JP2950935B2 - Alkaline storage battery - Google Patents

Alkaline storage battery

Info

Publication number
JP2950935B2
JP2950935B2 JP2199517A JP19951790A JP2950935B2 JP 2950935 B2 JP2950935 B2 JP 2950935B2 JP 2199517 A JP2199517 A JP 2199517A JP 19951790 A JP19951790 A JP 19951790A JP 2950935 B2 JP2950935 B2 JP 2950935B2
Authority
JP
Japan
Prior art keywords
separator
battery
negative electrode
storage battery
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2199517A
Other languages
Japanese (ja)
Other versions
JPH0487151A (en
Inventor
龍二 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2199517A priority Critical patent/JP2950935B2/en
Publication of JPH0487151A publication Critical patent/JPH0487151A/en
Application granted granted Critical
Publication of JP2950935B2 publication Critical patent/JP2950935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、カドミウムを活物質とする負極と、ポリオ
レフィン系樹脂繊維を用いたセパレータを備えたアルカ
リ蓄電池に関するものである。
The present invention relates to an alkaline storage battery provided with a negative electrode using cadmium as an active material and a separator using polyolefin resin fibers.

(ロ) 従来の技術 従来、例えばニッケル−カドミウム蓄電池のセパレー
タとしては、ナイロン不織布が多く用いられてきた。こ
れは、ナイロン不織布が適度の強度、ガス透過性および
親水性を有しているためである。
(B) Conventional technology Conventionally, for example, a nylon nonwoven fabric has been often used as a separator for a nickel-cadmium storage battery. This is because the nylon nonwoven fabric has appropriate strength, gas permeability and hydrophilicity.

しかし、ナイロンは素材そのものの耐アルカリ性、耐
酸化性が十分であるとは言い難く、特に45℃以上の高温
では、比較的簡単に分解してしまい、電池性能に悪影響
を及ぼす炭酸根やアンモニアが生成する。また、分解が
進行するとセパレータとしての絶縁能力が低下し、つい
には電池内部短絡をも引き起こすことになる。
However, it is difficult to say that nylon itself has sufficient alkali resistance and oxidation resistance, especially at high temperatures of 45 ° C. or higher, and carbonates and ammonia which decompose relatively easily and adversely affect battery performance. Generate. Further, as the decomposition proceeds, the insulating ability as a separator decreases, and eventually, a short circuit inside the battery is caused.

この問題を解決するために、セパレータの素材をポリ
オレフィン系の樹脂に変更しようとする試みが続けられ
ており、特に高温下で使用する電池を中心にポリプロピ
レン不織布が使用されるようになってきた。ポリプロピ
レン不織布は耐アルカリ性、耐酸化性に優れ、また、強
度やガス透過性についてもナイロン不織布と同等のもの
が得られている。しかし、素材自体が親水性に乏しいこ
とから、電解液の保持能力に欠けていた。そのため、ポ
リプロピレン不織布を使用した電池は充放電サイクルの
進行に伴い、いわゆるドライアウトと呼ばれるセパレー
タ中の電解液の枯渇が、ナイロン不織布より早く生じる
という欠点があった。
In order to solve this problem, attempts have been made to change the material of the separator to a polyolefin-based resin, and a polypropylene non-woven fabric has come to be used especially for batteries used at high temperatures. Polypropylene nonwoven fabrics are excellent in alkali resistance and oxidation resistance, and have the same strength and gas permeability as nylon nonwoven fabrics. However, since the material itself has poor hydrophilicity, it lacks the ability to hold an electrolytic solution. For this reason, the battery using the polypropylene nonwoven fabric has a drawback in that the so-called dry-out of the electrolytic solution in the separator occurs earlier than the nylon nonwoven fabric as the charge / discharge cycle progresses.

このポリプロピレン不織布の電解液保持能力を向上さ
せるために、不織布を構成する繊維として、細繊維を使
用したり、異形断面繊維を使用する試みがなされている
が、その効果は十分ではない。また、放射線等の照射に
より親水基をグラフト重合したり、スルホン化処理によ
ってセパレータの親水性向上することも提案されている
が、効果を長期間持続できないという問題があった。
Attempts have been made to use fine fibers or fibers with irregular cross-sections as the fibers constituting the nonwoven fabric in order to improve the electrolytic solution holding capacity of the polypropylene nonwoven fabric, but the effect is not sufficient. Further, it has been proposed to graft polymerize a hydrophilic group by irradiation of radiation or the like, or to improve the hydrophilicity of the separator by sulfonation treatment, but there is a problem that the effect cannot be maintained for a long time.

これに対して、特開昭60−109171号公報では、フッ素
を含む反応ガスと反応させることにより、ポリプロピレ
ンセパレータに親水性を付与することが提案されてお
り、この方法によれば比較的長期間親水性の維持ができ
る。しかし、この方法においても問題がないわけではな
く、フッ素ガスで処理したセパレータを用いた電池は、
充放電サイクルの比較的初期段階でカドミウム負極の放
電性能が低下し、これにより電池が負極支配となって、
容量低下が著しいという問題があった。
On the other hand, Japanese Patent Application Laid-Open No. Sho 60-109171 proposes imparting hydrophilicity to a polypropylene separator by reacting with a reactive gas containing fluorine. Hydrophilicity can be maintained. However, this method is not without its problems, and batteries using a separator treated with fluorine gas are:
At a relatively early stage of the charge / discharge cycle, the discharge performance of the cadmium negative electrode deteriorates, whereby the battery becomes the dominant negative electrode,
There is a problem that the capacity is significantly reduced.

(ハ) 発明が解決しようとする課題 本発明は、正極及びカドミウム負極と共に、フッ素ガ
スにより処理したセパレータを電池に組み込んで用いた
際に、カドミウム負極の放置性能が低下するという問題
点を解決し、フッ素ガス処理による親水性付与の効果を
生かせるアルカリ蓄電池を提供しようとするものであ
る。
(C) Problems to be Solved by the Invention The present invention solves the problem that when a separator treated with a fluorine gas is used in a battery together with a positive electrode and a cadmium negative electrode, the leaving performance of the cadmium negative electrode is reduced. Another object of the present invention is to provide an alkaline storage battery that can make use of the effect of imparting hydrophilicity by fluorine gas treatment.

(ニ) 課題を解決するための手段 本発明のアルカリ蓄電池は、正極と、ポリビニルピロ
リドンを添加したカドミウム負極と、フッ素を含む反応
ガスに接触反応させたポリオレフィン系樹脂繊維を用い
たセパレータとを備えたことを特徴とするものである。
(D) Means for Solving the Problems The alkaline storage battery of the present invention includes a positive electrode, a cadmium negative electrode to which polyvinylpyrrolidone is added, and a separator using a polyolefin-based resin fiber that has been contacted and reacted with a reaction gas containing fluorine. It is characterized by having.

(ホ) 作 用 一般に繊維は紡糸される際に、静電気防止等の目的
で、油剤と呼ばれる界面活性剤で処理される。このよう
に界面活性剤で処理された繊維を用いて作製されたセパ
レータは、水洗等の処理を施さない限り、その繊維表面
には界面活性剤が存在する。
(E) Operation Generally, when a fiber is spun, the fiber is treated with a surfactant called an oil agent for the purpose of preventing static electricity. As for the separator produced using the fiber treated with the surfactant as described above, the surfactant is present on the fiber surface unless the treatment such as washing with water is performed.

上記界面活性剤は、一般にカドミウム負極の充放電サ
イクルに伴う放電性能の低下、すなわち、放電不能な金
属カドミウムの凝集、蓄積を抑制する働きがあることが
知られている。ところが、フッ素ガス処理されたセパレ
ータは、フッ素ガスで処理する際に、その繊維表面の界
面活性剤が分解するため、カドミウム負極の放電性能の
低下を抑制する効果が消失するものと考えられる。
It is known that the above-mentioned surfactant generally has a function of suppressing a decrease in discharge performance accompanying a charge / discharge cycle of a cadmium negative electrode, that is, a function of suppressing aggregation and accumulation of non-dischargeable metal cadmium. However, it is considered that the effect of suppressing a decrease in the discharge performance of the cadmium negative electrode is lost because the surfactant on the fiber surface of the separator treated with fluorine gas is decomposed when treated with fluorine gas.

従って、界面活性剤と同様の効果を有するものを電池
内に添加してやれば、問題は解決するとの考えのもと
に、種々添加方法を検討した結果、カドミウム負極にポ
リビニルピロリドンを添加することで、界面活性剤と同
等の効果が得られることを見い出した。
Therefore, based on the idea that if a substance having the same effect as a surfactant is added to the battery, the problem will be solved, as a result of examining various addition methods, by adding polyvinylpyrrolidone to the cadmium negative electrode, It has been found that an effect equivalent to that of a surfactant can be obtained.

すなわち、ポリビニルピロリドンの働きでカドミウム
負極の放電性能の低下を抑制でき、且つフッ素ガス処理
によるセパレータへの親水性付与との相乗効果で、極め
て優れたサイクル特性を有するアルカリ蓄電池を提供す
ることができる。
That is, the action of polyvinylpyrrolidone can suppress a decrease in the discharge performance of the cadmium negative electrode, and can provide an alkaline storage battery having extremely excellent cycle characteristics due to a synergistic effect with imparting hydrophilicity to the separator by fluorine gas treatment. .

(ヘ) 実施例 [実施例] 公知の1.0〜1.5デニール程度の繊維径を有するポリプ
ロピレン繊維と、接着性繊維として約1.0デニールのポ
リエチレン−ポリプロピレン複合繊維であるES繊維(チ
ッソ(株)製)を1:1の重量比率にて均一に混合した
後、これを加熱溶融して目付80g/m2、厚み0.20mmの不織
布を作製した。この不織布を鉄製の反応容器内に収納し
真空排気した後、フッ素ガスを窒素ガスで希釈してなる
反応ガスを前記容器内に大気圧になるまで導入して一定
時間反応させた。
(F) Example [Example] A known polypropylene fiber having a fiber diameter of about 1.0 to 1.5 denier and an ES fiber (manufactured by Chisso Corporation), which is a polyethylene-polypropylene conjugate fiber of about 1.0 denier, as an adhesive fiber. The mixture was uniformly mixed at a weight ratio of 1: 1 and then heated and melted to produce a nonwoven fabric having a basis weight of 80 g / m 2 and a thickness of 0.20 mm. After the nonwoven fabric was placed in a reaction vessel made of iron and evacuated, a reaction gas obtained by diluting fluorine gas with nitrogen gas was introduced into the vessel until it reached atmospheric pressure, and reacted for a certain time.

一方、ニッケル焼結基板に、硝酸カドミウム塩溶液を
含浸し、乾燥した後、アルカリ処理するという一連の活
物質充填操作を所定回数繰り返すことにより得られた公
知の焼結式カドミウム負極板を約2重量%のポリビニル
ピロリドン水溶液に浸漬した後、乾燥させた。
On the other hand, a known sintered cadmium negative electrode plate obtained by repeating a predetermined number of active material filling operations of impregnating a nickel sintering substrate with a cadmium nitrate solution, drying and then performing an alkali treatment is used for about 2 times. After being immersed in an aqueous solution of polyvinylpyrrolidone by weight, it was dried.

前記セパレータを、公知の焼結式ニッケル正極板と、
前記カドミウム負極板と共に巻回して、公称容量1.2AH
のSCサイズの密閉型ニッケル−カドミウム蓄電池A(本
発明品)を作製した。
The separator, a known sintered nickel positive plate,
Wound with the cadmium negative electrode plate, nominal capacity 1.2AH
A sealed nickel-cadmium storage battery A (product of the present invention) of SC size was manufactured.

[比較例1] 焼結式カドミウム負極板を、ポリビニルピロリドン水
溶液に浸漬、乾燥する工程を省略した以外は、前記実施
例1と同様にして公称容量1.2AHのSCサイズの密閉型ニ
ッケル−カドミウム蓄電池Bを作製した。
Comparative Example 1 An SC-size sealed nickel-cadmium storage battery with a nominal capacity of 1.2 AH was prepared in the same manner as in Example 1 except that the steps of dipping and drying the sintered cadmium negative electrode plate in an aqueous solution of polyvinylpyrrolidone were omitted. B was prepared.

[比較例2] 前記ポリエチレン不織布をフッ素ガスによる処理を施
さずに用いたこと、及び焼結式カドミウム負極板をポリ
ビニルピロリドン水溶液に浸漬、乾燥する工程を省略し
たこと以外は、前記実施例1と同様にして、公称容量1.
2AHのSCサイズの密閉型ニッケル−カドミウム蓄電池C
を作製した。
[Comparative Example 2] The same procedure as in Example 1 except that the polyethylene nonwoven fabric was used without being treated with fluorine gas, and that the steps of immersing the sintered cadmium negative electrode plate in an aqueous solution of polyvinylpyrrolidone and drying were omitted. Similarly, nominal capacity 1.
2AH SC size sealed nickel-cadmium storage battery C
Was prepared.

[実験] 上記電池A〜Cを25℃にて1.8A(1.5C)の電流で1時
間充電を行なった後、1.2A(1C)の電流で終始電圧1.0V
まで放電するという条件で電池のサイクル試験を行なっ
た。第1図は、この時のサイクル数と電池の初期容量に
対する容量比を示す図面である。
[Experiment] After the batteries A to C were charged at 25 ° C. with a current of 1.8 A (1.5 C) for 1 hour, a voltage of 1.0 V was continuously applied at a current of 1.2 A (1 C).
The battery was subjected to a cycle test under the condition that the battery was discharged. FIG. 1 is a drawing showing the number of cycles and the capacity ratio to the initial capacity of the battery at this time.

この図面より、本発明電池Aは、比較電池B及びCよ
りもサイクル数の進行に伴う電池容量の低下が少なく、
サイクル特性が極めて優れたものであることがわかる。
From this drawing, the battery A of the present invention has a smaller decrease in battery capacity with the progress of the cycle number than the comparative batteries B and C,
It can be seen that the cycle characteristics were extremely excellent.

比較電池Bは、セパレータをフッ素ガス処理している
ため、ドライアウトに起因するサイクル劣化が防止で
き、サイクル寿命は長くなっているが、フッ素ガス処理
時における繊維表面の界面活性剤の分解により、カドミ
ウム負極板の放電性能が低下し、サイクル初期段階での
容量低下が大きくなっている。逆に、比較電池Cは繊維
表面にもともと存在している界面活性剤の影響でサイク
ル初期段階での容量低下は少ないものの、セパレータの
親水性が乏しいため、ドライアウトによりサイクル寿命
が短くなるという結果になっている。
In Comparative Battery B, since the separator was treated with fluorine gas, cycle deterioration due to dryout could be prevented, and the cycle life was long, but due to the decomposition of the surfactant on the fiber surface during fluorine gas treatment, The discharge performance of the cadmium negative electrode plate has decreased, and the capacity decrease in the initial stage of the cycle has increased. Conversely, in Comparative Battery C, although the capacity decrease at the initial stage of the cycle was small due to the effect of the surfactant originally present on the fiber surface, the result was that the cycle life was shortened by dryout due to the poor hydrophilicity of the separator. It has become.

これに対して、本発明電池Aはフッ素ガス処理による
セパレータへの親水性付与により、ドライアウトによる
寿命も長く、且つ、ガス処理時の界面活性剤の分解に伴
うカドミウム負極の放電性能の低下の問題を、負極のポ
リビニルピロリドンの添加により補っているため、サイ
クル初期段階での容量低下もほとんどなく、極めて優れ
たサイクル特性を示している。
On the other hand, the battery A of the present invention has a longer life due to dryout by imparting hydrophilicity to the separator by the fluorine gas treatment, and also has a decrease in the discharge performance of the cadmium negative electrode due to the decomposition of the surfactant during the gas treatment. Since the problem is compensated for by the addition of polyvinylpyrrolidone in the negative electrode, there is almost no decrease in capacity at the initial stage of the cycle, and extremely excellent cycle characteristics are exhibited.

(ト) 発明の効果 本発明のアルカリ蓄電池は、ポリオレフィン系樹脂繊
維を、フッ素を含む反応ガスと接触反応させてなる繊維
を用いたセパレータと、ポリビニルピロリドンを添加し
たカドミウム負極を備えたものであるから、セパレータ
の電解液保持能力が向上し、且つ、フッ素ガス処理時に
セパレータの界面活性剤の分解が生じても、カドミウム
負極へのポリビニルピロリドンの添加により、サイクル
初期段階でのカドミウム負極の放電性能の低下を防止で
き、極めて優れたサイクル特性を示すものである。
(G) Effects of the Invention The alkaline storage battery of the present invention includes a separator using a fiber obtained by contacting a polyolefin-based resin fiber with a reactive gas containing fluorine, and a cadmium negative electrode to which polyvinylpyrrolidone is added. Therefore, even if the separator's electrolyte retention capacity is improved and the decomposition of the surfactant of the separator occurs during the fluorine gas treatment, the discharge performance of the cadmium anode in the initial stage of the cycle can be improved by adding polyvinylpyrrolidone to the cadmium anode. Can be prevented from deteriorating and exhibit extremely excellent cycle characteristics.

尚、本実施例はポリプロピレン、ポリエチレンの混合
繊維からなる不織布を例にあげたが、ポリオレフィン系
樹脂であれば、同様な効果が期待できる。
In this embodiment, a nonwoven fabric made of a mixed fiber of polypropylene and polyethylene has been described as an example. However, similar effects can be expected with a polyolefin resin.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明電池及び比較電池のサイクル特性図であ
る。 A……本発明電池、B、C……比較電池。
FIG. 1 is a cycle characteristic diagram of the battery of the present invention and the comparative battery. A: battery of the present invention, B, C: comparative battery.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、ポリビニルピロリドンを添加した
カドミウム負極と、フッ素を含む反応ガスに接触反応さ
せたポリオレフィン系樹脂繊維を用いたセパレータとを
備えたことを特徴とするアルカリ蓄電池。
An alkaline storage battery comprising: a positive electrode; a cadmium negative electrode to which polyvinylpyrrolidone is added; and a separator using a polyolefin-based resin fiber that has been contacted and reacted with a fluorine-containing reaction gas.
JP2199517A 1990-07-26 1990-07-26 Alkaline storage battery Expired - Fee Related JP2950935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199517A JP2950935B2 (en) 1990-07-26 1990-07-26 Alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199517A JP2950935B2 (en) 1990-07-26 1990-07-26 Alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH0487151A JPH0487151A (en) 1992-03-19
JP2950935B2 true JP2950935B2 (en) 1999-09-20

Family

ID=16409143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199517A Expired - Fee Related JP2950935B2 (en) 1990-07-26 1990-07-26 Alkaline storage battery

Country Status (1)

Country Link
JP (1) JP2950935B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0743690A1 (en) * 1995-05-17 1996-11-20 Mitsubishi Chemical Corporation Battery separator and method for its production

Also Published As

Publication number Publication date
JPH0487151A (en) 1992-03-19

Similar Documents

Publication Publication Date Title
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JPH10172533A (en) Separator for alkaline storage battery
JP3216592B2 (en) Alkaline storage battery
JP2950935B2 (en) Alkaline storage battery
US20140042661A1 (en) Method of forming a battery separator and secondary battery
JPH10125300A (en) Separator for alkaline secondary battery
JP3234244B2 (en) Method for producing separator for nickel-cadmium battery
JP3006371B2 (en) Battery
JP4007745B2 (en) Alkaline storage battery
JPS60109171A (en) Separator for battery
JPH07130392A (en) Alkaline storage battery
JPH0456062A (en) Manufacture of separator for battery
JPH0546056B2 (en)
JPH07262979A (en) Separator for alkaline secondary battery
JPH06140018A (en) Separator for alkali battery and its manufacture
JPH10106527A (en) Alkaline storate battery
JP2001283820A (en) Surface modifying method of synthetic resin and separator for battery
JP2734523B2 (en) Battery separator
JP2003346894A (en) Alkaline storage battery
JP2590520B2 (en) Sealed alkaline storage battery separator and method for producing the same
JP2590519B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPH06181068A (en) Sealed type alkaline storage battery
JPH01248460A (en) Separator for battery and manufacture thereof
JPH08203515A (en) Manufacture of nickel electrode
JPH10208722A (en) Manufacture of battery separator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees