの時間を計測した。 (3)自己放電特性 サンプルをセパレータとして、ニッケル−水素二次電池
に組み込み、10サイクル充放電後、45℃×7日放置
後の容量維持率を測定した。
(2) 30% KOH soak rate In an environment of a temperature of 24 ° C. and a humidity of 65%, when 10 μl of an electrolytic solution (30% by weight aqueous solution of potassium hydroxide) is dropped on a nonwoven fabric which is left horizontally, the electrolytic solution Was measured until it completely soaked into the sample. (3) Self-discharge characteristics The sample was incorporated into a nickel-hydrogen secondary battery as a separator, and after 10 cycles of charge and discharge, the capacity retention rate after standing at 45 ° C for 7 days was measured.

【0027】実施例1 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
からなるサンプルを、フッ素に耐性のあるSUS316
製容器に入れ、25℃で真空排気後、2.0容量%のフ
ッ素ガスと98.0容量%の窒素ガスを導入して5分間
反応させた。反応を終了し真空排気の後、窒素で復圧し
てサンプルを取り出した。このサンプルを25℃、95
%濃硫酸に1時間浸漬し、水洗後50℃にて7時間乾燥
させた。このサンプルAをセパレータに用いニッケル−
水素二次電池を組み、自己放電特性を測定した。結果を
表−1に示した。
Example 1 A nonwoven fabric of a mixture of polyethylene and polypropylene (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Of SUS316, which is resistant to fluorine,
The vessel was evacuated at 25 ° C., and 2.0% by volume of fluorine gas and 98.0% by volume of nitrogen gas were introduced and reacted for 5 minutes. After completion of the reaction and evacuation, the pressure was restored with nitrogen, and a sample was taken out. This sample was placed at 25 ° C, 95
% Sulfuric acid for 1 hour, washed with water and dried at 50 ° C. for 7 hours. Using this sample A as a separator, nickel-
A self-discharge characteristic was measured using a hydrogen secondary battery. The results are shown in Table 1.

【0028】また、30%KOH水溶液しみ込み速度及
びXRF分析を行った結果を表−2に示した。また、表
面官能基をFT−IR法で観察した。その結果は図1に
示す様に、スルフォン基(1040cm-1、1200c
-1)及び、カルボニル基(1720cm-1)の吸収は
みられなかった。中性塩分解法で強酸系(≒スルフォン
基)のイオン交換能を測定したが、その量は0.01m
eq/g以下であった。なお、実施例1で使用したのと
同じ不織布を、親水化処理することなく、常温で発煙硫
酸に20分間浸漬、水洗後、実施例1と同様に乾燥し、
表面官能基をFT−IR法で観察した結果(図2)では
明らかにスルフォン基(1034cm-1、1165cm
-1)の吸収がみられた。
Table 2 shows the results of 30% KOH aqueous solution penetration rate and XRF analysis. Further, the surface functional groups were observed by the FT-IR method. As shown in FIG. 1, the result was a sulfone group (1040 cm −1 , 1200 c
m -1 ) and absorption of a carbonyl group (1720 cm -1 ) were not observed. The ion exchange capacity of a strong acid (≒ sulfone group) was measured by the neutral salt decomposition method.
eq / g or less. The same nonwoven fabric as used in Example 1 was immersed in fuming sulfuric acid at room temperature for 20 minutes without washing, washed with water, and then dried in the same manner as in Example 1,
Observation of the surface functional group by the FT-IR method (FIG. 2) clearly shows that the sulfone group (1034 cm −1 , 1165 cm)
-1 ) was observed.

【0029】実施例2 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
からなるサンプルを、フッ素に耐性のあるSUS316
製容器に入れ、25℃で真空排気後、2.0容量%のフ
ッ素ガスと80容量%の酸素ガスと18.0容量%の窒
素ガスを導入して5分間反応させた。反応を終了し真空
排気の後、窒素で復圧してサンプルを取り出し、サンプ
ルを25℃、95%濃硫酸に1時間浸漬し、水洗後50
℃にて7時間乾燥させた。このサンプルBをセパレータ
に用いニッケル−水素二次電池を組み、自己放電特性を
測定した。結果を表−1に示した。また、30%KOH
水溶液しみ込み速度及びXRF分析を行った結果を表−
2に示した。実施例1と同様に、イオン交換能を測定し
たが、その量は0.01meq/g以下であった。
Example 2 A nonwoven fabric of a mixture of polyethylene and polypropylene (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Of SUS316, which is resistant to fluorine,
After the vessel was evacuated at 25 ° C., 2.0% by volume of fluorine gas, 80% by volume of oxygen gas and 18.0% by volume of nitrogen gas were introduced and reacted for 5 minutes. After completion of the reaction and evacuation, the sample was taken out by restoring the pressure with nitrogen, and the sample was immersed in 25% conc.
Dry at 7 ° C. for 7 hours. Using this sample B as a separator, a nickel-hydrogen secondary battery was assembled, and the self-discharge characteristics were measured. The results are shown in Table 1. In addition, 30% KOH
Table shows the results of the solution penetration rate and XRF analysis.
2 is shown. The ion exchange capacity was measured in the same manner as in Example 1, but the amount was 0.01 meq / g or less.

【0030】比較例1 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
からなるサンプルを、フッ素に耐性のあるSUS316
製容器に入れ、25℃で真空排気後、3.0容量%のフ
ッ素ガスと10.0容量%の亜硫酸ガスと87.0容量
%の窒素ガスを導入して5分間反応させた。反応を終了
し真空排気の後、窒素で復圧してサンプルを取り出し、
サンプルを60℃、30%の水酸化カリウム水溶液に1
時間浸漬し水洗後50℃にて7時間乾燥させた。中性塩
分解能は0.027meq/gであった。このサンプル
Cをセパレータに用いニッケル−水素二次電池を組み、
自己放電特性を測定した。結果を表−1に示した。ま
た、30%KOH水溶液しみ込み速度及びXRF分析を
行った結果を表−2に示した。
Comparative Example 1 A nonwoven fabric of a mixture of polyethylene and polypropylene (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Of SUS316, which is resistant to fluorine,
The vessel was evacuated at 25 ° C., and 3.0% by volume of fluorine gas, 10.0% by volume of sulfurous acid gas, and 87.0% by volume of nitrogen gas were introduced and reacted for 5 minutes. After ending the reaction and evacuating, re-pressurize with nitrogen to take out the sample,
The sample was placed in a 30% aqueous solution of potassium hydroxide at 60 ° C for 1 hour.
It was immersed for a period of time, washed with water, and dried at 50 ° C. for 7 hours. Neutral salt resolution was 0.027 meq / g. Using this sample C as a separator, a nickel-hydrogen secondary battery was assembled,
The self-discharge characteristics were measured. The results are shown in Table 1. Table 2 shows the results of a 30% KOH aqueous solution penetration rate and XRF analysis.

【0031】実施例3 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
からなるサンプルを、フッ素に耐性のあるSUS316
製容器に入れ、真空排気後、3.0容量%のフッ素ガス
と10.0容量%の亜硫酸ガスと87.0容量%の窒素
ガスを導入して5分間反応させた。反応を終了し真空排
気の後、窒素で復圧してサンプルを取り出し、サンプル
を25℃、95%濃硫酸に1時間浸漬し、水洗後50℃
にて7時間乾燥させた。このサンプルの中性塩分解能は
0.01meq/g未満であった。このサンプルDをセ
パレータに用いニッケル−水素二次電池を組み、自己放
電特性を測定した。結果を表−1に示した。また、30
%KOH水溶液しみ込み速度及びXRF分析を行った結
果を表−2に示した。
Example 3 Nonwoven fabric of polyethylene and polypropylene mixture (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Of SUS316, which is resistant to fluorine,
After the vessel was evacuated and evacuated, 3.0% by volume of fluorine gas, 10.0% by volume of sulfurous acid gas and 87.0% by volume of nitrogen gas were introduced and reacted for 5 minutes. After completion of the reaction and evacuation, the sample was taken out by restoring the pressure with nitrogen, and the sample was immersed in 95% concentrated sulfuric acid for 1 hour at 25 ° C.
For 7 hours. The neutral salt resolution of this sample was less than 0.01 meq / g. Using this sample D as a separator, a nickel-hydrogen secondary battery was assembled, and the self-discharge characteristics were measured. The results are shown in Table 1. Also, 30
Table 2 shows the results of the permeation rate of the aqueous KOH solution and XRF analysis.

【0032】実施例4 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
をフッ素に耐性のあるSUS316製容器に入れ、真空
排気後、3.0容量%のフッ素ガスと10.0容量%の
亜硫酸ガスと87.0容量%の窒素ガスを導入して5分
間反応させた。反応を終了し真空排気の後、窒素で復圧
してサンプルを取り出し、サンプルを25℃、95%濃
硫酸に1時間浸漬し、水洗後0.3%のノニオン系界面
活性剤(ポリオキシエチレンノニルフェニルエーテル)
水溶液に浸漬後50℃にて7時間乾燥させた。このサン
プルの中性塩分解能は0.01meq/g未満であっ
た。このサンプルEをセパレータに用いニッケル−水素
二次電池を組み、自己放電特性を測定した。結果を表−
1に示した。また、30%KOH水溶液しみ込み速度及
びXRF分析を行った結果を表−2に示した。
Example 4 A nonwoven fabric of a mixture of polyethylene and polypropylene (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Is placed in a container made of SUS316 which is resistant to fluorine, and after evacuation, 3.0% by volume of fluorine gas, 10.0% by volume of sulfurous acid gas and 87.0% by volume of nitrogen gas are introduced and reacted for 5 minutes. Was. After the reaction was completed and the system was evacuated, the pressure was restored with nitrogen, and the sample was taken out. The sample was immersed in 95% concentrated sulfuric acid for 1 hour at 25 ° C., washed with water, and washed with 0.3% nonionic surfactant (polyoxyethylene nonyl). Phenyl ether)
After immersion in the aqueous solution, it was dried at 50 ° C. for 7 hours. The neutral salt resolution of this sample was less than 0.01 meq / g. Using this sample E as a separator, a nickel-hydrogen secondary battery was assembled, and the self-discharge characteristics were measured. Table-Results
1 is shown. Table 2 shows the results of a 30% KOH aqueous solution penetration rate and XRF analysis.

【0033】比較例2 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
をフッ素に耐性のあるSUS316製容器に入れ、真空
排気後、2.0容量%のフッ素ガスと80.0容量%の
酸素ガスと17.0容量%の窒素ガスを導入して5分間
反応させた。反応を終了し真空排気の後、窒素で復圧し
てサンプルを取り出し、水洗後50℃にて7時間乾燥さ
せた。このサンプルの中性塩分解能は0.01meq/
g未満であった。このサンプルFをセパレータに用いニ
ッケル−水素二次電池を組み、自己放電特性を測定し
た。結果を表−1に示した。また、30%KOH水溶液
しみ込み速度及びXRF分析を行った結果を表−2に示
した。
Comparative Example 2 Nonwoven fabric of polyethylene and polypropylene mixture (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Is placed in a container made of SUS316 which is resistant to fluorine, and after evacuation, 2.0% by volume of fluorine gas, 80.0% by volume of oxygen gas and 17.0% by volume of nitrogen gas are introduced and reacted for 5 minutes. Was. After the reaction was completed and the system was evacuated, the pressure was restored with nitrogen, and the sample was taken out. The neutral salt resolution of this sample is 0.01 meq /
g. Using this sample F as a separator, a nickel-hydrogen secondary battery was assembled, and the self-discharge characteristics were measured. The results are shown in Table 1. Table 2 shows the results of a 30% KOH aqueous solution penetration rate and XRF analysis.

【0034】比較例3 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
をフッ素に耐性のあるSUS316製容器に入れ、真空
排気後、3.0容量%のフッ素ガスと10.0容量%の
亜硫酸ガスと87.0容量%の窒素ガスを導入して5分
間反応させた。反応を終了し真空排気の後、窒素で復圧
してサンプルを取り出し、水洗後50℃にて7時間乾燥
させた。このサンプルの中性塩分解能は0.01meq
/g未満であった。このサンプルGをセパレータに用い
ニッケル−水素二次電池を組み、自己放電特性を測定し
た。結果を表−1に示した。また、30%KOH水溶液
しみ込み速度及びXRF分析を行った結果を表−2に示
した。
Comparative Example 3 Nonwoven fabric of polyethylene and polypropylene mixed (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Is placed in a container made of SUS316 which is resistant to fluorine, and after evacuation, 3.0% by volume of fluorine gas, 10.0% by volume of sulfurous acid gas and 87.0% by volume of nitrogen gas are introduced and reacted for 5 minutes. Was. After the reaction was completed and evacuated, the pressure was restored with nitrogen, and the sample was taken out, washed with water and dried at 50 ° C. for 7 hours. The neutral salt resolution of this sample is 0.01 meq
/ G. Using this sample G as a separator, a nickel-hydrogen secondary battery was assembled, and the self-discharge characteristics were measured. The results are shown in Table 1. Table 2 shows the results of a 30% KOH aqueous solution penetration rate and XRF analysis.

【0035】比較例4 ポリアミドの不織布(目付65g/m2 、厚み0.18
mm、18cm×18cm)からなるセパレータサンプ
ルHを用いニッケル−水素二次電池を組み、自己放電特
性を測定した。結果を表−1に示した。また、30%K
OH水溶液しみ込み速度及びXRF分析を行った結果を
表−2に示した。
Comparative Example 4 Polyamide nonwoven fabric (basis weight 65 g / m 2 , thickness 0.18
A self-discharge characteristic was measured by assembling a nickel-hydrogen secondary battery using a separator sample H having a size of 18 mm × 18 cm). The results are shown in Table 1. In addition, 30% K
Table 2 shows the results of the OH aqueous solution penetration rate and XRF analysis.

【0036】実施例5 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
をフッ素に耐性のあるSUS316製容器に入れ、真空
排気後、3.0容量%のフッ素ガスと10.0容量%の
亜硫酸ガスと87.0容量%の窒素ガスを導入して5分
間反応させた。反応を終了し真空排気の後、窒素で復圧
してサンプルを取り出しその後60℃、30%水酸化カ
リウム水溶液に1時間浸漬し、中性塩分解能を測定する
と0.027meq/gであった。このサンプルを25
℃、95%の濃硫酸に1時間浸漬し、水洗後50℃にて
7時間乾燥させた。このサンプルHを用いニッケル−水
素二次電池を組み、自己放電特性を測定した。結果を表
−1に示した。また、30%KOH水溶液しみ込み速度
及びXRF分析を行った結果を表−2に示した。セパレ
ータIを用いニッケル−水素二次電池を組み、10サイ
クル充放電後45℃×7日放置後の容量維持率を測定し
た。結果を表−1に示す。また、30%KOH水溶液し
み込み速度及びXRF分析を行った結果を表−2に示
す。
Example 5 A nonwoven fabric of a mixture of polyethylene and polypropylene (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Is placed in a container made of SUS316 which is resistant to fluorine, and after evacuation, 3.0% by volume of fluorine gas, 10.0% by volume of sulfurous acid gas and 87.0% by volume of nitrogen gas are introduced and reacted for 5 minutes. Was. After the reaction was completed and the system was evacuated, the pressure was restored with nitrogen, and the sample was taken out. Thereafter, the sample was immersed in a 30% aqueous potassium hydroxide solution at 60 ° C. for 1 hour, and the neutral salt resolution was 0.027 meq / g. This sample is 25
The sample was immersed in concentrated sulfuric acid at 95 ° C. for 1 hour, washed with water and dried at 50 ° C. for 7 hours. Using this sample H, a nickel-hydrogen secondary battery was assembled, and the self-discharge characteristics were measured. The results are shown in Table 1. Table 2 shows the results of a 30% KOH aqueous solution penetration rate and XRF analysis. A nickel-hydrogen secondary battery was assembled using the separator I, and after 10 cycles of charge / discharge, the capacity retention rate after standing at 45 ° C. for 7 days was measured. The results are shown in Table 1. Table 2 shows the results of a 30% KOH aqueous solution penetration rate and XRF analysis.

【0037】比較例5 ポリエチレン、ポリプロピレン混合の不織布(ポリエチ
レン/ポリプロピレン=35/65(重量比)、目付5
5g/m2 、厚み0.15mm、18cm×18cm)
を25℃、95%濃硫酸溶液に浸漬しようとしたが、不
織布は濃硫酸溶液に濡れなかった。したがって硫酸処理
は実行出来なかった。
Comparative Example 5 A nonwoven fabric of a mixture of polyethylene and polypropylene (polyethylene / polypropylene = 35/65 (weight ratio), basis weight 5
(5 g / m 2 , thickness 0.15 mm, 18 cm × 18 cm)
Was immersed in a 95% concentrated sulfuric acid solution at 25 ° C., but the nonwoven fabric did not wet with the concentrated sulfuric acid solution. Therefore, sulfuric acid treatment could not be performed.

【0038】[0038]

【表1】 表−1:セパレータ処理法と自己放電特性(容量維持率) セパレータ種類 容量維持率(%) A(実施例1) 70% B(実施例2) 67% C(比較例1) 52% D(実施例3) 70% E(実施例4) 68% F(比較例2) 50% G(比較例3) 52% H(比較例4) 45% I(実施例5) 69%Table 1: Separator treatment method and self-discharge characteristics (capacity retention ratio) Separator type Capacity retention ratio (%) A (Example 1) 70% B (Example 2) 67% C (Comparative Example 1) 52% D (Example 3) 70% E (Example 4) 68% F (Comparative Example 2) 50% G (Comparative Example 3) 52% H (Comparative Example 4) 45% I (Example 5) 69%

【0039】[0039]

【表2】 表−2:セパレータ処理法としみ込み速度、XRFデータ XRF(kcps) セパレータ種類 しみ込み速度 O/C S/C A(実施例1) 41分 0.0031 0.33 B(実施例2) 38分 0.0036 0.34 C(比較例1) 32分 0.0065 0.65 D(実施例3) 51分 0.0076 1.04 E(実施例4) 20秒 0.0101 0.42 F(比較例2) 30秒 0.0082 − G(比較例3) 38分 0.0042 − H(比較例4) 30秒 − − I(実施例5) 63分 0.0074 1.123[Table 2] Table 2: Separator processing method and penetration rate, XRF data XRF (kcps) Separator type Penetration rate O / CS / CA (Example 1) 41 minutes 0.0031 0.33 B (Example) 2) 38 minutes 0.0036 0.34 C (Comparative Example 1) 32 minutes 0.0065 0.65 D (Example 3) 51 minutes 0.0076 1.04 E (Example 4) 20 seconds 0.0101 0 .42 F (Comparative Example 2) 30 seconds 0.0082-G (Comparative Example 3) 38 minutes 0.0042-H (Comparative Example 4) 30 seconds-I (Example 5) 63 minutes 0.0074 1.123

【0040】[0040]

【発明の効果】本発明によれば、ガス置換などの特殊な
操作を必要とせずに簡便なプロセスにより、ポリオレフ
ィンを主材とする素材を親水化し、更に硫酸処理するこ
とにより、素材を劣化させずに自己放電特性を向上さ
せ、電池セパレータに適した特性を付与することに成功
した。
According to the present invention, a material mainly composed of polyolefin is hydrophilized by a simple process without requiring a special operation such as gas replacement, and the material is deteriorated by a sulfuric acid treatment. Without increasing the self-discharge characteristics, and succeeded in imparting characteristics suitable for a battery separator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたサンプルA表面のFT−I
R測定図
FIG. 1 shows FT-I on the surface of sample A obtained in Example 1.
R measurement diagram

【図2】実施例1の不織布を発煙硫酸に浸漬したサンプ
ルの表面のFT−IR測定図
FIG. 2 is an FT-IR measurement diagram of the surface of a sample obtained by immersing the nonwoven fabric of Example 1 in fuming sulfuric acid.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柏野 稔 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 (72)発明者 渡辺 真之 神奈川県横浜市青葉区鴨志田町1000番地 三菱化学株式会社横浜総合研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Minoru Kashino, 1000 Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Prefecture Mitsubishi Chemical Corporation Yokohama Research Laboratory (72) Inventor Masayuki Watanabe 1000, Kamoshita-cho, Aoba-ku, Yokohama-shi, Kanagawa Mitsubishi Chemical Corporation Yokohama Research Laboratory

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフィン系樹脂素材の表面を親水
化処理した後、硫酸に浸漬することを特徴とする電池セ
パレータ材料の製造方法。
1. A method for producing a battery separator material, wherein a surface of a polyolefin resin material is subjected to a hydrophilic treatment and then immersed in sulfuric acid.
【請求項2】 ポリオレフィン系樹脂素材が、ポリエチ
レン及び、又はポリプロピレンを主材とする多孔体であ
ることを特徴とする請求項1記載の電池セパレータ材料
の製造方法。
2. The method for producing a battery separator material according to claim 1, wherein the polyolefin resin material is a porous body mainly composed of polyethylene and / or polypropylene.
【請求項3】 ポリオレフィン系樹脂素材が、ポリエチ
レン及び、又はポリプロピレンを主材とする繊維からな
る不織布或いは織布からなることを特徴とする請求項1
記載の電池セパレータ材料の製造方法。
3. The polyolefin resin material is made of a non-woven fabric or a woven fabric made of fibers mainly composed of polyethylene and / or polypropylene.
A method for producing the battery separator material described above.
【請求項4】 親水化処理の方法が、火炎処理、プラズ
マ放電処理、コロナ放電処理、紫外線照射処理或いは電
子線照射処理から選ばれることを特徴とする請求項1乃
至3のいずれかに記載の電池セパレータ材料の製造方
法。
4. The method according to claim 1, wherein the method of the hydrophilic treatment is selected from flame treatment, plasma discharge treatment, corona discharge treatment, ultraviolet irradiation treatment and electron beam irradiation treatment. A method for producing a battery separator material.
【請求項5】 親水化処理の方法がフッ素ガス含有ガス
で処理する方法であることを特徴とする請求項1乃至3
のいずれかに記載の電池セパレータ材料の製造方法。
5. The method according to claim 1, wherein the hydrophilization treatment is a treatment using a fluorine gas-containing gas.
The method for producing a battery separator material according to any one of the above.
【請求項6】 フッ素ガス含有ガスがフッ素ガスと、酸
素ガス及び、又は亜硫酸ガスを含有することを特徴とす
る請求項5記載の電池セパレータ材料の製造方法。
6. The method for producing a battery separator material according to claim 5, wherein the fluorine gas-containing gas contains a fluorine gas, an oxygen gas, and / or a sulfurous acid gas.
【請求項7】 硫酸濃度50〜98重量%の硫酸水溶液
に、100℃未満の浴温度で浸漬することを特徴とする
請求項1乃至6のいずれかに記載の電池セパレータ材料
の製造方法。
7. The method for producing a battery separator material according to claim 1, wherein the material is immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 50 to 98% by weight at a bath temperature of less than 100 ° C.
【請求項8】 硫酸浸漬後、界面活性剤で処理すること
を特徴とする請求項1乃至7のいずかに記載の電池セパ
レータ材料の製造方法。
8. The method for producing a battery separator material according to claim 1, wherein a treatment with a surfactant is performed after immersion in sulfuric acid.
【請求項9】 請求項1〜8のいずれかに記載の方法に
より得られたアルカリ蓄電池用セパレータ材料。
9. A separator material for an alkaline storage battery obtained by the method according to claim 1. Description:
JP9152146A 1997-06-10 1997-06-10 Manufacture of separator material for battery Pending JPH113694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9152146A JPH113694A (en) 1997-06-10 1997-06-10 Manufacture of separator material for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9152146A JPH113694A (en) 1997-06-10 1997-06-10 Manufacture of separator material for battery

Publications (1)

Publication Number Publication Date
JPH113694A true JPH113694A (en) 1999-01-06

Family

ID=15534050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9152146A Pending JPH113694A (en) 1997-06-10 1997-06-10 Manufacture of separator material for battery

Country Status (1)

Country Link
JP (1) JPH113694A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113717A1 (en) * 2008-03-14 2009-09-17 昭和電工株式会社 Fuel cell separator and method of manufacturing the same
CN104051690A (en) * 2013-03-15 2014-09-17 福特全球技术公司 Treated battery separator
WO2015045347A1 (en) * 2013-09-30 2015-04-02 パナソニックIpマネジメント株式会社 Lithium ion capacitor
CN105024031A (en) * 2015-07-15 2015-11-04 重庆伟业电源材料有限公司 Production process of storage battery glass fiber separator

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113717A1 (en) * 2008-03-14 2009-09-17 昭和電工株式会社 Fuel cell separator and method of manufacturing the same
CN101971399A (en) * 2008-03-14 2011-02-09 昭和电工株式会社 Fuel cell separator and method of manufacturing the same
JPWO2009113717A1 (en) * 2008-03-14 2011-07-21 昭和電工株式会社 Fuel cell separator and method for producing the same
JP2013179098A (en) * 2008-03-14 2013-09-09 Showa Denko Kk Fuel cell separator and method of producing the same
CN104051690A (en) * 2013-03-15 2014-09-17 福特全球技术公司 Treated battery separator
US20140272557A1 (en) * 2013-03-15 2014-09-18 Ford Global Technologies, Llc Treated battery separator
US9083034B2 (en) * 2013-03-15 2015-07-14 Ford Global Technologies, Llc Treated battery separator
WO2015045347A1 (en) * 2013-09-30 2015-04-02 パナソニックIpマネジメント株式会社 Lithium ion capacitor
CN105024031A (en) * 2015-07-15 2015-11-04 重庆伟业电源材料有限公司 Production process of storage battery glass fiber separator

Similar Documents

Publication Publication Date Title
JPH113694A (en) Manufacture of separator material for battery
JP2001250529A (en) Alkaline secondary battery
CN117604571A (en) Porous composite membrane for hydrogen production by alkaline water electrolysis and preparation method thereof
JPH07296634A (en) Compound electrolytic film
JP3306412B2 (en) Surface treatment method for polyphenylene sulfide fiber or polysulfone fiber
JPH107829A (en) Production of highly hydrophilic polyolefin material
JP2762443B2 (en) Manufacturing method of battery separator
JP3709160B2 (en) Method for modifying surface of synthetic resin material and method for producing battery separator
JPS60109171A (en) Separator for battery
JPS58175256A (en) Manufacture of separator for battery
JP2001283820A (en) Surface modifying method of synthetic resin and separator for battery
JPS59203602A (en) Composite membrane
JP2000064164A (en) Separator for alkaline battery
JP2000123814A (en) Separator for alkaline battery and manufacture thereof
Shin et al. Role of Hydrophilic APTES-PP Separator in Enhancing the Electrochemical Performance of Ni-Rich Cathode for Li-Ion Battery
JP2009218048A (en) Separator for alkaline storage battery and manufacturing method thereof, and alkaline storage battery
JP2009218047A (en) Separator for alkaline storage battery and manufacturing method thereof, and alkaline storage battery
US20030186129A1 (en) Hydrophilized separator material
JP2000256490A (en) Production of ion exchange resin
JPH09124813A (en) Hydrophilic polyolefin-based polymeric porous material, its production and application thereof to battery separator
JPH07130392A (en) Alkaline storage battery
JP2002237284A (en) Method of manufacturing separator for alkaline storage battery, separator for alkaline storage battery manufacturing by the method, and alkaline storage battery using the separator
JPH11111257A (en) Separator for battery
JPH08315800A (en) Battery separator and alkaline secondary battery using this
JP2003051302A (en) Separator for alkaline secondary battery