JP2004182516A - Method of photochemically modifying solid material surface - Google Patents

Method of photochemically modifying solid material surface Download PDF

Info

Publication number
JP2004182516A
JP2004182516A JP2002350311A JP2002350311A JP2004182516A JP 2004182516 A JP2004182516 A JP 2004182516A JP 2002350311 A JP2002350311 A JP 2002350311A JP 2002350311 A JP2002350311 A JP 2002350311A JP 2004182516 A JP2004182516 A JP 2004182516A
Authority
JP
Japan
Prior art keywords
solid material
degrees
sample
irradiated
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350311A
Other languages
Japanese (ja)
Other versions
JP4787976B2 (en
Inventor
Masataka Murahara
正隆 村原
Hiroto Tokunaga
裕人 徳永
Shigenari Mochizuki
樹也 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2002350311A priority Critical patent/JP4787976B2/en
Publication of JP2004182516A publication Critical patent/JP2004182516A/en
Application granted granted Critical
Publication of JP4787976B2 publication Critical patent/JP4787976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of modifying a solid material surface by which the permanent surface modification is carried out by a photochemical reaction even with the irradiation with ultraviolet rays having relatively small energy no matter what solid material is to be modified. <P>SOLUTION: The method of photochemically modifying the solid material surface includes the photochemical modification of the solid material surface by forming a thin layer of a liquid state compound containing chemical species on the solid material surface, and irradiating the solid material surface with ultraviolet rays through the thin film to excite the solid material surface and the compound to introduce the chemical species into the solid material surface. Before the thin film is formed on the solid material surface, the solid material surface is treated with activation energy or an oxidizing agent to accelerate the photochemical modification of the solid material surface. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する分野】
本発明は、固体材料表面の光化学的改質方法に関する。
【0002】
【従来の技術】
固体材料表面に、化学種を含有し、かつ液体の形態にある化合物(反応液)の薄層を毛細管現象を利用して形成し、この薄層を介して固体材料表面に紫外線を照射して固体表面と化合物を励起して両者間に光化学反応を生起させ、化合物の有する化学種を固体材料表面に導入(結合)することによって固体材料表面を光化学的に改質する方法は、例えば特許文献1〜4や非特許文献1に開示されている。例えば、撥水性フッ素樹脂表面に水の薄層を形成し、フッ素樹脂におけるC−F結合を解離させる光エネルギー(128kcal/モル以上)で紫外線を照射すると、フッ素樹脂表面からフッ素原子が引き抜かれると同時に、フッ素が引き抜かれたサイトに水からの−OH基が導入され、その表面が親水性に変換される。また、ポリイミドの表面に銅化合物の水溶液の薄層を形成し、ポリイミドにおけるC−H結合を解離させる光エネルギー(80.6kcal/モル以上)で紫外線を照射すると、その照射部分において銅化合物の水溶液が分解して銅、酸素、Hのラジカルが生成し、照射部分においてポリイミドのC−H結合から水素が引き抜かれ、そこに酸素が置換されることによってC−O−Cu結合が生じ、ポリイミド表面に共有結合により結合した銅核が生成する。
【0003】
【特許文献1】
特開平6−335631号公報
【0004】
【特許文献2】
特開2000−114695号公報
【0005】
【特許文献3】
国際公開第94/21715号パンフレット
【0006】
【特許文献4】
米国特許第6117497号明細書
【0007】
【非特許文献1】
Appl. Phys. Lett., Vol. 72 (20), 2616 (1998)
【0008】
【発明が解決しようとする課題】
上記の表面改質の効果は、表面改質されるべき材料の種類あるいは紫外線の入射エネルギーの強さや照射時間によって異なる。特にポリイミドのように吸水性があり、かつ酸素結合を有する材料の場合にはArFレーザ光1パルス(10ナノ秒/パルス)で銅原子を置換することができる(特許文献2)。一方、疎水性の高いフッ素樹脂などに銅原子を導入するためには、ArFレーザ光の3000パルス照射を必要とする(非特許文献1)。
【0009】
このように材料によって、照射するレーザ光のエネルギー密度や照射パルス回数が大きく異なっている。
【0010】
他方、高分子表面にグロー放電プラズマ、イオンスパッタ等の低圧プラズマを照射すると、高分子表面の水に対する濡れ性が向上することが知られている。その原因はプラズマボンバリングに起因する物理的な微細な凹凸、あるいは表面の化学的変化である。しかし、プラズマ照射後高分子表面を空気中に放置しておくと、水との濡れ性、すなわち水との接触角は徐々に大きくなり、処理効果は減退する。これは、プラズマ照射中に、雰囲気中に存在する僅かな酸素と高分子表面に生成したラジカルとが反応し、高分子表面にヒドロキシル基、カルボキシル基、カルボニル基などの極性基が導入されるが、それらが時間経過とともに高分子バルク内部に移行し、元の疎水性表面に戻るからであるとされている。さらに、プラズマ照射された表面を物理的に拭うと濡れ性は元に戻ってしまうという欠点があった。従って、プラズマ照射により固体材料表面を改質するためには、強度のプラズマを照射しなければならない。
【0011】
そこで、本発明は、改質すべき固体材料いかんにかかわらず比較的小さいエネルギーの紫外線照射によっても、光化学反応により永続的な表面改質を行うことができる固体材料表面の改質方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究した結果、上に述べたように固体材料によって、照射するレーザ光のエネルギー密度や照射パルス回数が大きく異なっているが、その理由は、被改質材料表面の当該波長での吸収率によることは勿論であるが、その材料表面の反応液との濡れ性、あるいは当該材料の化学構造中に存在する酸素との二重結(−C=O)や一重結合(−C−O−)に大きく左右されることを見いだした。すなわち、被改質表面(固体材料表面)と反応液とが十分に密着していることが、相互の光化学反応を効果的に行うための必要十分条件であることがわかった。
【0013】
そこで、本発明では、予め、固体材料表面と反応液との化学的密着性(親水性)あるいは油性液との密着性(親油性)を強制的に高くした状態で光反応を行い、表面改質をより効率的に行うものである。固体材料表面と反応液との密着性を高くするために、被改質表面に放電プラズマ、グロー放電プラズマ、エキシマレーザ光、エキシマランプ光、軟X線、紫外線、イオンスパッタ等のエネルギー線を照射し、あるいは過酸化水素、過マンガン酸カリ、硫酸、クロム酸カリ等の酸化剤の水溶液もしくは酸素、オゾン、NOなどの気体酸化剤により固体材料表面を酸化し、それによって、被表面改質材料が一時的にではあるにせよ高い密着性を呈している間に、被改質面と反応液との光化学反応によって材料表面に官能基や原子を置換し、永続的な改質面を創出するものである。
【0014】
すなわち、本発明によれば、固体材料表面に、化学種を含有し、かつ液体の形態にある化合物の薄層を形成し、該薄層を介して該固体材料表面に紫外線を照射して該固体表面と該化合物を励起して該化学種を該固体材料表面に導入することによって該固体材料表面を光化学的に改質することを包含し、該固体材料表面に該薄層を形成するに先立ち、該固体材料表面を活性化エネルギーまたは酸化剤で処理して該固体材料表面の光化学的改質を促進させることを特徴とする固体材料表面の光化学的改質方法が提供される。
【0015】
【発明の実施の形態】
本発明では、固体材料表面に液体形態(液状)の化合物(以下、反応液ともいう)の薄液を形成し、紫外線を照射する前に、固体材料表面の液状化合物に対する密着度を向上させるために、固体材料表面を比較的弱い活性化エネルギーまたは酸化剤で処理する。
【0016】
この密着度は水または油性物質との接触角によって数値化できる。一般に、固体材料表面の水との接触角が90度を超えると撥水性といい、それ以下を親水性という。接触角の値が大きくなればなるほど撥水性は大きくなり、小さくなるほど親水性は大きくなる。例えば、フッ素樹脂の接触角は約110度内外と大きく、水に濡れることなく水を弾く。一方、ポリイミドは水とのなじみがよいといわれるように、水との接触角は65度と比較的低い。このためフッ素樹脂に比べると反応効率が高い。最も極端な例を示すと、フッ素樹脂に−C−O−Cuを置換・導入する場合、ArFレーザのパルス数は3000ショット(非特許文献1)必要であるのに対し、ポリイミドの場合は1〜4ショット(特許文献2)と極端に少ない。その理由は、ポリイミドがその化学構造の末端基に−C=O結合を持っていて、この酸素原子に銅原子が結合して−C−O−Cuになることも理由の一つであると考えられるが、この場合においても反応液が密着していなければ効率のよい化学反応は行われない。従って濡れ性の向上は、光による表面改質の必要十分条件である。
【0017】
従来プラスッチクのプラズマ処理は非常に多く報告されてきた。しかしその欠点は処理表面が一時的なものであり、プラズマ処理しても拭き取れば、すぐ元に戻ってしまう。しかも、水を付ければその時点では接触角は小さいにもかかわらず、水が蒸発してしまうと、不思議なことに接触角も元に戻ってしまう。
【0018】
すなわち、下記実施例1に示すように、プラスチック試料としてエポキシ樹脂、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、アクリルニトリルブタジェンスチレン(ABS)、シリコーン樹脂、塩化ビニル、ポリメタクリル酸メチル(PMMA)、ナイロン−6,6、ナイロン−6、ポリアセタール、ポリテトラフルオロエチレン(PTFE)、ポリテトラフルオロエチレン・ヘキサフルオロプロピレン(FEP)、セラミック試料としてサファイア、石英ガラス、白板ガラス、金属としてチタン(Ti)、アルミニウム(Al)、シリコン(Si)などの材料の水との接触角は大きい。ところが以下に説明する図1にも示すように、材料表面に5分間のプラズマ照射を施すと、変化の少ないフッ素樹脂のPTFEやFEPでも21度、変化の大きいエポキシ樹脂、ポリカーボネート(PC)、ポリプロプレーン(PP)などは約70度と濡れ性が大幅に改善される。ところが、時間が経過したり改質表面をかるく物理的に拭き去ったりすると、接触角はプラズマ照射前の値に戻ってしまう。このため、一般には、表面改質のために強いプラズマ照射を行っているが、その結果、固体材料の表面形状が著しく変性されるという欠点があった。
【0019】
本発明者らは、毛細現象を利用して合成石英窓とプラスチック表面との間隙に反応液を挟み、そこに紫外光を照射して、親水基、親油基、あるいは酸素原子を介在させて−O−Cuなど金属置換をさせることを提案してきた。しかし、フォトンコストが高いレーザにとって、実用化とは、エネルギーの照射量を少なくすることであり、数千ショットものレーザパルス照射は実用化の足かせであった。このレーザパルス数を極端に減らすことは光化学反応の効率を上げることである。そのために液状化合物の光吸収効率を上げれば分解効率は上がるが、その反面、液状化合物の下側にある固体材料表面に到達すべき光量が減衰する。一方固体材料表面の光吸収率を高くしたいが、これは材料固有の性質であって、これをいじることはできない。そこでこの光化学的反応効率を向上させるために考えたのが、村原らによる光透過窓ガラスと試料表面との間隙に毛細管現象により薄液層を形成させ、試料と液層との密着性を向上させることであった(特許文献1、2、3、4)。ところがこの方法でも見かけ上、薄液層が形成され、光反応効率は向上する。しかし、水溶液の密着性は試料表面よりも窓ガラスの方が優れていた。さらに光反応効率を高くするためには試料表面の濡れ性を何らかの方法で良くすることが必要であった。もし試料全体の濡れ性が良くなった状態が持続すれば、光表面改質処理によって露光部の性質は発現されるが、製品として実用に供した時に、未露光部にも何らかの物質が付着し、効果を損なうことが考えられる。このため、実用時に、光が照射された部分だけが選択的に改質されているようにするには、一時的に濡れ性が向上するが、時間経過と共に、元に戻ってしまうプラズマ処理が適している。すなわち、反応液が付着している瞬間を利用し、その溶液雰囲気での光表面改質を行えば、露光部分には官能基が置換され、未露光部は経過時間と共に元の性質に戻ってしまう。従って、結果的に露光部分のみ選択的に表面改質したことにほかならない。
【0020】
本発明では、液状化合物との密着性を向上させるために、固体材料表面を活性化エネルギーまたは酸化剤で処理する(前処理)。活性化エネルギーによる処理は、放電プラズマ(特にグロー放電プラズマ)、イオンスパッタ、軟X線、紫外線、エキシマレーザ光、エキシマランプ光またはそれらの組合せの照射によって行うことができる。グロー放電プラズマおよび/またはイオンスパッタが特に好ましい。この活性化エネルギーによる処理は、通常、酸素の存在下で行われる。酸素は、固体材料表面に吸着された微量なものであり得る。また、活性化エネルギーをパルス的に照射し、パルスが休止している間に、すなわちパルス間で、前記固体材料表面に酸素を接触させることもできる。このように酸素の存在で活性化エネルギーを照射すると、固体材料表面に酸素ラジカルが導入される。放電プラズマ、特にグロー放電プラズマを使用する場合、固体表面材料に対して、イオンによる打撃作用等のスパッタ作用が加わるため、固体表面材料に酸素ラジカルが導入されるばかりか、その表面に極めて微細な凹凸が生じるものと考えられ、それにより反応液と固体材料表面の密着性がより一層向上する。しかしながら、上にも述べたように、本発明による前処理は、弱い処理であり、処理直後には反応液が密着するが、反応液が蒸発したり、反応液を布等で拭き取ってしまうと、固体材料表面の反応液との接触角は元の値に戻ってしまう程度のものである。例えば、上記イオンスパッタを含む放電プラズマは、いわゆる逆スパッタにより行うことができ、電極間距離を10〜60mmに設定し、1〜20mAの(スパッタエッチング)電流、0.2kV〜1kVの(スパッタエッチング)電圧、大気圧から減圧した10−2〜10−4Torrの減圧(ほぼ10−2〜10−4Torrの酸素雰囲気)下で発生させることができる。軟X線は、1〜10kVの入力電圧で発生させることができる。紫外線およびエキシマレーザ光は、0.05〜20mJ/cmのエネルギー密度で照射することができる。さらに、エキシマランプ光は、5〜20kVで10〜50Wの入力で発生させることができる。本発明においては、特許第3316069号明細書に開示されているような固体材料表面へのエキシマランプ光の照射と放電を組み合わせた装置を用いることもできる(以下の実施例33も参照)。
【0021】
また、本発明において、上記酸化剤として、クロム酸混液、過マンガン酸カリ、過酸化水素、酸素(例えば、プラズマとして)、オゾンまたはNOを用いることができる。
【0022】
いずれの場合にも前処理は、固体材料表面の液状化合物に対する接触角が未処理の固体材料表面の接触角から変化するように行う。
【0023】
このようにして前処理した後、固体材料表面に液状化合物の薄層を形成する。
【0024】
液状化合物の薄層を形成するためには、特許文献1〜4、非特許文献1に開示された毛細管現象を利用する手法を採用することができる。すなわち、石英等の紫外線透過性窓部材を固体材料表面との間に毛細管力が作用するように配置し、液状化合物の薄層を紫外線透過性窓部材と固体材料表面の間に形成させることができる。あるいは、本発明では、前処理した固体材料表面に液状化合物を塗布することによっても薄層を形成することができる。
【0025】
本発明により表面改質される固体材料には、プラスチック(樹脂)、金属、半導体、セラミックが含まれる。プラスチック(樹脂)としては、硬化エポキシ樹脂、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、アクリルニトリルブタジエンスチレン(ABS)、シリコーン樹脂、ポリ塩化ビニル、ポリメタクリル酸メチル(PMMA)、ナイロン−6,6、ナイロン−6、ポリアセタール、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリテトラフルオロエチレン・ヘキサフルオロプロピレン(FEP))を例示することができる。セラミックとしては、サファイア、石英ガラス、白板ガラスを例示することができる。金属、半導体としては、チタン(Ti)、アルミニウム(Al)、シリコン(Si)を例示することができる。
【0026】
また、液状化合物としては、水、アルコール、パーフルオロポリエーテルのような液状フッ素化合物、過酸化水素水、塩酸、硫酸、硝酸、ギ酸、酢酸、フッ化アンモニウム、例えば銅化合物、ニッケル化合物のような金属化合物の水溶液等を用いることができる。銅化合物としては、CuCl、Cu(ClO、Cu(ClO、CuBr、CuSO、CuO、Cu(NO、CuSeO、Cu(OH)、Cu(CHCOO)、[Cu(NH]SO、[Cu(C]SO、K[Cu(CN)]等を好ましく使用することができる。銅化合物の水溶液を用い、固体材料表面を改質すると、固体材料表面に−C−O−Cu結合が生じて銅核が析出する。その固体材料表面に銅メッキを施すこともできる。光化学反応のための紫外線の照射を回路パターン状に行うことにより、回路パターン状に銅核を析出することができるので、銅メッキにより所定の回路パターンを得ることができる。
【0027】
紫外線照射も特許文献1〜4、非特許文献1に開示されたように行うことができる。紫外線のエネルギーは、例えば、フッ素樹脂に対しては、C−F結合を解離させるために、その他の樹脂に対してはC−H結合を解離させるために、金属に対しては金属原子を引き抜くために、酸化物セラミックに対しては酸素を引き抜くため、あるいはセラミック内に存在する酸素原子を活性化しその雰囲気下に存在させた反応液からの原子または分子との結合を促進するために、それぞれ十分な程度に設定する。紫外線は、固体材料全面に対して照射することもできるし、所定のパターン状、例えば回路パターン状に照射することができる。
【0028】
【実施例】
以下、本発明について説明する。以下の実施例において使用したDC2極スパッタ装置は、サンユー電子(株)製Quick Coater SC−701Sであり、逆スパッタエッチングモードで使用し、15mAのスパッタエッチング電流、0.4kVのスパッタエッチング電圧を用い、電極間距離は27mmであった。装置内は10−2〜10−4Torrまで真空引きした。軟X線の照射は、大気中で行った。また、固体材料へのエキシマランプ光の照射とグロー放電との組合せ処理は、大気中で行った(実施例33)。
【0029】
実施例1
プラスチック試料として、硬化エポキシ樹脂、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、アクリルニトリルブタジエンスチレン(ABS)、シリコーン樹脂、ポリ塩化ビニル、ポリメタクリル酸メチル(PMMA)、ナイロン−6,6、ナイロン−6、ポリアセタール、ポリテトラフルオロエチレン(PTFE)、ポリテトラフルオロエチレン・ヘキサフルオロプロピレン(FEP)、セラミック試料としてサファイア、石英ガラス、白板ガラス、金属としてチタン(Ti)、アルミニウム(Al)、シリコン(Si)について未処理時の水との接触角を測定した。次に、これらの試料にDC2極スパッタ装置によるグロー放電プラズマを5分間照射し、その処理面の水との接触角を測定した。さらにプラズマ処理が施された試料面を布で拭いた後の接触角を測定した。併せて、プラズマ照射効果の照射時間依存性を比較するために、同様なグロー放電プラズマ処理を10分間行った。これらの結果を表1に示す。また、プラスチックについての結果を図1にも示す。フッ素樹脂のPTFEとFEPを除いた全てのプラスチック、セラミック、金属が5分間のグロー放電プラズマ照射により水との接触角が著しく小さくなる。接触角変化の少ないフッ素樹脂(PTFE、FEP)についてもプラズマ照射の時間を延ばすと小さくなり、10分照射で65〜72度と撥水性から親水性に変わる。ところがこれらの試料表面を布で軽く拭くと、全ての試料の接触角は元に戻ってしまう。
【0030】
これらの試料表面に親油基を置換する目的で、それぞれの試料の機械油との接触角を測定した。殆どの試料が親油性を呈したので、その中でも撥油性と思われる接触角が10度以上の試料について、5分間のプラズマ処理を施した。その結果、表1に併記するように、PETで10度から3度へ、シリコーン樹脂で40度から18度へ、PTFEで38度から26度へ、FEPで35度から22度へ、チタンで13度から0度とプラズマ照射効果が見られた。またこれらの場合も試料表面を布で軽く拭くと、接触角は元に戻ってしまう。
【0031】
従ってこの放電プラズマ照射による一時的な接触角の減少現象を液状化合物と固体材料表面との密着性の向上に利用し、この状態下で紫外線を照射すれば、固体材料表面での光化学反応を促進させることができるという結論に達した。
【0032】
実施例2
DC2極スパッタ装置によるグロー放電プラズマ(イオンスパッタを含む;以下同じ)をポリイミドフィルム試料に5分間照射すると、表2に示すように、未処理表面の水との接触角が68度であったものが11度と低くなるが、表面を布で拭くと元の68度に戻ってしまう。このグロー放電プラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射した。未処理の試料ではレーザパルス光を100ショット照射しても接触角56度までしか改善できなかったが、プラズマ処理をした試料では1ショットのレーザパルス照射で接触角25度を達成した。しかもプラズマ処理した試料にレーザ光を1ショット照射するだけで、布で拭いても34度以上には戻らなかった。
【0033】
実施例3
DC2極スパッタ装置によるグロー放電プラズマをシリコーン樹脂フィルム試料に5分間照射すると、表3に示すように未処理試料表面の水との接触角が111度であったものが6度と低くなるが、表面を布で拭くと元の70度になってしまう。このプラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射する。未処理の試料ではレーザパルス光を500ショット照射しても接触角102度までしか改善できなかったが、プラズマ処理をした試料では1ショットのレーザパルス照射で接触角50度を達成した。表1に示したようにプラズマのみを照射した場合、接触角は6度と低くなるが、表面を布で拭くと元の値111度より低いが、それでも70度まで高くなる。ところがプラズマ処理した試料にレーザ光を1ショット照射するだけで、布で拭いても49度と殆ど接触角の戻りは無かった。
【0034】
実施例4
DC2極スパッタ装置によるグロー放電プラズマをポリアセタールイフィルムに5分間照射すると表4に示すように、未処理試料表面の水との接触角は75度であったものが49度と低くなるが、表面を布で拭くと72度と元の値の近傍に戻ってしまう。このプラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射した。未処理試料ではレーザパルス光を3000ショット照射しても78度と接触角に殆ど変化は見られなかった。ところが、プラズマ処理をした試料では1ショットのレーザパルス照射で接触角35度を達成した。しかもプラズマ処理した試料にレーザ光を1ショット照射するだけで、布で拭いても35度以上には戻らなかった。
【0035】
実施例5
DC2極スパッタ装置によるグロー放電プラズマをPETフィルムに5分間照射すると表5に示すように、未処理試料表面の水との接触角は71度であったものが8度と極端に低くなる。しかし表面を布で拭くと65度と元の値(71度)の近傍に戻ってしまう。このプラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射した。未処理試料でもレーザパルス光を1000ショット照射して40度まで改善される。ところが、プラズマ処理をした試料では1/10の100ショットで接触角40度を達成し、5ショットで接触角47度を達成した。しかもプラズマ処理した試料にレーザ光を5ショット照射するだけで、布で拭いても50度以上には戻らなかった。
【0036】
実施例6
DC2極スパッタ装置によるグロー放電プラズマをPTFEフィルムに5分間照射すると表6に示すように、未処理試料表面の水との接触角が107度であったものが99度と他のプラスッチクに比べると高い。しかも表面を布で拭くと95度と元の値(107度)の近傍に戻ってしまう。ところがプラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射すると、未処理の試料ではレーザパルス光を3000ショット照射すると55度になった。ところが、プラズマ処理をした試料では1/3000の1ショットのレーザパルス照射で56度を達成した。しかもプラズマ処理した試料にレーザ光を1ショット照射するだけで、布で拭いても68度を維持している。
【0037】
実施例7
DC2極スパッタ装置によるグロー放電プラズマをFEPフィルムに5分間照射すると表7に示すように、未処理試料表面の水との接触角が104度であったものが、83度と他のプラスッチクに比べると高い。しかし表面を布で拭いても85度と極端には元の値(104度)には戻らない。ところがプラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射すると、未処理の試料ではレーザパルス光を3000ショット照射すると接触角が63度になった。ところが、プラズマ処理をした試料では1/3000の1ショットのレーザパルス照射で接触角75度を、10ショットで接触角63度を達成した。しかもプラズマ処理した試料にレーザ光を1ショット照射するだけで、布で拭いても75度以上にはならなかった。
【0038】
実施例8
DC2極スパッタ装置によるグロー放電プラズマをPMMAフィルムに5分間照射すると表8に示すように、未処理試料表面の水との接触角は85度であったものが、44度と低くなる。しかし表面を布で拭くと55度と少々大きくなる。ところがプラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射すると、未処理の試料ではレーザパルス光を500ショット照射しても76度と殆ど接触角に変化は見られなかった。ところが、プラズマ処理をした試料では1ショットのレーザパルス照射で接触角35度を達成した。しかもプラズマ処理した試料にレーザ光を1ショット照射するだけで、布で拭いても接触角40度以上にはならなかった。
【0039】
実施例9
DC2極スパッタ装置によるグロー放電プラズマをエポキシ樹脂板に5分間照射すると表9に示すように、未処理試料表面の水との接触角が76度であったものが、10度と低くなるが、表面を布で拭くと65度と少々大きくなる。ところが、プラズマ処理した試料と未処理試料との表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射すると、未処理試料ではレーザパルス光を1000ショット照射しても45度であった。ところが、プラズマ処理をした試料では1ショットのレーザパルス照射で接触角40度を達成した。しかもプラズマのみを照射した場合接触角はところがプラズマ処理した試料にレーザ光を1ショット照射するだけで、布で拭いても接触角44度と殆ど変わらなかった。
【0040】
実施例10
DC2極スパッタ装置によるグロー放電プラズマを白板ガラスに5分間照射すると表10に示すように、未処理試料表面の水との接触角は31度であったものが、5度と低いが、表面を布で拭くと28度まで戻ってしまう。ところが、プラズマ処理した試料と未処理試料との表面に水の薄液層を介して、9kV、20kHz、入力20Wの電力を印加したXeエキシマランプ光(172nm)を未処理試料に5分間照射すると、接触角は23度まで小さくなる。一方プラズマ処理をした試料の接触角は、同一条件で17度まで下がり、布で拭いても23度以上にはならなかった。
【0041】
実施例11
DC2極スパッタ装置によるグロー放電プラズマをサファイア板に5分間照射すると表11示すように、未処理試料表面の水との接触角は70度であったものが5度と低いが、表面を布で拭くと50度まで戻ってしまう。ところがプラズマ処理した試料と未処理試料との表面に水の薄液層を介して、9kV、20kHz、入力20Wの電力を印加したXeエキシマランプ光(172nm)を5分間照射すると50度まで小さくなる。ところが、プラズマ処理を施した試料は15度まで下がる。一方プラズマ処理した試料にXeエキシマランプ光を5分間照射するだけで15度まで改善され、布で拭いても36度以上にはならなかった。
【0042】
実施例12
DC2極スパッタ装置によるグロー放電プラズマをアルミニウム箔に5分間照射すると表12に示すように、未処理試料表面の水との接触角は77度であったものが11度と低くなるが、表面を布で拭くと40度と大きくなる。ところが、プラズマ処理した試料と未処理試料との表面に水の薄液層を介して、9kV、20kHz、入力20Wの電力を印加したXeエキシマランプ光(172nm)を5分間照射すると40度まで下がる。一方プラズマ処理した試料にXeエキシマランプ光を5分間照射するだけで9度まで改善され、布で拭いても28度以上には戻らなかった。
【0043】
実施例13
DC2極スパッタ装置によるグロー放電プラズマをチタン箔に5分間照射すると表13に示すように、未処理試料表面の水との接触角は93度であったものが28度を呈し、表面を布で拭くと93度と元に戻ってしまう。ところがプラズマ処理した試料と未処理試料との表面に水の薄液層を介して、9kV、20kHz、入力20Wの電力を印加したXeエキシマランプ光(172nm)を未処理試料に5分間照射すると、未処理の場合は61度まで小さくなる。一方プラズマ処理をした試料に5分間のXeエキシマランプ光照射を施すと34度まで下がる。しかも布で拭いても50度以上にはならなかった。
【0044】
実施例14
DC2極スパッタ装置によるグロー放電プラズマをSiウエハに5分間照射すると表14に示すように、未処理試料表面の水との接触角は85度であったものが8度と低い値を示すが、表面を布で拭くと85度まで戻ってしまう。ところがプラズマ処理した試料と未処理試料との表面に水の薄液層を介して、9kV、20kHz、入力20Wの電力を印加したXeエキシマランプ光(172nm)を5分間照射すると、未処理の場合は接触角は42度まで小さくなる。一方プラズマ処理をした試料に5分間のXeエキシマランプ光照射を施すと接触角は20度まで下がる。しかも、布で拭いても接触角は26度以上にはならなかった。
【0045】
実施例15
表15に示すように、未処理PMMA試料表面の水との接触角は85度であり、マシーン油との接触角は0度であった。そこでDC2極スパッタ装置によるグロー放電プラズマをPMMA試料に5分間照射した後、パーフルオロポリエーテルの薄液層を介して10mJ/cmのArFレーザ光を照射した。レーザパルス光を2000ショット照射すると、水との接触角は113度、マシーン油とは60度と、撥水性及び撥油性を発現するPTFEと同値の表面を達成した。
【0046】
実施例16
DC2極スパッタ装置によるグロー放電プラズマをPMMA試料に5分間照射した後、試料表面にパーフルオロポリエーテルの薄液層を介して、9kV、20kHz、入力20Wの電力を印加したXeエキシマランプ光(172nm)を5分間照射すると、水との接触角は115度、マシーン油とは62度と、撥水性及び撥油性を発現するポーラスPTFEと同値の表面を達成した(表15)。
【0047】
実施例17
DC2極スパッタ装置によるグロー放電プラズマをPTFE試料に1〜10分間照射すると未処理試料表面の水との接触角が107度であった表面が、処理後99〜65度と小さくなった。同プラズマを7.5分間照射したPTFE試料(水との接触角60度)に濃度0.3重量%の硫酸銅水溶液の薄液層を介してエネルギー密度10〜25mJ/cmの回路パターン状ArFレーザ光を照射した。この状態で試料表面にレーザパルス光を照射した後、無電解メッキ液に60℃で30分浸漬した。未処理試料では1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は3000ショットであったが、プラズマ処理した試料では表16に示すように1/3000パルスの1から4ショットのレーザパルス照射で銅回路パターンが得られ、銅核密度100%が得られるためには硫酸銅水溶液の濃度0.3%、照射エネルギー密度25mJ/cm、レーザパルス4ショットが最適である。レーザパルス1ショット、照射エネルギー密度25mJ/cmでも銅核密度25%が得られる。
【0048】
実施例18
DC2極スパッタ装置によるグロー放電プラズマをFEP試料に7.5分間照射すると未処理試料表面の水との接触角は104度であったものが、処理後72度と小さくなった。この試料表面に0.3%の硫酸銅水溶液の薄液層を介して20mJ/cmの回路パターンArFレーザ光を照射する。この状態で試料表面にレーザパルス光を照射した後、無電解メッキ液に60℃で30分浸漬し、1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は3000ショットであった。ところが、プラズマ処理した試料では表17に示すように1/3000パルスの1から4ショットのレーザパルス照射で銅回路パターンが得られ、銅核密度100%が得られるためには硫酸銅水溶液の濃度0.3%、照射エネルギー密度20mJ/cm、レーザパルス4ショット、プラズマ処理時間7.5分が最適である。レーザパルス1ショット、照射エネルギー密度10mJ/cmでも銅核密度75%が得られる。
【0049】
実施例19
DC2極スパッタ装置によるグロー放電プラズマをエポキシ樹脂板に1分間照射すると未処理試料表面の水との接触角は76度であったものが、処理後20度と小さくなった。この試料表面に0.3%および1.0%の硫酸銅水溶液の薄液層を介して20〜25mJ/cmの回路パターン状ArFレーザ光を照射した後、無電解メッキ液に60℃で30分浸漬した。未処理試料については、1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は3000ショットであった。ところが、プラズマ処理した試料では表18に示すように1/500パルスの1から4ショットのレーザパルス照射で銅回路パターンが得られ、レーザパルス1ショットで銅核密度100%が得られるためには硫酸銅水溶液の濃度0.3%、照射エネルギー密度24mJ/cm、プラズマ処理時間1分が最適である。
【0050】
実施例20
DC2極スパッタ装置による酸素プラズマをナイロン−6,6板に1〜5分間照射すると未処理試料表面の水との接触角は51度であったものが、処理後19度と小さくなった。この試料表面に0.3%の硫酸銅水溶液の薄液層を介して24〜28mJ/cmの回路パターン状ArFレーザ光を照射する。この状態で試料表面にレーザパルス光を照射した後、無電解メッキ液に60℃で30分浸漬した。未処理試料については、1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は2000ショットであった。ところが、プラズマ処理した試料では表19に示すように1/2000パルスの1から4ショットのレーザパルス照射で銅回路パターンが得られ、銅核密度100%が得られるためには硫酸銅水溶液の濃度0.3%、照射エネルギー密度24mJ/cm、レーザパルス1ショット、プラズマ処理時間5分が最適である。
【0051】
実施例21
DC2極スパッタ装置によるグロー放電プラズマをPETフィルムに10分間照射すると未処理試料表面の水との接触角は71度であったものが、処理後7度と小さくなった。この試料表面に0.3〜1.0%の硫酸銅水溶液の薄液層を介して22〜28mJ/cmの回路パターンArFレーザ光を照射する。表20に示すように、未処理試料表面の水との接触角は71度である。この状態で試料表面にレーザパルス光を照射した後、無電解メッキ液に60℃で30分浸漬した。未処理の試料については、1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は6000ショットであった。ところが、プラズマ処理した試料では表20に示すように1/6000パルスの1から4ショットのレーザパルス照射で銅回路パターンが得られ、レーザパルス1ショットで銅核密度100%が得られるためには硫酸銅水溶液の濃度0.3%、照射エネルギー密度28mJ/cm、プラズマ処理時間10分が最適である。
【0052】
実施例22
DC2極スパッタ装置による酸素プラズマをABS板に1分間照射すると未処理試料表面の水との接触角は79度であったものが、処理後8度と小さくなった。この試料表面に0.3および1.0%の硫酸銅水溶液の薄液層を介して22mJ/cmの回路パターンArFレーザパルス光を照射した後、無電解メッキ液に60℃で30分浸漬した。未処理の試料については、1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は10000ショットであった。ところが、プラズマ処理した試料では表21に示すように1/10000パルスの1から4ショットのレーザパルス照射で銅回路パターンが得られ、レーザパルス1ショットで硫酸銅水溶液の濃度0.3%、照射エネルギー密度22mJ/cmの時、銅核密度70%が得られた。
【0053】
実施例23
DC2極スパッタ装置によるグロー放電プラズマをポリアセタール板に1分間照射すると未処理試料表面の水との接触角は75度であったものが、処理後47度と小さくなった。この試料表面に0.3重量%の硫酸銅水溶液の薄液層を介して25mJ/cmの回路パターン状ArFレーザパルス光を照射した後、無電解メッキ液に60℃で30分浸漬した。未処理の試料については、1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は6000ショットであった。ところが、プラズマ処理した試料では表22に示すように1/6000パルスの1から4ショットのレーザパルス照射で銅回路パターンが得られ、レーザパルス2ショットで銅核密度60%が得られた。
【0054】
実施例24
DC2極スパッタ装置によるグロー放電プラズマをポリイミドフィルムに5分間照射すると未処理試料表面の水との接触角は68度であったものが、処理後11度と小さくなった。この試料表面に0.3重量濃度の硫酸銅水溶液の薄液層を介して15〜29mJ/cmの回路パターン状ArFレーザパルス光を照射した後、無電解メッキ液に60℃で30分浸漬した。未処理試料については、1ミクロン厚の銅箔が形成されるに必要なレーザ照射パルス数は図2に示すように銅核密度100%が得られるためには、照射エネルギー密度50mJ/cmが必要であった。ところがプラズマ処理を施した試料では図3に示すように照射レーザエネルギー密度が約半分の26mJ/cmとフォトンコストの面で経済的である。
【0055】
実施例25
入力10kV、1mAの軟X線発生装置によりエポキシ樹脂板に軟X線を5分間照射すると未処理試料表面の水との接触角は81度であった表面が、処理後64度と小さくなった。この試料に水の薄液層を介して10mJ/cmのArFレーザ光を照射したところ、X線未処理試料にレーザパルス光を3000ショット照射する場合55度であったが、X線処理を施した試料では1/1000の3ショットのレーザパルス照射で55度と僅かに改善が見られた。
【0056】
実施例26
入力10kV、1mAの軟X線発生装置によりPTFEフィルムに軟X線を5分間照射すると未処理試料表面の水との接触角は107度であった表面が、処理後102度と小さくなった。この試料に水の薄液層を介して10mJ/cmのArFレーザ光を照射したところ、X線未処理試料にレーザパルス光を3000ショット照射する場合55度であったが、X線処理を施した試料では1/3000の1ショットのレーザパルス照射で55度と僅かに改善が見られた。
【0057】
実施例27
入力10kV、1mAの軟X線発生装置によりPETフィルムに軟X線を5分間照射すると未処理試料表面の水との接触角は71度であった表面が、処理後65度と僅かに小さくなった。この試料に水の薄液層を介して10mJ/cmのArFレーザ光を照射したところ、X線未処理試料にレーザパルス光を100ショット照射する場合水との接触角は58度であったが、X線処理を施した試料では1/100の1ショットのレーザパルス照射で60度と僅かに改善が見られた。
【0058】
実施例28
DC2極スパッタ装置によるグロー放電プラズマをシリコーン樹脂フィルムに5分間照射すると、未処理試料表面の水との接触角は111度であったものが6度と低くなる。その処理面に水を塗布し、パターン状10mJ/cmのArFレーザ光を1ショット投影する。これにより露光部分がパターンに対応して親水性が発現され、水との接触角は50度を達成した。
【0059】
実施例29
DC2極スパッタ装置によるグロー放電プラズマをポリイミドフィルムに1分間照射すると未処理試料表面の水との接触角は68度であったものが、処理後7度と小さくなる。この試料表面に0.3%の硫酸銅水溶液を塗布し、の薄液層を介して26mJ/cmの回路パターン状ArFレーザ光を1ショット投影露光する。これにより露光部分がパターンに対応して銅核が形成され、これを無電解メッキ液に60℃で30分浸漬し、1ミクロン厚のプリント配線板が形成された。
【0060】
実施例30
エポキシ樹脂板をクロム酸混液に5分間浸漬すると未処理試料表面の水との接触角は81度であった表面が、処理後38度、10分で30度、15分で25度と小さくなる。これらの試料に水の薄液層を介して10mJ/cmのArFレーザ光を照射したところ、未処理試料にレーザパルス光を3000ショット照射する場合55度であったが、クロム酸混液処理を施した試料では1/3000の1ショットのレーザパルス照射で50度と僅かに改善が見られた。
【0061】
実施例31
ポリイミドフィルムをクロム酸混液に5分間浸漬すると未処理試料表面の水との接触角は68度であった表面が、処理後45度と小さくなる。これらの試料に水の薄液層を介して10mJ/cmのArFレーザ光を照射したところ、未処理試料にレーザパルス光を100ショット照射する場合56度であったが、クロム酸混液処理を施した試料では1/3000の1ショットのレーザパルス照射で50度と僅かに改善が見られた。
【0062】
実施例32
DC2極スパッタ装置によるグロー放電プラズマをPTFEフィルムに照射すると図4に示すように、未処理試料表面の水との接触角は107度であったものがプラズマ照射時間に連れて小さくなっていく。この接触角が小さいほどレーザによる表面改質効率が高くなる。そこで、プラズマをパルス的に照射し、パルスが休止している時にDC2極スパッタ装置のチャンバー内に酸素を導入し、すぐにそのガスを吸引する。この操作により試料表面に酸素が吸着する。ここで再度プラズマ照射を持続させる。図4に示すように、15分間連続照射をした試料の水との接触角が76度であるのに対し、5分照射後2.5分毎に2回プラズマ照射を止め、試料表面に酸素吸着を繰り返した試料(5分照射+酸素吸着+2.5分照射+酸素吸着+2.5分照射)の水との接触角は62度と改善された。この試料表面に水の薄液層を介して10mJ/cmのArFレーザ光を照射すると、未処理の試料ではレーザパルス光を3000ショット照射すると水との接触角が55度であったものが、1/3000の1ショットのレーザパルス照射で40度を達成した。
【0063】
実施例33
上部電極を同軸的に有するXeエキシマランプ(172nm;165kcal)と、PET試料を載置した下部電極を上部電極とPET試料が0.1〜1mmの感覚となるように設置し、上部電極と下部電極との間に大気中で高周波電圧を印加すると、PET試料表面とエキシマランプとの間の間隙でグロー放電が生じた。これにより、大気中の酸素がオゾン化され、PET試料表面に活性酸素が吸着され、かつ同時に発振した172nmのエキシマランプ光によりPET試料表面が励起されてPET試料表面に酸素原子を置換させることができた。これに、実施例18と同様に硫酸銅水溶液の薄層を介してArFレーザ光を照射したところ、未処理PET試料では6000ショット照射しなければPET表面に銅核を形成できなかったものが、処理PET試料では1ショットで表面に銅核を形成することができた。
【0064】
【発明の効果】
以上述べたように、本発明によれば、極端に少ないレーザパルスで固体材料表面に官能基や金属原子を置換することができる。
【0065】
【表1】

Figure 2004182516
【0066】
【表2】
Figure 2004182516
【0067】
【表3】
Figure 2004182516
【0068】
【表4】
Figure 2004182516
【0069】
【表5】
Figure 2004182516
【0070】
【表6】
Figure 2004182516
【0071】
【表7】
Figure 2004182516
【0072】
【表8】
Figure 2004182516
【0073】
【表9】
Figure 2004182516
【0074】
【表10】
Figure 2004182516
【0075】
【表11】
Figure 2004182516
【0076】
【表12】
Figure 2004182516
【0077】
【表13】
Figure 2004182516
【0078】
【表14】
Figure 2004182516
【0079】
【表15】
Figure 2004182516
【0080】
【表16】
Figure 2004182516
【0081】
【表17】
Figure 2004182516
【0082】
【表18】
Figure 2004182516
【0083】
【表19】
Figure 2004182516
【0084】
【表20】
Figure 2004182516
【0085】
【表21】
Figure 2004182516
【0086】
【表22】
Figure 2004182516

【図面の簡単な説明】
【図1】各プラスチック材料のプラズマ処理時間と水との接触角の関係を示すグラフ。
【図2】ポリイミド試料において、未処理試料を硫酸銅水溶液の濃度をそれぞれ0.3、0.5、1.0、1.2%の存在下で、ArFレーザ(50mJ/cm)をパルス照射(1、2、3、4ショット)した時の試料表面での銅核形成密度(%)を示すグラフ。
【図3】ポリイミド試料において、プラズマ処理(5分間)を行った試料を0.3%硫酸銅水溶液の存在下で、ArFレーザ(15、17、21、23、26、28mJ/cm)をパルス照射(1、2、3、4ショット)した時の試料表面での銅核形成密度(%)を示すグラフ。
【図4】PTFE試料において、DC2極スパッタ装置によるグロー放電プラズマ処理を行う場合、プラズマ照射を15分間連続で行ったときとプラズマ照射中に休止時間を置き、休止中に酸素の導入を行ったときとの接触角変化を示すグラフ。[0001]
[Field of the Invention]
The present invention relates to a photochemical modification method for a surface of a solid material.
[0002]
[Prior art]
A thin layer of a compound (reaction liquid) containing a chemical species and in a liquid form is formed on the surface of the solid material using a capillary phenomenon, and the surface of the solid material is irradiated with ultraviolet rays through the thin layer. A method of photochemically modifying a solid material surface by exciting a solid surface and a compound to cause a photochemical reaction between the two and introducing (bonding) a chemical species of the compound to the solid material surface is disclosed in, for example, Patent Document 1. 1 to 4 and Non-Patent Document 1. For example, when a thin layer of water is formed on the surface of the water-repellent fluororesin and irradiated with ultraviolet light at a light energy (128 kcal / mol or more) for dissociating the CF bond in the fluororesin, when fluorine atoms are extracted from the fluororesin surface, At the same time, an -OH group from water is introduced into the site from which fluorine has been extracted, and the surface is converted to hydrophilic. When a thin layer of an aqueous solution of a copper compound is formed on the surface of the polyimide and irradiated with ultraviolet light at a light energy (80.6 kcal / mol or more) for dissociating the C—H bond in the polyimide, the aqueous solution of the copper compound is irradiated at the irradiated portion. Is decomposed to generate radicals of copper, oxygen and H, hydrogen is extracted from the C—H bond of the polyimide in the irradiated portion, and oxygen is substituted there, thereby generating a C—O—Cu bond, and the polyimide surface To form a copper nucleus bonded by a covalent bond.
[0003]
[Patent Document 1]
JP-A-6-335631
[0004]
[Patent Document 2]
JP-A-2000-114699
[0005]
[Patent Document 3]
WO 94/21715 pamphlet
[0006]
[Patent Document 4]
U.S. Pat. No. 6,117,497
[0007]
[Non-patent document 1]
Appl. Phys. Lett. , Vol. 72 (20), 2616 (1998)
[0008]
[Problems to be solved by the invention]
The effect of the surface modification differs depending on the type of the material to be surface-modified, the intensity of the incident energy of the ultraviolet ray, and the irradiation time. In particular, in the case of a material having water absorption and an oxygen bond such as polyimide, copper atoms can be replaced by one pulse of ArF laser light (10 nanoseconds / pulse) (Patent Document 2). On the other hand, in order to introduce copper atoms into a highly hydrophobic fluororesin or the like, 3000 pulses of ArF laser light irradiation are required (Non-Patent Document 1).
[0009]
As described above, the energy density and the number of irradiation pulses of the laser light to be irradiated greatly differ depending on the material.
[0010]
On the other hand, it is known that irradiating the polymer surface with low-pressure plasma such as glow discharge plasma or ion sputtering improves the wettability of the polymer surface with water. The cause is fine physical unevenness due to plasma bombing or chemical change of the surface. However, if the polymer surface is left in the air after plasma irradiation, the wettability with water, that is, the contact angle with water gradually increases, and the treatment effect decreases. This is because, during plasma irradiation, a small amount of oxygen present in the atmosphere reacts with radicals generated on the polymer surface, and polar groups such as hydroxyl group, carboxyl group, and carbonyl group are introduced on the polymer surface. It is believed that they migrate into the bulk of the polymer over time and return to the original hydrophobic surface. Further, there is a disadvantage that the wettability is restored when the surface irradiated with plasma is physically wiped. Therefore, in order to modify the surface of the solid material by the plasma irradiation, it is necessary to irradiate a strong plasma.
[0011]
Therefore, the present invention provides a method for modifying the surface of a solid material, which can perform permanent surface modification by a photochemical reaction even when irradiated with ultraviolet light of relatively small energy regardless of the solid material to be modified. With the goal.
[0012]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, as described above, the energy density of laser light to be irradiated and the number of irradiation pulses are greatly different depending on the solid material as described above. The wettability of the surface of the modified material with the reaction solution, or the double bond with oxygen present in the chemical structure of the material (-C = O) and a single bond (-CO-). In other words, it has been found that sufficient contact between the surface to be modified (the surface of the solid material) and the reaction liquid is a necessary and sufficient condition for effectively performing a mutual photochemical reaction.
[0013]
Therefore, in the present invention, a photoreaction is performed in a state where the chemical adhesion (hydrophilicity) between the solid material surface and the reaction solution or the adhesion (oleophilicity) with the oily liquid is forcibly increased in advance. Quality is more efficient. Irradiate the surface to be modified with energy rays such as discharge plasma, glow discharge plasma, excimer laser light, excimer lamp light, soft X-ray, ultraviolet light, and ion sputtering to enhance the adhesion between the solid material surface and the reaction solution. Or an aqueous solution of an oxidizing agent such as hydrogen peroxide, potassium permanganate, sulfuric acid, potassium chromate or oxygen, ozone, NO 2 The surface of the solid material is oxidized by a gaseous oxidizing agent such as a photochemical reaction between the surface to be modified and the reaction solution while the material to be surface modified exhibits a high degree of adhesion, albeit temporarily. It replaces functional groups and atoms on the material surface to create a permanent modified surface.
[0014]
That is, according to the present invention, a thin layer of a compound containing a chemical species and in a liquid form is formed on the surface of the solid material, and the surface of the solid material is irradiated with ultraviolet rays through the thin layer to form the thin layer. Photochemically modifying the solid material surface by exciting the solid surface and the compound to introduce the chemical species to the solid material surface to form the thin layer on the solid material surface. Prior to the above, there is provided a method for photochemically modifying the surface of a solid material, comprising treating the surface of the solid material with an activation energy or an oxidizing agent to promote the photochemical modification of the surface of the solid material.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a thin liquid of a compound in a liquid form (liquid) (hereinafter, also referred to as a reaction liquid) is formed on the surface of a solid material to improve the degree of adhesion of the surface of the solid material to the liquid compound before being irradiated with ultraviolet rays. Next, the surface of the solid material is treated with a relatively weak activation energy or oxidizing agent.
[0016]
This degree of adhesion can be quantified by the contact angle with water or an oily substance. Generally, when the contact angle of water on the surface of a solid material exceeds 90 degrees, it is called water repellency, and below that, it is called hydrophilic. As the value of the contact angle increases, the water repellency increases, and as the contact angle decreases, the hydrophilicity increases. For example, the contact angle of a fluororesin is as large as about 110 degrees and outside, and repels water without getting wet. On the other hand, polyimide has a relatively low contact angle with water of 65 degrees, so that it is said that polyimide is well compatible with water. Therefore, the reaction efficiency is higher than that of the fluororesin. In the most extreme case, when replacing or introducing —CO—Cu into a fluororesin, the pulse number of an ArF laser requires 3000 shots (Non-Patent Document 1), whereas 1 is required for polyimide. Extremely small, up to 4 shots (Patent Document 2). One of the reasons is that polyimide has a -C = O bond at the terminal group of its chemical structure, and a copper atom is bonded to this oxygen atom to become -CO-Cu. Although it is conceivable, even in this case, an efficient chemical reaction is not performed unless the reaction solution is in close contact. Therefore, improvement of wettability is a necessary and sufficient condition for surface modification by light.
[0017]
Conventionally, the plasma treatment of plastic has been reported very frequently. However, the drawback is that the treated surface is temporary, and even if it is wiped off by plasma treatment, it will return to its original state immediately. Moreover, if water is applied, the contact angle is small at that point, but if the water evaporates, the contact angle will return to its original position.
[0018]
That is, as shown in Example 1 below, as a plastic sample, epoxy resin, polycarbonate (PC), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyimide (PI), acrylonitrile butadiene styrene (ABS) ), Silicone resin, vinyl chloride, polymethyl methacrylate (PMMA), nylon-6,6, nylon-6, polyacetal, polytetrafluoroethylene (PTFE), polytetrafluoroethylene hexafluoropropylene (FEP), ceramic sample Sapphire, quartz glass, white plate glass, and metals such as titanium (Ti), aluminum (Al), and silicon (Si) have a large contact angle with water. However, as shown in FIG. 1 described below, when plasma irradiation is performed on the material surface for 5 minutes, even if the PTFE or FEP of the fluororesin with little change is 21 degrees, the epoxy resin, polycarbonate (PC), polypropylene Plain (PP) and the like have a significantly improved wettability of about 70 degrees. However, if time elapses or the modified surface is slightly wiped physically, the contact angle returns to the value before plasma irradiation. For this reason, in general, strong plasma irradiation is performed for surface modification, but as a result, there is a disadvantage that the surface shape of the solid material is significantly modified.
[0019]
The present inventors utilize a capillary phenomenon to sandwich a reaction solution in a gap between a synthetic quartz window and a plastic surface, and irradiate the reaction solution with ultraviolet light to interpose a hydrophilic group, a lipophilic group, or an oxygen atom. It has been proposed to substitute metal such as -O-Cu. However, for a laser with a high photon cost, practical application means reducing the amount of energy irradiation, and laser pulse irradiation of several thousand shots has been a hindrance to practical use. Extremely reducing the number of laser pulses increases the efficiency of the photochemical reaction. Therefore, if the light absorption efficiency of the liquid compound is increased, the decomposition efficiency is increased, but on the other hand, the amount of light to reach the surface of the solid material below the liquid compound is attenuated. On the other hand, it is desired to increase the light absorptance on the surface of the solid material, but this is a property inherent to the material and cannot be manipulated. To improve the photochemical reaction efficiency, Murahara et al. Considered that a thin liquid layer was formed by capillary action in the gap between the light transmitting window glass and the sample surface, and the adhesion between the sample and the liquid layer was improved. (Patent Documents 1, 2, 3, and 4). However, even with this method, a thin liquid layer is apparently formed, and the photoreaction efficiency is improved. However, the adhesion of the aqueous solution was better on the window glass than on the sample surface. In order to further increase the photoreaction efficiency, it was necessary to improve the wettability of the sample surface by some method. If the wettability of the entire sample continues to improve, the properties of the exposed part are manifested by the optical surface modification treatment, but some substances adhere to the unexposed part when the product is put into practical use. , The effect may be impaired. For this reason, in practical use, in order to selectively modify only the portion irradiated with light, the wettability is temporarily improved, but plasma treatment that returns to the original over time is required. Are suitable. In other words, using the moment when the reaction liquid is attached, if the surface of the light is modified in the solution atmosphere, the functional group is substituted in the exposed part, and the unexposed part returns to the original property with the lapse of time. I will. Therefore, as a result, only the exposed surface is selectively modified.
[0020]
In the present invention, the surface of the solid material is treated with an activation energy or an oxidizing agent in order to improve the adhesion to the liquid compound (pretreatment). The treatment with the activation energy can be performed by discharge plasma (particularly glow discharge plasma), ion sputtering, soft X-ray, ultraviolet light, excimer laser light, excimer lamp light, or a combination thereof. Glow discharge plasma and / or ion sputtering are particularly preferred. The treatment with the activation energy is usually performed in the presence of oxygen. Oxygen can be trace amounts adsorbed on the surface of the solid material. Alternatively, the activation energy may be irradiated in a pulsed manner, and oxygen may be brought into contact with the surface of the solid material while the pulse is paused, that is, between pulses. When the activation energy is irradiated in the presence of oxygen, oxygen radicals are introduced to the surface of the solid material. When a discharge plasma, particularly a glow discharge plasma, is used, a sputtering action such as an ion bombardment action is applied to the solid surface material, so that not only oxygen radicals are introduced into the solid surface material, but also extremely fine It is considered that unevenness is generated, whereby the adhesion between the reaction liquid and the surface of the solid material is further improved. However, as described above, the pretreatment according to the present invention is a weak treatment, and the reaction solution adheres immediately after the treatment, but the reaction solution evaporates or the reaction solution is wiped off with a cloth or the like. On the other hand, the contact angle of the solid material surface with the reaction solution is such that it returns to the original value. For example, the discharge plasma including the ion sputtering can be performed by so-called reverse sputtering, the distance between the electrodes is set to 10 to 60 mm, the (sputter etching) current is 1 to 20 mA, and the (sputter etching) is 0.2 kV to 1 kV. ) Voltage, reduced from atmospheric pressure 10 -2 -10 -4 Torr decompression (almost 10 -2 -10 -4 (Torr oxygen atmosphere). Soft X-rays can be generated at input voltages between 1 and 10 kV. Ultraviolet light and excimer laser light are 0.05 to 20 mJ / cm. 2 Irradiation at an energy density of In addition, excimer lamp light can be generated at 5-20 kV and 10-50 W input. In the present invention, it is also possible to use an apparatus disclosed in Japanese Patent No. 3316069 in which the surface of a solid material is combined with irradiation of excimer lamp light and electric discharge (see also Example 33 below).
[0021]
In the present invention, the oxidizing agent may be a mixed solution of chromic acid, potassium permanganate, hydrogen peroxide, oxygen (for example, as plasma), ozone or NO. 2 Can be used.
[0022]
In any case, the pretreatment is performed such that the contact angle of the surface of the solid material with the liquid compound changes from the contact angle of the surface of the untreated solid material.
[0023]
After pretreatment in this manner, a thin layer of the liquid compound is formed on the surface of the solid material.
[0024]
In order to form a thin layer of a liquid compound, a technique utilizing the capillary phenomenon disclosed in Patent Documents 1 to 4 and Non-Patent Document 1 can be adopted. That is, an ultraviolet ray transmitting window member such as quartz is arranged so that a capillary force acts between the ultraviolet ray transmitting window member and the solid material surface, and a thin layer of the liquid compound is formed between the ultraviolet ray transmitting window member and the solid material surface. it can. Alternatively, in the present invention, a thin layer can be formed by applying a liquid compound to the surface of a pretreated solid material.
[0025]
The solid material to be surface-modified by the present invention includes plastic (resin), metal, semiconductor, and ceramic. Examples of the plastic (resin) include cured epoxy resin, polycarbonate (PC), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyimide (PI), acrylonitrile butadiene styrene (ABS), silicone resin, and polychlorinated resin. Examples include vinyl, polymethyl methacrylate (PMMA), nylon-6,6, nylon-6, polyacetal, and fluororesin (polytetrafluoroethylene (PTFE), polytetrafluoroethylene hexafluoropropylene (FEP)). it can. Examples of the ceramic include sapphire, quartz glass, and white plate glass. Examples of metals and semiconductors include titanium (Ti), aluminum (Al), and silicon (Si).
[0026]
As the liquid compound, water, alcohol, liquid fluorine compound such as perfluoropolyether, hydrogen peroxide solution, hydrochloric acid, sulfuric acid, nitric acid, formic acid, acetic acid, ammonium fluoride, for example, copper compound, nickel compound such as An aqueous solution of a metal compound or the like can be used. As a copper compound, CuCl 2 , Cu (ClO 3 ) 2 , Cu (ClO 4 ) 2 , CuBr 2 , CuSO 4 , Cu 2 O, Cu (NO 3 ) 2 , CuSeO 4 , Cu (OH) 2 , Cu (CH 3 COO) 2 , [Cu (NH 3 ) 4 ] SO 4 , [Cu (C 2 H 8 N 2 ) 2 ] SO 4 , K 3 [Cu (CN) 4 ] Can be preferably used. When the surface of a solid material is modified using an aqueous solution of a copper compound, a —CO—Cu bond is generated on the surface of the solid material, and copper nuclei are deposited. Copper plating may be applied to the surface of the solid material. By irradiating ultraviolet rays for photochemical reaction in a circuit pattern form, copper nuclei can be deposited in the circuit pattern form, so that a predetermined circuit pattern can be obtained by copper plating.
[0027]
Ultraviolet irradiation can also be performed as disclosed in Patent Documents 1 to 4 and Non-Patent Document 1. The energy of the ultraviolet light is, for example, to dissociate the C—F bond for fluororesins, to dissociate C—H bonds for other resins, and to extract metal atoms for metals. In order to extract oxygen from the oxide ceramic, or to activate oxygen atoms present in the ceramic and promote bonding with atoms or molecules from the reaction solution present in the atmosphere, respectively. Set to a sufficient degree. Ultraviolet rays can be applied to the entire surface of the solid material, or can be applied in a predetermined pattern, for example, a circuit pattern.
[0028]
【Example】
Hereinafter, the present invention will be described. The DC bipolar sputtering apparatus used in the following examples is a Quick Coater SC-701S manufactured by Sanyu Electronics Co., Ltd., which was used in a reverse sputter etching mode, using a sputter etching current of 15 mA and a sputter etching voltage of 0.4 kV. The distance between the electrodes was 27 mm. Inside the device is 10 -2 -10 -4 Vacuum was applied to Torr. Irradiation with soft X-rays was performed in the air. The combined treatment of the solid material with the excimer lamp light and the glow discharge was performed in the atmosphere (Example 33).
[0029]
Example 1
As plastic samples, cured epoxy resin, polycarbonate (PC), polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polyimide (PI), acrylonitrile butadiene styrene (ABS), silicone resin, polyvinyl chloride, poly Methyl methacrylate (PMMA), nylon-6,6, nylon-6, polyacetal, polytetrafluoroethylene (PTFE), polytetrafluoroethylene / hexafluoropropylene (FEP), sapphire as a ceramic sample, quartz glass, white plate glass, For titanium (Ti), aluminum (Al), and silicon (Si) as metals, the contact angles with untreated water were measured. Next, these samples were irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 5 minutes, and the contact angles of the treated surfaces with water were measured. Furthermore, the contact angle after wiping the sample surface subjected to the plasma treatment with a cloth was measured. In addition, a similar glow discharge plasma treatment was performed for 10 minutes to compare the irradiation time dependence of the plasma irradiation effect. Table 1 shows the results. The results for plastics are also shown in FIG. All plastics, ceramics, and metals except fluororesin PTFE and FEP have a significantly smaller contact angle with water by glow discharge plasma irradiation for 5 minutes. Fluororesins (PTFE, FEP) with a small change in contact angle also become smaller as the plasma irradiation time is extended, and change from water-repellent to hydrophilic at 65-72 degrees with 10-minute irradiation. However, if these sample surfaces are lightly wiped with a cloth, the contact angles of all the samples return to the original.
[0030]
For the purpose of replacing the lipophilic groups on the surfaces of these samples, the contact angles of each sample with the machine oil were measured. Since most of the samples exhibited lipophilicity, a sample having a contact angle of 10 degrees or more, which is considered to be oleophobic, was subjected to a plasma treatment for 5 minutes. As a result, as shown in Table 1, from 10 degrees to 3 degrees for PET, from 40 degrees to 18 degrees for silicone resin, from 38 degrees to 26 degrees for PTFE, from 35 degrees to 22 degrees for FEP, and titanium From 13 degrees to 0 degrees, a plasma irradiation effect was observed. Also in these cases, if the sample surface is lightly wiped with a cloth, the contact angle returns to the original.
[0031]
Therefore, the temporary decrease in the contact angle caused by the discharge plasma irradiation is used to improve the adhesion between the liquid compound and the surface of the solid material, and irradiation with ultraviolet light in this state promotes the photochemical reaction on the surface of the solid material. Came to the conclusion that it can be done.
[0032]
Example 2
When a polyimide film sample was irradiated with glow discharge plasma (including ion sputtering; the same applies hereinafter) for 5 minutes using a DC bipolar sputtering apparatus, the contact angle with water on the untreated surface was 68 degrees as shown in Table 2. Is as low as 11 degrees, but returns to 68 degrees when the surface is wiped with a cloth. The surface of the sample subjected to the glow discharge plasma treatment and the untreated sample were 10 mJ / cm through a thin liquid layer of water. 2 Was irradiated with ArF laser light. In the case of the untreated sample, the contact angle could be improved only up to 56 degrees even when 100 shots of the laser pulsed light were irradiated, but in the case of the plasma-treated sample, the contact angle of 25 degrees was achieved by the one shot laser pulse irradiation. In addition, only one shot of the laser beam was irradiated to the plasma-treated sample, and the sample did not return to 34 ° or more even when wiped with a cloth.
[0033]
Example 3
When the glow discharge plasma by the DC bipolar sputtering apparatus is irradiated on the silicone resin film sample for 5 minutes, the contact angle with water on the surface of the untreated sample is 111 degrees as shown in Table 3, but it becomes as low as 6 degrees. If the surface is wiped with a cloth, it will return to the original 70 degrees. 10 mJ / cm through the thin liquid layer of water on the surfaces of the plasma-treated sample and the untreated sample. 2 Of ArF laser light. In the case of the untreated sample, even when the laser pulse light was irradiated 500 times, the contact angle could be improved only up to 102 degrees, but in the case of the plasma-treated sample, the contact angle of 50 degrees was achieved by one shot of the laser pulse. As shown in Table 1, when only plasma is irradiated, the contact angle is as low as 6 degrees, but when the surface is wiped with a cloth, the contact angle is lower than the original value of 111 degrees, but still increases to 70 degrees. However, even if only one shot of laser light was applied to the plasma-treated sample, the contact angle hardly returned to 49 degrees even when wiped with a cloth.
[0034]
Example 4
When a glow discharge plasma by a DC bipolar sputtering apparatus is irradiated on a polyacetal film for 5 minutes, as shown in Table 4, the contact angle of water on the surface of the untreated sample was 75 degrees, but the contact angle with water became as low as 49 degrees. When the cloth is wiped with a cloth, it returns to 72 degrees, which is close to the original value. 10 mJ / cm through the thin liquid layer of water on the surfaces of the plasma-treated sample and the untreated sample. 2 Was irradiated with ArF laser light. In the case of the untreated sample, even when the laser pulse light was irradiated for 3000 shots, the contact angle was almost unchanged at 78 degrees. However, the plasma-treated sample achieved a contact angle of 35 degrees by one-shot laser pulse irradiation. In addition, only one shot of laser light was applied to the plasma-treated sample, and the sample did not return to 35 ° or more even when wiped with a cloth.
[0035]
Example 5
When the PET film is irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 5 minutes, as shown in Table 5, the contact angle of the untreated sample surface with water is 71 degrees, but becomes extremely low at 8 degrees. However, if the surface is wiped with a cloth, it returns to 65 degrees, which is close to the original value (71 degrees). 10 mJ / cm through the thin liquid layer of water on the surfaces of the plasma-treated sample and the untreated sample. 2 Was irradiated with ArF laser light. Irradiation of 1000 shots of laser pulse light can improve even an untreated sample to 40 degrees. However, the plasma-treated sample achieved a contact angle of 40 degrees with 1/10 of 100 shots and a contact angle of 47 degrees with 5 shots. In addition, the sample that had been subjected to the plasma treatment was irradiated with only 5 shots of laser light, and did not return to more than 50 degrees even when wiped with a cloth.
[0036]
Example 6
As shown in Table 6, when the glow discharge plasma by the DC bipolar sputtering apparatus was irradiated on the PTFE film for 5 minutes, the untreated sample surface had a contact angle of 107 degrees with water, which was 99 degrees, which was 99 degrees compared to other plastics. high. Moreover, if the surface is wiped with a cloth, it returns to 95 degrees, which is close to the original value (107 degrees). However, the surfaces of the plasma-treated sample and the untreated sample were 10 mJ / cm through a thin liquid layer of water. 2 When the ArF laser light was irradiated, the laser beam became 55 degrees when the laser pulse light was irradiated for 3000 shots in the untreated sample. However, the plasma-treated sample achieved 56 degrees by 1/3000 laser pulse irradiation of one shot. In addition, the sample that has been subjected to the plasma treatment is irradiated with only one shot of laser light, and maintains 68 degrees even when wiped with a cloth.
[0037]
Example 7
When glow discharge plasma is irradiated on the FEP film for 5 minutes by the DC bipolar sputtering apparatus, as shown in Table 7, the untreated sample surface has a contact angle with water of 104 degrees, which is 83 degrees, which is compared with other plastics. And high. However, even if the surface is wiped with a cloth, it does not return to the original value (104 degrees) as extremely as 85 degrees. However, the surfaces of the plasma-treated sample and the untreated sample were 10 mJ / cm through a thin liquid layer of water. 2 When the ArF laser beam was irradiated, the contact angle of the untreated sample became 63 degrees when the laser pulse light was irradiated for 3000 shots. However, in the case of the plasma-treated sample, a contact angle of 75 degrees was achieved by 1/3000 laser pulse irradiation of one shot, and a contact angle of 63 degrees was achieved by 10 shots. Moreover, the laser-irradiated sample was irradiated with only one shot to the plasma-treated sample, and even when wiped with a cloth, the temperature did not exceed 75 degrees.
[0038]
Example 8
When the glow discharge plasma by the DC bipolar sputtering apparatus is irradiated on the PMMA film for 5 minutes, as shown in Table 8, the contact angle of the untreated sample surface with water was 85 degrees, but the contact angle was lowered to 44 degrees. However, when the surface is wiped with a cloth, it becomes slightly larger at 55 degrees. However, the surfaces of the plasma-treated sample and the untreated sample were 10 mJ / cm through a thin liquid layer of water. 2 Irradiated with ArF laser light, the untreated sample showed almost no change in the contact angle of 76 degrees even when the laser pulsed light was irradiated for 500 shots. However, the plasma-treated sample achieved a contact angle of 35 degrees by one-shot laser pulse irradiation. In addition, only one shot of laser light was applied to the plasma-treated sample, and the contact angle did not exceed 40 degrees even when wiped with a cloth.
[0039]
Example 9
When an epoxy resin plate is irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 5 minutes, as shown in Table 9, the contact angle of water on the surface of the untreated sample with water is 76 degrees, but it becomes as low as 10 degrees. When the surface is wiped with a cloth, it becomes slightly larger at 65 degrees. However, the surfaces of the plasma-treated sample and the untreated sample were 10 mJ / cm through a thin liquid layer of water. 2 Irradiated with ArF laser light, the unprocessed sample was 45 degrees even when irradiated with 1000 shots of laser pulse light. However, the plasma-treated sample achieved a contact angle of 40 degrees by one-shot laser pulse irradiation. In addition, when only plasma was irradiated, the contact angle was almost the same as the contact angle of 44 degrees even when the sample was subjected to the plasma treatment by irradiating only one shot of laser light and wiping with a cloth.
[0040]
Example 10
When glow discharge plasma was irradiated onto a white plate glass for 5 minutes by a DC bipolar sputtering apparatus, as shown in Table 10, the contact angle of water on the untreated sample surface with water was 31 degrees, but was as low as 5 degrees. It returns to 28 degrees when wiped with a cloth. However, when an Xe excimer lamp light (172 nm) applied with power of 9 kV, 20 kHz, and an input of 20 W is applied to the surface of the plasma-treated sample and the untreated sample through a thin liquid layer of water for 5 minutes, , The contact angle is reduced to 23 degrees. On the other hand, the contact angle of the plasma-treated sample decreased to 17 degrees under the same conditions, and did not exceed 23 degrees even when wiped with a cloth.
[0041]
Example 11
When the sapphire plate is irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 5 minutes, as shown in Table 11, the contact angle of water on the untreated sample surface with water was 70 degrees, which was as low as 5 degrees, but the surface was treated with cloth. Wipe back to 50 degrees. However, when the surface of the plasma-treated sample and the untreated sample is irradiated with Xe excimer lamp light (172 nm) applied with power of 9 kV, 20 kHz and input power of 20 W for 5 minutes through a thin liquid layer of water, the temperature decreases to 50 degrees. . However, the temperature of the sample subjected to the plasma treatment is lowered to 15 degrees. On the other hand, it was improved to 15 degrees only by irradiating the plasma-treated sample with Xe excimer lamp light for 5 minutes, and it did not become 36 degrees or more even when wiped with a cloth.
[0042]
Example 12
When glow discharge plasma by a DC bipolar sputtering apparatus is irradiated on an aluminum foil for 5 minutes, as shown in Table 12, the contact angle of water on the untreated sample surface with water was 77 degrees, but decreased to 11 degrees. It becomes as large as 40 degrees when wiped with a cloth. However, when the surface of the plasma-treated sample and the untreated sample is irradiated with Xe excimer lamp light (172 nm) applied with power of 9 kV, 20 kHz, and input power of 20 W for 5 minutes through a thin liquid layer of water, the temperature drops to 40 degrees. . On the other hand, it was improved to 9 degrees only by irradiating the plasma-treated sample with Xe excimer lamp light for 5 minutes, and it did not return to 28 degrees or more even when wiped with a cloth.
[0043]
Example 13
When the glow discharge plasma by the DC bipolar sputtering apparatus was irradiated on the titanium foil for 5 minutes, as shown in Table 13, the contact angle with water on the surface of the untreated sample was 93 degrees, but it was 28 degrees, and the surface was covered with cloth. When wiped, it returns to 93 degrees. However, when the Xe excimer lamp light (172 nm) applied with a power of 9 kV, 20 kHz, and an input of 20 W was applied to the surfaces of the plasma-treated sample and the untreated sample through a thin liquid layer of water for 5 minutes, If it has not been processed, it will be reduced to 61 degrees. On the other hand, when the sample subjected to the plasma treatment is irradiated with Xe excimer lamp light for 5 minutes, the temperature decreases to 34 degrees. Moreover, it did not exceed 50 degrees even when wiped with a cloth.
[0044]
Example 14
When a glow discharge plasma by a DC bipolar sputtering apparatus is irradiated on a Si wafer for 5 minutes, as shown in Table 14, the contact angle of water on the untreated sample surface with water is 85 °, which is as low as 8 °, If the surface is wiped with a cloth, it will return to 85 degrees. However, when the surface of the plasma-treated sample and the untreated sample is irradiated with Xe excimer lamp light (172 nm) applied with power of 9 kV, 20 kHz and input 20 W for 5 minutes through a thin liquid layer of water, the sample is untreated. Reduces the contact angle to 42 degrees. On the other hand, when the sample subjected to the plasma treatment is irradiated with Xe excimer lamp light for 5 minutes, the contact angle decreases to 20 degrees. Moreover, the contact angle did not become 26 degrees or more even after wiping with a cloth.
[0045]
Example 15
As shown in Table 15, the contact angle of the untreated PMMA sample surface with water was 85 degrees, and the contact angle with the machine oil was 0 degrees. Then, after irradiating the PMMA sample with glow discharge plasma by a DC bipolar sputtering apparatus for 5 minutes, 10 mJ / cm is applied through a thin liquid layer of perfluoropolyether. 2 Was irradiated with ArF laser light. When 2,000 shots of laser pulsed light were applied, the contact angle with water was 113 degrees, and the angle with machine oil was 60 degrees, and a surface having the same value as PTFE exhibiting water repellency and oil repellency was achieved.
[0046]
Example 16
After irradiating a PMMA sample with a glow discharge plasma by a DC bipolar sputtering apparatus for 5 minutes, a Xe excimer lamp light (172 nm) applied with power of 9 kV, 20 kHz, and input 20 W through a thin liquid layer of perfluoropolyether on the sample surface. ) For 5 minutes, a contact angle with water of 115 degrees and a machine oil with 62 degrees, achieving the same surface as porous PTFE exhibiting water repellency and oil repellency (Table 15).
[0047]
Example 17
When the PTFE sample was irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 1 to 10 minutes, the surface of the untreated sample having a contact angle with water of 107 ° became as small as 99 to 65 ° after the treatment. A PTFE sample (contact angle with water of 60 degrees) irradiated with the same plasma for 7.5 minutes has an energy density of 10 to 25 mJ / cm through a thin liquid layer of a 0.3 wt% aqueous solution of copper sulfate. 2 Was irradiated with ArF laser light in the form of a circuit pattern. After irradiating the sample surface with laser pulse light in this state, it was immersed in an electroless plating solution at 60 ° C. for 30 minutes. In the untreated sample, the number of laser irradiation pulses required to form a copper foil having a thickness of 1 micron was 3000 shots. In the plasma-treated sample, as shown in Table 16, 1 to 4 shots of 1/3000 pulse were used. In order to obtain a copper circuit pattern by laser pulse irradiation and obtain a copper nucleus density of 100%, a concentration of an aqueous solution of copper sulfate is 0.3% and an irradiation energy density is 25 mJ / cm. 2 , Four shots of the laser pulse are optimal. Laser pulse 1 shot, irradiation energy density 25mJ / cm 2 However, a copper nucleus density of 25% can be obtained.
[0048]
Example 18
When the FEP sample was irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 7.5 minutes, the contact angle of water on the surface of the untreated sample was 104 °, but it became as small as 72 ° after the treatment. 20 mJ / cm on the surface of this sample through a thin liquid layer of a 0.3% aqueous solution of copper sulfate. 2 The circuit pattern is irradiated with ArF laser light. After irradiating the sample surface with laser pulse light in this state, the sample was immersed in an electroless plating solution at 60 ° C. for 30 minutes, and the number of laser irradiation pulses required to form a 1-micron thick copper foil was 3,000 shots. . However, as shown in Table 17, in the plasma-treated sample, a copper circuit pattern was obtained by irradiating 1 to 4 laser pulses of 1/3000 pulse, and in order to obtain a copper nucleus density of 100%, the concentration of copper sulfate aqueous solution was required. 0.3%, irradiation energy density 20 mJ / cm 2 The optimum is a laser pulse of 4 shots and a plasma processing time of 7.5 minutes. Laser pulse 1 shot, irradiation energy density 10mJ / cm 2 However, a copper nucleus density of 75% can be obtained.
[0049]
Example 19
When the epoxy resin plate was irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for one minute, the contact angle of water on the surface of the untreated sample was 76 degrees, but it was reduced to 20 degrees after the treatment. 20 to 25 mJ / cm through a thin liquid layer of 0.3% and 1.0% copper sulfate aqueous solution on the sample surface 2 After irradiating ArF laser light in the form of a circuit pattern, the substrate was immersed in an electroless plating solution at 60 ° C. for 30 minutes. For the untreated sample, the number of laser irradiation pulses required to form a 1-micron thick copper foil was 3000 shots. However, as shown in Table 18, in the plasma-treated sample, a copper circuit pattern can be obtained by irradiating 1 to 4 laser pulses of 1/500 pulse, and 100% of copper nucleus density can be obtained by one laser pulse shot. 0.3% concentration of copper sulfate aqueous solution, irradiation energy density 24mJ / cm 2 A plasma processing time of 1 minute is optimal.
[0050]
Example 20
When oxygen plasma was applied to the nylon 6,6 plate for 1 to 5 minutes by a DC bipolar sputtering apparatus, the contact angle of water on the surface of the untreated sample was 51 degrees, but it was reduced to 19 degrees after the treatment. A 24-28 mJ / cm is applied to the surface of the sample through a thin liquid layer of a 0.3% aqueous solution of copper sulfate. 2 Is irradiated with ArF laser light in the form of a circuit pattern. After irradiating the sample surface with laser pulse light in this state, it was immersed in an electroless plating solution at 60 ° C. for 30 minutes. For the untreated sample, the number of laser irradiation pulses required to form a 1-micron thick copper foil was 2000 shots. However, in the plasma-treated sample, as shown in Table 19, a copper circuit pattern can be obtained by irradiating 1 to 4 shots of a laser pulse of 1/2000 pulse, and a copper nucleus density of 100% is obtained in order to obtain a copper nucleus density of 100%. 0.3%, irradiation energy density 24 mJ / cm 2 Optimum is one shot of laser pulse and five minutes of plasma processing time.
[0051]
Example 21
When the PET film was irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 10 minutes, the contact angle with water on the surface of the untreated sample was 71 degrees, but decreased to 7 degrees after the treatment. 22-28 mJ / cm through a thin liquid layer of 0.3-1.0% copper sulfate aqueous solution on the surface of this sample 2 The circuit pattern is irradiated with ArF laser light. As shown in Table 20, the contact angle of the untreated sample surface with water is 71 degrees. After irradiating the sample surface with laser pulse light in this state, it was immersed in an electroless plating solution at 60 ° C. for 30 minutes. For the untreated sample, the number of laser irradiation pulses required to form a 1-micron thick copper foil was 6000 shots. However, in the plasma-treated sample, as shown in Table 20, a copper circuit pattern can be obtained by irradiating 1 to 4 shots of a laser pulse of 1/6000 pulse, and 100% of copper nucleus density can be obtained by one shot of a laser pulse. Copper sulfate aqueous solution concentration 0.3%, irradiation energy density 28mJ / cm 2 The plasma processing time of 10 minutes is optimal.
[0052]
Example 22
When the ABS plate was irradiated with oxygen plasma by a DC bipolar sputtering apparatus for 1 minute, the contact angle of the untreated sample surface with water was 79 degrees, but it was reduced to 8 degrees after the treatment. 22 mJ / cm on the sample surface through a thin liquid layer of 0.3 and 1.0% copper sulfate aqueous solution 2 After irradiating the circuit pattern ArF laser pulse light, the substrate was immersed in an electroless plating solution at 60 ° C. for 30 minutes. For the untreated sample, the number of laser irradiation pulses required to form a 1 micron thick copper foil was 10,000 shots. However, in the plasma-treated sample, as shown in Table 21, a copper circuit pattern was obtained by irradiating 1 to 4 shots of a laser pulse of 1/10000 pulses, and one shot of the laser pulse was irradiated with a 0.3% copper sulfate aqueous solution at a concentration of 0.3%. Energy density 22mJ / cm 2 At this time, a copper nucleus density of 70% was obtained.
[0053]
Example 23
When the polyacetal plate was irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 1 minute, the contact angle of the untreated sample surface with water was 75 degrees, but it was reduced to 47 degrees after the treatment. 25 mJ / cm through a thin liquid layer of a 0.3 wt% aqueous solution of copper sulfate on the surface of the sample. 2 After irradiating the ArF laser pulse light in the form of a circuit pattern, the substrate was immersed in an electroless plating solution at 60 ° C. for 30 minutes. For the untreated sample, the number of laser irradiation pulses required to form a 1-micron thick copper foil was 6000 shots. However, in the plasma-treated sample, as shown in Table 22, a laser circuit irradiation of 1 to 4 shots of 1/6000 pulse gave a copper circuit pattern, and a copper nucleus density of 60% was obtained with 2 shots of the laser pulse.
[0054]
Example 24
When the polyimide film was irradiated with glow discharge plasma by a DC bipolar sputtering apparatus for 5 minutes, the contact angle with water on the surface of the untreated sample was 68 degrees, but decreased to 11 degrees after the treatment. 15-29 mJ / cm on the surface of this sample through a thin liquid layer of a 0.3 wt. 2 After irradiating the ArF laser pulse light in the form of a circuit pattern, the substrate was immersed in an electroless plating solution at 60 ° C. for 30 minutes. As for the untreated sample, the number of laser irradiation pulses required to form a 1-micron thick copper foil is, as shown in FIG. 2, an irradiation energy density of 50 mJ / cm in order to obtain a copper nucleus density of 100%. 2 Was needed. However, in the sample subjected to the plasma treatment, as shown in FIG. 3, the irradiation laser energy density is about half, that is, 26 mJ / cm. 2 And it is economical in terms of photon cost.
[0055]
Example 25
When soft X-rays were applied to the epoxy resin plate for 5 minutes using a soft X-ray generator with an input of 10 kV and 1 mA, the contact angle with water on the untreated sample surface was 81 degrees, but the surface decreased to 64 degrees after treatment. . This sample is passed through a thin liquid layer of water at 10 mJ / cm. 2 Irradiated with ArF laser light, when the X-ray unprocessed sample was irradiated with 3000 shots of the laser pulse light, the angle was 55 degrees. In the case of the X-ray treated sample, the laser pulse light was irradiated with 1/1000 of 3 shots of the laser pulse. There was a slight improvement of 55 degrees.
[0056]
Example 26
When soft X-rays were irradiated to the PTFE film for 5 minutes by a soft X-ray generator with an input of 10 kV and 1 mA, the surface of the untreated sample had a contact angle with water of 107 ° and decreased to 102 ° after the treatment. This sample is passed through a thin liquid layer of water at 10 mJ / cm. 2 Irradiated with ArF laser light, when the X-ray-untreated sample was irradiated with 3000 shots of laser pulse light, it was 55 degrees. There was a slight improvement of 55 degrees.
[0057]
Example 27
When soft X-rays were applied to the PET film for 5 minutes using a soft X-ray generator with an input of 10 kV and 1 mA, the surface of the untreated sample had a contact angle with water of 71 degrees, but slightly decreased to 65 degrees after treatment. Was. This sample is passed through a thin liquid layer of water at 10 mJ / cm. 2 Irradiated with ArF laser light, when the X-ray untreated sample was irradiated with 100 shots of laser pulsed light, the contact angle with water was 58 degrees, but the X-ray treated sample had a contact angle of 1/100. The laser pulse irradiation of the shot showed a slight improvement of 60 degrees.
[0058]
Example 28
When the glow discharge plasma by the DC bipolar sputtering apparatus is irradiated on the silicone resin film for 5 minutes, the contact angle with water on the surface of the untreated sample is 111 degrees, but is reduced to 6 degrees. Water is applied to the treated surface and a pattern of 10 mJ / cm 2 Is projected by one shot. Thereby, the exposed portion exhibited hydrophilicity corresponding to the pattern, and the contact angle with water achieved 50 degrees.
[0059]
Example 29
When the polyimide film is irradiated with the glow discharge plasma by the DC bipolar sputtering apparatus for 1 minute, the contact angle of the untreated sample surface with water is 68 degrees, but it becomes as small as 7 degrees after the treatment. A 0.3% aqueous solution of copper sulfate was applied to the surface of this sample, and was applied through a thin liquid layer to 26 mJ / cm. 2 The circuit pattern-shaped ArF laser beam is projected and exposed for one shot. As a result, a copper nucleus was formed in the exposed portion corresponding to the pattern, and this was immersed in an electroless plating solution at 60 ° C. for 30 minutes to form a printed wiring board having a thickness of 1 μm.
[0060]
Example 30
When the epoxy resin plate is immersed in a chromic acid mixed solution for 5 minutes, the surface of the untreated sample having a contact angle with water of 81 degrees is reduced to 38 degrees after treatment, 30 degrees at 10 minutes, and 25 degrees at 15 minutes. . These samples were passed through a thin liquid layer of water at 10 mJ / cm 2 Irradiated with ArF laser light, the angle was 55 ° when irradiating 3000 shots of the laser pulse light to the unprocessed sample, but 50 ° in 1/3000 laser pulse irradiation of 1/3000 for the sample treated with the chromic acid mixed solution, A slight improvement was seen.
[0061]
Example 31
When the polyimide film is immersed in the chromic acid mixed solution for 5 minutes, the surface of the untreated sample having a contact angle with water of 68 degrees is reduced to 45 degrees after the treatment. These samples were passed through a thin liquid layer of water at 10 mJ / cm 2 Irradiated with ArF laser light, when the untreated sample was irradiated with 100 shots of laser pulse light, the angle was 56 degrees. In the case of the sample subjected to the chromic acid mixed liquid treatment, 50 degrees were obtained with 1/3000 laser pulse irradiation. A slight improvement was seen.
[0062]
Example 32
When the PTFE film is irradiated with the glow discharge plasma by the DC bipolar sputtering apparatus, the contact angle of the untreated sample surface with water is 107 degrees as shown in FIG. 4 and becomes smaller with the plasma irradiation time. The smaller the contact angle, the higher the surface modification efficiency by the laser. Therefore, plasma is irradiated in a pulsed manner, and when the pulse is stopped, oxygen is introduced into the chamber of the DC bipolar sputtering apparatus, and the gas is immediately sucked. By this operation, oxygen is adsorbed on the sample surface. Here, the plasma irradiation is continued again. As shown in FIG. 4, while the contact angle with water of the sample continuously irradiated for 15 minutes was 76 degrees, plasma irradiation was stopped twice every 2.5 minutes after irradiation for 5 minutes, and oxygen was applied to the sample surface. The contact angle with water of the sample that had been subjected to repeated adsorption (5 minutes irradiation + oxygen adsorption + 2.5 minutes irradiation + oxygen adsorption + 2.5 minutes irradiation) was improved to 62 degrees. 10 mJ / cm on the surface of this sample through a thin liquid layer of water 2 Irradiated with ArF laser light, the untreated sample had a contact angle with water of 55 ° when irradiated with 3000 shots of laser pulse light, but achieved 40 ° with 1/3000 laser pulse irradiation of 1/3000 did.
[0063]
Example 33
Xe having an upper electrode coaxially 2 An excimer lamp (172 nm; 165 kcal) and a lower electrode on which a PET sample is placed are installed such that the upper electrode and the PET sample have a feeling of 0.1 to 1 mm, and the space between the upper electrode and the lower electrode is set in the air. When a high-frequency voltage was applied, a glow discharge occurred in the gap between the surface of the PET sample and the excimer lamp. As a result, oxygen in the atmosphere is ozonized, active oxygen is adsorbed on the surface of the PET sample, and the surface of the PET sample is excited by the 172 nm excimer lamp light oscillated at the same time to replace the oxygen atoms on the surface of the PET sample. did it. When irradiated with ArF laser light through a thin layer of a copper sulfate aqueous solution in the same manner as in Example 18, a copper nucleus could not be formed on the PET surface without irradiating 6000 shots with an untreated PET sample. In the treated PET sample, a copper nucleus could be formed on the surface in one shot.
[0064]
【The invention's effect】
As described above, according to the present invention, a functional group or a metal atom can be substituted on the surface of a solid material with an extremely small number of laser pulses.
[0065]
[Table 1]
Figure 2004182516
[0066]
[Table 2]
Figure 2004182516
[0067]
[Table 3]
Figure 2004182516
[0068]
[Table 4]
Figure 2004182516
[0069]
[Table 5]
Figure 2004182516
[0070]
[Table 6]
Figure 2004182516
[0071]
[Table 7]
Figure 2004182516
[0072]
[Table 8]
Figure 2004182516
[0073]
[Table 9]
Figure 2004182516
[0074]
[Table 10]
Figure 2004182516
[0075]
[Table 11]
Figure 2004182516
[0076]
[Table 12]
Figure 2004182516
[0077]
[Table 13]
Figure 2004182516
[0078]
[Table 14]
Figure 2004182516
[0079]
[Table 15]
Figure 2004182516
[0080]
[Table 16]
Figure 2004182516
[0081]
[Table 17]
Figure 2004182516
[0082]
[Table 18]
Figure 2004182516
[0083]
[Table 19]
Figure 2004182516
[0084]
[Table 20]
Figure 2004182516
[0085]
[Table 21]
Figure 2004182516
[0086]
[Table 22]
Figure 2004182516

[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the plasma processing time of each plastic material and the contact angle with water.
FIG. 2 shows an untreated sample prepared by treating an untreated sample with an ArF laser (50 mJ / cm) in the presence of a copper sulfate aqueous solution having a concentration of 0.3, 0.5, 1.0, and 1.2%, respectively. 2 4) is a graph showing the copper nucleation density (%) on the sample surface when pulse irradiation (1, 2, 3, 4 shots) was performed.
FIG. 3 shows a polyimide sample which has been subjected to plasma treatment (5 minutes) and subjected to ArF laser (15, 17, 21, 23, 26, 28 mJ / cm) in the presence of a 0.3% copper sulfate aqueous solution. 2 4) is a graph showing the copper nucleation density (%) on the sample surface when pulse irradiation (1, 2, 3, 4 shots) was performed.
FIG. 4 shows a case in which glow discharge plasma processing is performed on a PTFE sample by a DC two-electrode sputtering apparatus when plasma irradiation is continuously performed for 15 minutes and a pause is set between plasma irradiations, and oxygen is introduced during the pause. The graph which shows the contact angle change with time.

Claims (8)

固体材料表面に、化学種を含有し、かつ液体の形態にある化合物の薄層を形成し、該薄層を介して該固体材料表面に紫外線を照射して該固体表面と該化合物を励起して該化学種を該固体材料表面に導入することによって該固体材料表面を光化学的に改質することを包含し、該固体材料表面に該薄層を形成するに先立ち、該固体材料表面を活性化エネルギーまたは酸化剤で処理して該固体材料表面の光化学的改質を促進させることを特徴とする固体材料表面の光化学的改質方法。A thin layer of a compound containing a chemical species and in a liquid form is formed on the surface of the solid material, and the surface of the solid material is irradiated with ultraviolet rays through the thin layer to excite the solid surface and the compound. Photochemically modifying the surface of the solid material by introducing the species to the surface of the solid material to activate the surface of the solid material prior to forming the thin layer on the surface of the solid material. A photochemical modification method for the surface of the solid material, wherein the photochemical modification of the surface of the solid material is promoted by treating the solid material with a chemical energy or an oxidizing agent. 前記固体材料がプラスチック、セラミック、あるいは金属であることを特徴とする固体材料の請求項1に記載の方法。The method of claim 1, wherein the solid material is a plastic, ceramic, or metal. 前記活性化エネルギーによる処理を放電プラズマ、グロー放電プラズマ、イオンスパッタ、軟X線、紫外線、エキシマレーザ光もしくはエキシマランプ光またはそれらの組合せの照射によって行うことを特徴とする請求項1または2に記載の方法。3. The method according to claim 1, wherein the treatment with the activation energy is performed by irradiation of discharge plasma, glow discharge plasma, ion sputtering, soft X-ray, ultraviolet light, excimer laser light, excimer lamp light, or a combination thereof. 4. the method of. 前記エネルギーによる処理を酸素の存在下で行うことを特徴とする請求項1ないし3のいずれか1項に方法。4. The method according to claim 1, wherein the treatment with the energy is performed in the presence of oxygen. 前記エネルギーによる処理をパルス的に行い、パルス間で前記固体材料表面に酸素を接触させることを特徴とする請求項1ないし3のいずれか1項に記載の固体材料の表面改質方法。The method according to any one of claims 1 to 3, wherein the treatment with the energy is performed in a pulsed manner, and oxygen is brought into contact with the surface of the solid material between pulses. 前記酸化剤が、クロム酸混液、過マンガン酸カリ、過酸化水素、酸素、オゾンまたはNOであることを特徴とする請求項1または2に記載の方法。It said oxidizing agent is chromic acid mixture, potassium permanganate, hydrogen peroxide, oxygen, A method according to claim 1 or 2, characterized in that an ozone or NO 2. 前記液体の形態にある化合物を前記固体材料表面に塗布することにより前記薄層を形成することを特徴とする請求項1ないし6のいずれか1項に記載の方法。7. The method according to claim 1, wherein the thin layer is formed by applying a compound in the form of a liquid to the surface of the solid material. 前記固体表面と紫外線透過部材との間隙に毛細管現象により前記薄層を形成することを特徴とする請求項1ないし6のいずれか1項に方法。The method according to any one of claims 1 to 6, wherein the thin layer is formed by a capillary phenomenon in a gap between the solid surface and the ultraviolet transmitting member.
JP2002350311A 2002-12-02 2002-12-02 Method for photochemical modification of solid material surface Expired - Fee Related JP4787976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350311A JP4787976B2 (en) 2002-12-02 2002-12-02 Method for photochemical modification of solid material surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350311A JP4787976B2 (en) 2002-12-02 2002-12-02 Method for photochemical modification of solid material surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010105439A Division JP5337997B2 (en) 2010-04-30 2010-04-30 Method for photochemical modification of solid material surface

Publications (2)

Publication Number Publication Date
JP2004182516A true JP2004182516A (en) 2004-07-02
JP4787976B2 JP4787976B2 (en) 2011-10-05

Family

ID=32752572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350311A Expired - Fee Related JP4787976B2 (en) 2002-12-02 2002-12-02 Method for photochemical modification of solid material surface

Country Status (1)

Country Link
JP (1) JP4787976B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197266A (en) * 2006-01-27 2007-08-09 Taiheiyo Cement Corp Ceramic member and its producing method
JP2014065649A (en) * 2012-09-27 2014-04-17 Seiren Co Ltd Ceramic surface modification method
JP2015139134A (en) * 2014-01-23 2015-07-30 株式会社巴川製紙所 Water-repellent porous material and acoustic transmission material using the same
JP6079844B1 (en) * 2015-09-07 2017-02-15 凸版印刷株式会社 Laser processing method to film
JP2017132853A (en) * 2016-01-26 2017-08-03 信越化学工業株式会社 Method for adhering fluorine-containing elastomer to base material

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112333A (en) * 1974-07-19 1976-01-30 Matsushita Electric Ind Co Ltd Zetsuenbutsuheno metsukihoho
JPH02228334A (en) * 1989-01-13 1990-09-11 Ciba Geigy Ag Hydroxylation of hydrophobic polymer surface
JPH0499283A (en) * 1990-08-08 1992-03-31 Nippondenso Co Ltd Method for depositing catalytic metal
JPH06248097A (en) * 1993-02-26 1994-09-06 Kurabo Ind Ltd Surface modification of fluororesin
WO1994021715A1 (en) * 1993-03-23 1994-09-29 Tokai University Solid surface modifying method and apparatus
JPH06293837A (en) * 1993-04-07 1994-10-21 Tokai Univ Production of porous film of hydrophilic fluororesin
JPH06335631A (en) * 1993-04-02 1994-12-06 Tokai Univ Method and device for modifying surface of solid
JPH09227701A (en) * 1996-02-27 1997-09-02 Nitto Denko Corp Hydrophilic porous thermoplastic resin film and its production
JPH1036551A (en) * 1996-07-24 1998-02-10 Tokai Univ Production of porous film of hydrophilic fluororesin
JPH11246977A (en) * 1998-03-04 1999-09-14 Nippon Riironaaru Kk Formation of circuit by electroless plating utilizing pattern-shaped selective precipitation of silver
JP2000114695A (en) * 1998-10-09 2000-04-21 Tokai Univ Method and apparatus for manufacturing polyimide board with copper layer
JP2001283820A (en) * 2000-03-30 2001-10-12 Furukawa Battery Co Ltd:The Surface modifying method of synthetic resin and separator for battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112333A (en) * 1974-07-19 1976-01-30 Matsushita Electric Ind Co Ltd Zetsuenbutsuheno metsukihoho
JPH02228334A (en) * 1989-01-13 1990-09-11 Ciba Geigy Ag Hydroxylation of hydrophobic polymer surface
JPH0499283A (en) * 1990-08-08 1992-03-31 Nippondenso Co Ltd Method for depositing catalytic metal
JPH06248097A (en) * 1993-02-26 1994-09-06 Kurabo Ind Ltd Surface modification of fluororesin
WO1994021715A1 (en) * 1993-03-23 1994-09-29 Tokai University Solid surface modifying method and apparatus
JPH06335631A (en) * 1993-04-02 1994-12-06 Tokai Univ Method and device for modifying surface of solid
JPH06293837A (en) * 1993-04-07 1994-10-21 Tokai Univ Production of porous film of hydrophilic fluororesin
JPH09227701A (en) * 1996-02-27 1997-09-02 Nitto Denko Corp Hydrophilic porous thermoplastic resin film and its production
JPH1036551A (en) * 1996-07-24 1998-02-10 Tokai Univ Production of porous film of hydrophilic fluororesin
JPH11246977A (en) * 1998-03-04 1999-09-14 Nippon Riironaaru Kk Formation of circuit by electroless plating utilizing pattern-shaped selective precipitation of silver
JP2000114695A (en) * 1998-10-09 2000-04-21 Tokai Univ Method and apparatus for manufacturing polyimide board with copper layer
JP2001283820A (en) * 2000-03-30 2001-10-12 Furukawa Battery Co Ltd:The Surface modifying method of synthetic resin and separator for battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197266A (en) * 2006-01-27 2007-08-09 Taiheiyo Cement Corp Ceramic member and its producing method
JP2014065649A (en) * 2012-09-27 2014-04-17 Seiren Co Ltd Ceramic surface modification method
JP2015139134A (en) * 2014-01-23 2015-07-30 株式会社巴川製紙所 Water-repellent porous material and acoustic transmission material using the same
JP6079844B1 (en) * 2015-09-07 2017-02-15 凸版印刷株式会社 Laser processing method to film
JP2017052103A (en) * 2015-09-07 2017-03-16 凸版印刷株式会社 Laser processing method on film
JP2017132853A (en) * 2016-01-26 2017-08-03 信越化学工業株式会社 Method for adhering fluorine-containing elastomer to base material

Also Published As

Publication number Publication date
JP4787976B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
US20070154634A1 (en) Method and Apparatus for Low-Temperature Plasma Sintering
JP5337997B2 (en) Method for photochemical modification of solid material surface
JP2004131807A (en) Pretreatment method for electroless plating workpiece and method for manufacturing plating coated member
Okubo et al. Molecular-level reinforced adhesion between rubber and PTFE film treated by atmospheric plasma polymerization
JP5149805B2 (en) Electroless copper plating method
WO2022024882A1 (en) Fluorine resin surface modification method, surface-modified fluorine resin production method, joining method, material having surface-modified fluorine resin, and joined body
JP4787976B2 (en) Method for photochemical modification of solid material surface
Lojen et al. Optimization of surface wettability of polytetrafluoroethylene (PTFE) by precise dosing of oxygen atoms
CN1619780A (en) Teater
JP2012046781A (en) Copper plating method of polytetrafluoroethylene substrate for high frequency circuit
JP2016016429A (en) Bonding method of member using laser
US4861408A (en) Modification of polymeric surface for improved adhesion via electron beam exposure
JP4669631B2 (en) Printed circuit and flexible wiring patterning method
JP4769934B2 (en) Plastic surface modification method, plastic surface plating method, and plastic
Dasilva et al. Adhesion of copper to poly (tetrafluoroethylene-co-hexafluoropropylene)(FEP) surfaces modified by vacuum UV photo-oxidation downstream from Ar microwave plasma
WO2012081689A1 (en) Patterning method
JP4314093B2 (en) Plating material, method for producing the same, and method for producing plated coating member
JP5645163B2 (en) Surface modification method of fluororesin material and laminate of fluororesin material and metal material
JPH10101459A (en) Modification of surface of nitride and nitride having improved surface by the same
KR100391778B1 (en) Method of improving adhesion between polymer surface and plating metal
Sarantopoulou et al. Surface modification of polymeric thin films with vacuum ultraviolet light
JP3389754B2 (en) Method of forming chemisorption film
JP2007308791A (en) Pretreatment method of electroless plating, electroless plating method, and plating board
JP2008291288A (en) Ozone solution treatment method of resin substrate, and wiring board manufacturing method
JP2002146066A (en) Method for modifying surface of fluorine-based polymer molding using vacuum ultraviolet laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051101

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110629

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees