JPH06181068A - Sealed type alkaline storage battery - Google Patents

Sealed type alkaline storage battery

Info

Publication number
JPH06181068A
JPH06181068A JP4333924A JP33392492A JPH06181068A JP H06181068 A JPH06181068 A JP H06181068A JP 4333924 A JP4333924 A JP 4333924A JP 33392492 A JP33392492 A JP 33392492A JP H06181068 A JPH06181068 A JP H06181068A
Authority
JP
Japan
Prior art keywords
storage battery
sulfuric acid
alkaline storage
porous body
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4333924A
Other languages
Japanese (ja)
Inventor
Tsutomu Iwaki
勉 岩城
Koji Yamamura
康治 山村
Hajime Seri
肇 世利
Yoichiro Tsuji
庸一郎 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4333924A priority Critical patent/JPH06181068A/en
Publication of JPH06181068A publication Critical patent/JPH06181068A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve gas absorptive characteristics by constituting a sealed type alkaline storage battery of a separator obtained by adding a surface active agent to a polyolefine porous body processed by acid having sulfate radical and a negative electrode obtained by applying water repellent resin powder to the surface when the sealed type alkaline storage battery 15 manufactured. CONSTITUTION:Polypropylene nonwoven fabric is used as a polyolefine porous body, and either one of fuming sulfuric acid, strong sulfuric acid or sulfuric anhydride is used as acid having sulfate radical, and tetrafluoroethylene- propylene hexafluoride copolymer powder is used as water repellent resin powder. Here, when the porous body is processed by the fuming sulfuric acid or the like, an electrolyte affinitive property is improved. Though a surface active agent is used in the nonwoven fabric in a manufacturing process, since this happens to be removed in the manufacturing process, an activator is added further. When electrolyte is contained in a separator abundantly, since gas absorption becomes insufficient, resin is applied, and deterioration of absorptive characteristics is restrained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉形のニッケル−水素
蓄電池やニッケル−カドミウム蓄電池などのアルカリ蓄
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline storage battery such as a sealed nickel-hydrogen storage battery or a nickel-cadmium storage battery.

【0002】[0002]

【従来の技術】各種の電源として広く使われているアル
カリ蓄電池は高信頼性が期待でき、小形軽量化も可能な
どの理由で、小形のものは各種ポータブル機器用に、大
形のものは産業用として使われてきた。
2. Description of the Related Art Alkaline storage batteries, which are widely used as various power sources, can be expected to have high reliability and can be made compact and lightweight. For this reason, small ones are used for various portable devices and large ones are used for industrial purposes. It has been used for business.

【0003】このアルカリ蓄電池において、正極として
空気極や酸化銀極なども取り上げられているが、ほとん
どの場合ニッケル極である。また正極はポケット式から
焼結式に代わって特性が向上し、さらに密閉化が可能に
なるとともに用途も広がった。
In this alkaline storage battery, an air electrode, a silver oxide electrode and the like are also taken as positive electrodes, but most of them are nickel electrodes. In addition, the characteristics of the positive electrode have been improved from the pocket type to the sintered type, and the sealing has become possible and the applications have expanded.

【0004】一方、負極としては構成材料としてカドミ
ウムの他に亜鉛、鉄、水素などが対象となっている。現
在のところカドミウム極が主体であるが、一層の高エネ
ルギー密度を達成するために金属水素化物、つまり水素
吸蔵合金極を使ったニッケル−水素蓄電池が注目され、
製法などに多くの提案がされている。
On the other hand, for the negative electrode, zinc, iron, hydrogen and the like are targeted in addition to cadmium as a constituent material. At present, the cadmium electrode is mainly used, but in order to achieve a higher energy density, a metal hydride, that is, a nickel-hydrogen storage battery using a hydrogen storage alloy electrode has been attracting attention,
Many proposals have been made for manufacturing methods.

【0005】ニッケル極、カドミウム極、水素吸蔵合金
極などの製法として焼結式と発泡状、繊維状、パンチン
グメタルなどの2次元や3次元構造の多孔体に、所要材
料を充填や塗着する方式のペースト式がある。
As a manufacturing method for nickel electrode, cadmium electrode, hydrogen storage alloy electrode, etc., a required material is filled or applied to a porous body having a two-dimensional or three-dimensional structure such as a sintered type, a foamed state, a fibrous state or a punching metal. There is a system paste formula.

【0006】セパレータとしては、おもにポリアミドの
繊維布、不織布さらにこれらとセロファンやポリビニル
アルコールフィルムなどとの併用が採用されてきた。最
近とくに耐アルカリ性や耐酸化性の点でポリオレフィン
製の繊維布や不織布が一部用いられてきた。
As the separator, a polyamide fiber cloth, a non-woven cloth, or a combination of these with cellophane, a polyvinyl alcohol film or the like has been adopted. Recently, fiber cloths and non-woven fabrics made of polyolefin have been partially used especially in view of alkali resistance and oxidation resistance.

【0007】なお密閉形ではガスの透過が必要であるの
でフィルム状セパレータは好ましくなく、また電解液の
含浸性の点で好ましい不織布が一般的である。密閉形ア
ルカリ蓄電池においては、高容量、急速充電、長寿命な
どが要望され、電極の活物質充填性、利用率、負極での
ガス吸収特性などの向上が図られている。
In the closed type, gas permeation is necessary, so that a film-like separator is not preferable, and a non-woven fabric which is preferable in terms of impregnation with an electrolytic solution is generally used. A sealed alkaline storage battery is required to have high capacity, quick charge, long life, and the like, and improvement of the electrode active material filling property, utilization rate, gas absorption property at the negative electrode, and the like have been attempted.

【0008】[0008]

【発明が解決しようとする課題】ところで他の電池系同
様、ニッケル極とカドミウム極や水素吸蔵合金極を用い
た密閉形アルカリ蓄電池においても、高エネルギー密
度、長寿命、急速充電などが要望されている。
Similar to other battery systems, a sealed alkaline storage battery using a nickel electrode and a cadmium electrode or a hydrogen storage alloy electrode is also required to have high energy density, long life, and quick charge. There is.

【0009】高エネルギー密度、長寿命、急速充電につ
いて、電解液量は重要であり、容量、寿命の点では電解
液は多い方がよい。しかし充電時での負極でのガス吸収
の観点からセパレータはガスを通すことが必要であり、
電解液はセパレータに含浸して用いられているのでその
液量には限度がある。密閉形において寿命を支配する一
要因として、セパレータにおける電解液不足がある。つ
まり充放電サイクルの初期は問題がないが、充放電の繰
り返しにより電極が膨張したり、あるいは膨張と収縮を
繰り返すことにより電極中へ電解液が吸収され、セパレ
ータにはほとんどなくなり、したがって内部抵抗が増し
て放電時電圧低下をもたらす。この場合セパレータでの
電解液の枯渇化はニッケル極に負うところが大きく、ニ
ッケル極の容量も減少する。したがって電解液量を増せ
ばよいのであるが、密閉形では過充電領域で正極から発
生する酸素を負極で水にもどすためにはガス状で負極面
に到達する必要があるので負極面を電解液が覆ってしま
うことは密閉化を不可能にすることを意味する。
The amount of electrolytic solution is important for high energy density, long life, and rapid charging, and it is better to have more electrolytic solution in terms of capacity and life. However, from the viewpoint of gas absorption at the negative electrode during charging, the separator needs to pass gas,
Since the electrolytic solution is used by impregnating the separator, the amount of the electrolytic solution is limited. One factor that governs the life of the sealed type is the lack of electrolyte in the separator. That is, there is no problem at the beginning of the charge / discharge cycle, but the electrode expands due to repeated charging / discharging, or the electrolyte is absorbed into the electrode due to repeated expansion and contraction, and the separator almost disappears, and therefore the internal resistance is reduced. And the voltage drops during discharge. In this case, the depletion of the electrolytic solution in the separator largely depends on the nickel electrode, and the capacity of the nickel electrode also decreases. Therefore, it suffices to increase the amount of electrolytic solution, but in the sealed type it is necessary to reach the negative electrode surface in gaseous form in order to return oxygen generated from the positive electrode in the overcharge region to water in the negative electrode, so Covering means that sealing is impossible.

【0010】いずれにせよ、これらの特性にセパレータ
が重要な役目を果たしている。電気抵抗が低く、耐アル
カリ性や耐酸化性に優れていることは勿論であるが、さ
らに長期にわたって電解液の含浸性がよいことが要望さ
れ、それに密閉形ではガスの透過が必要である。以前は
ポリアミドの繊維布や不織布が主に採用されてきた。し
かし耐アルカリ性や耐酸化性の点で問題があるところか
ら、ポリオレフィン製の繊維布や不織布が一部用いられ
てきた。ところがポリオレフィン製の繊維布や不織布は
電解液の含浸性の点で不十分であり、その製法上含まれ
ている界面活性剤は耐電解液性や耐酸化性に劣るために
長期にわたって親液性を維持できない。そこでポリオレ
フイン多孔体を発煙硫酸や濃硫酸で処理することで親電
解液性を向上させてきたが、なお不十分であった。
In any case, the separator plays an important role in these characteristics. It is needless to say that it has low electric resistance and is excellent in alkali resistance and oxidation resistance, but it is also required to have a good impregnation property with an electrolytic solution for a longer period of time, and in the sealed type, gas permeation is required. Previously, polyamide fiber and non-woven fabrics were mainly used. However, since there are problems in terms of alkali resistance and oxidation resistance, polyolefin fiber cloth and non-woven cloth have been partially used. However, polyolefin fiber cloths and non-woven fabrics are insufficient in terms of impregnation with the electrolyte solution, and the surfactants included in the manufacturing method are inferior in electrolyte solution resistance and oxidation resistance, so they are lyophilic over a long period of time. Can't keep up. Therefore, the hydrophilicity of the electrolyte has been improved by treating the polyolefin porous body with fuming sulfuric acid or concentrated sulfuric acid, but it was still insufficient.

【0011】本発明は上記従来の問題点に留意し、ガス
吸収特性に優れ、高容量を示し、かつ長寿命の密閉形ア
ルカリ蓄電池を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned conventional problems, and an object of the present invention is to provide a sealed alkaline storage battery having excellent gas absorption characteristics, high capacity and long life.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するため
に本発明の密閉形アルカリ蓄電池は、硫酸根を持つ酸で
処理したポリオレフィン製多孔体に界面活性剤を添加し
てなるセパレータと、表面に撥水性樹脂粉末を塗着して
なる負極を用いて構成する。
In order to achieve the above-mentioned object, a sealed alkaline storage battery of the present invention comprises a separator obtained by adding a surfactant to a polyolefin porous body treated with an acid having a sulfate group, and a surface thereof. The negative electrode is formed by applying a water-repellent resin powder to.

【0013】この場合ポリオレフィン製多孔体としてポ
リプロピレン製不織布、硫酸根を持つ酸として発煙硫
酸、濃硫酸、無水硫酸のいずれかを用い、負極に塗着す
る撥水性樹脂粉末として4−フッ化エチレン−6フッ化
プロピレン共重合体粉末がよい。
In this case, a polypropylene non-woven fabric is used as the polyolefin porous body, and fuming sulfuric acid, concentrated sulfuric acid, or sulfuric acid is used as the acid having a sulfate group, and 4-fluoroethylene- is used as the water-repellent resin powder to be applied to the negative electrode. A propylene hexafluoride copolymer powder is preferable.

【0014】[0014]

【作用】上記構成の密閉形アルカリ蓄電池のセパレータ
は、発煙硫酸あるいは濃硫酸でポリオレフィン製多孔体
を処理するので親電解液性が向上する。これは、ポリオ
レフィンのなかにスルホン基が形成することによると思
われる。その後これに界面活性剤を添加する。ポリエチ
レンやポリプロピレン製不織布は、すでに述べたように
その製造過程で界面活性剤が使用されているので市販の
これら不織布には含まれている。しかしポリオレフィン
を発煙硫酸や濃硫酸処理する過程で破壊したり、水洗工
程も入れるので界面活性剤は除かれてしまう。硫酸基に
よる処理のみでは、とくに電解液量のバランスが必要な
親電解液を十分持たせることはできないが、両処理の併
用でこれが可能になる。つまり電解液をセパレータに多
く含ませて放電特性や寿命を向上させることとなる。一
方、電解液をセパレータに多く含ませると過充電時に正
極からの酸素がセパレータを透過し難く急速充電時での
負極でのガス吸収か十分でなくなる。このため負極には
その表面に撥水性樹脂粉末を塗着しているのでガス吸収
特性の低下を抑制することとなる。
In the separator of the sealed alkaline storage battery having the above structure, the hydrophilicity of the electrolyte is improved because the polyolefin porous body is treated with fuming sulfuric acid or concentrated sulfuric acid. This is probably due to the formation of sulfone groups in the polyolefin. Thereafter, a surfactant is added to this. Nonwoven fabrics made of polyethylene or polypropylene are included in these commercially available nonwoven fabrics because a surfactant is used in the manufacturing process thereof as described above. However, since the polyolefin is destroyed during the treatment with fuming sulfuric acid or concentrated sulfuric acid, and a washing process is also included, the surfactant is removed. The treatment with the sulfuric acid group alone cannot provide a sufficient amount of the electrolyte solution, which requires a balanced amount of electrolyte solution. That is, a large amount of electrolytic solution is contained in the separator to improve discharge characteristics and life. On the other hand, when a large amount of the electrolytic solution is contained in the separator, oxygen from the positive electrode hardly permeates through the separator during overcharge, and gas absorption in the negative electrode during rapid charge becomes insufficient. Therefore, since the surface of the negative electrode is coated with the water-repellent resin powder, it is possible to suppress the deterioration of the gas absorption characteristics.

【0015】[0015]

【実施例】以下に本発明の密閉形アルカリ蓄電池の一実
施例を説明する。市販の厚さ0.15mm、多孔度約6
0%のポリプロピレン不織布を5%発煙硫酸を含む濃硫
酸に室温で7分間浸漬する。遠心分離機で硫酸を除去し
水洗乾燥する。この処理で不織布は白色から薄い褐色に
変わる。これに市販の中性界面活性剤の0.1%水溶液
添加して100℃で加熱乾燥してセパレータを得る。
EXAMPLE An example of the sealed alkaline storage battery of the present invention will be described below. Commercial thickness 0.15 mm, porosity about 6
A 0% polypropylene non-woven fabric is immersed in concentrated sulfuric acid containing 5% fuming sulfuric acid for 7 minutes at room temperature. Remove the sulfuric acid with a centrifuge, wash with water and dry. This treatment changes the non-woven fabric from white to light brown. A 0.1% aqueous solution of a neutral surfactant on the market was added thereto, and the mixture was heated and dried at 100 ° C. to obtain a separator.

【0016】つぎに負極として水素吸蔵合金極を例とす
る。LaNi5 系合金の一つであるMmNi3.7 ,Mn
0.4 ,Al0.3 ,Co0.6 を粉砕して300メッシュ通
過させた後、5重量%のフッ素樹脂ディスパージョン溶
液を、この樹脂が水素吸蔵合金粉末に対して1.5重量
%になるように加えてペーストをつくる。ついでこのペ
ーストを厚さ0.17mm、孔径1.8mm、開口度5
3%の鉄製でニッケルメッキを施したパンチングメタル
板に塗着し、0.6mmのスリットを通して平滑化し
た。この電極を幅33mm、長さ210mmに裁断し、
リード板をスポット溶接により取り付けた。電極はまず
100tの加圧機で加圧した後さらにローラプレス機を
通して厚さ0.52mmに調整した。その後、電極面に
市販の4フッ化エチレン−6フッ化プロピレン共重合体
粉末を0.5〜0.6mg/cm2塗着した。
Next, a hydrogen storage alloy electrode will be taken as an example of the negative electrode. One of the LaNi 5 type alloys, MmNi 3.7 , Mn
After 0.4 , Al 0.3 , and Co 0.6 were crushed and passed through 300 mesh, a 5 wt% fluororesin dispersion solution was added so that this resin would be 1.5 wt% with respect to the hydrogen storage alloy powder. Make a paste. This paste is then applied with a thickness of 0.17 mm, a hole diameter of 1.8 mm and an opening degree of 5
It was applied to a perforated metal plate made of 3% iron and plated with nickel, and smoothed through a slit of 0.6 mm. This electrode is cut into a width of 33 mm and a length of 210 mm,
The lead plate was attached by spot welding. The electrode was first pressed with a press of 100 t and then further adjusted with a roller press to a thickness of 0.52 mm. Then, 0.5 to 0.6 mg / cm 2 of commercially available tetrafluoroethylene-6 fluoropropylene copolymer powder was applied on the electrode surface.

【0017】なおニッケル極としては公知の発泡式ニッ
ケル極を用い、電解液として比重1.30の苛性カリ水
溶液に30g/1の水酸化リチウムを溶解して用いて密
閉形ニッケル−水素蓄電池を構成した。電池はSubC
型である。この電池をAとする。
A known foamed nickel electrode was used as the nickel electrode, and 30 g / 1 of lithium hydroxide was dissolved in an aqueous caustic potash solution having a specific gravity of 1.30 as an electrolyte to form a sealed nickel-hydrogen storage battery. . Battery is SubC
It is a type. This battery is designated as A.

【0018】つぎに比較のためにセパレータに界面活性
剤を添加し負極への撥水性樹脂を省略した電池をB、セ
パレータへの界面活性剤の添加を省略し負極への撥水性
樹脂は塗着した電池をCとして加えた。
Next, for comparison, a battery in which a surfactant was added to the separator and the water-repellent resin was omitted from the negative electrode was B. The addition of the surfactant to the separator was omitted and the water-repellent resin was applied to the negative electrode. Was added as C.

【0019】まず初期の放電電圧と容量を比較した。電
池は10セルずつ用い0.2Cで容量の120%定電流
充電−1Cで0.9Vまでの定電流放電を行なったとこ
ろ、平均電圧はA,Bは1.20Vであり、Cはやや劣
って1.19V、放電容量はA、Bが2.78〜280
Ahであり、Cは2.75〜2.78Ahであった。
First, the initial discharge voltage and capacity were compared. When 10 cells were used at a constant current charge of 0.2 C at a constant current charge of -1 C and discharged at a constant current of 0.9 V up to 0.9 V, the average voltages A and B were 1.20 V and C was slightly inferior. 1.19 V, discharge capacity A and B are 2.78 to 280
Ah and C were 2.75-2.78 Ah.

【0020】つぎに各電池それぞれ10セル用い、寿命
特性を比較した。20℃で0.5Cで容量の120%定
電流充電−0.5Cで0.9Vまでの放電の条件で充放
電を繰り返した。10サイクル時の容量をそれぞれ10
0とした場合、400サイクルでAは平均98%であっ
たのに対してBは平均95%、Cは92%であった。さ
らに800サイクルでAが92%であったのに対してB
では89%、Cは82%であった。このようにAは寿命
の点で優れていた。
Next, 10 cells of each battery were used to compare the life characteristics. Charging / discharging was repeated under the conditions of constant current charge of 120% of capacity at 0.5 ° C. at 20 ° C. and discharge to 0.9 V at −0.5 C. 10 cycles each for 10 cycles
When it was set to 0, A averaged 98% at 400 cycles, whereas B averaged 95% and C averaged 92%. A was 92% in 800 cycles, while B was B.
Was 89% and C was 82%. Thus, A was excellent in terms of life.

【0021】最後に急速充電性を調べた。周囲温度を3
℃で、まず0.7C充電を行なったところ容量の150
%充電時での電池内圧力がAは1.3Kg/cm2 、B
は3.9Kg/cm2 、Cは1.8Kg/cm2 、つぎ
に1.0C充電ではAは3.1Kg/cm2 、Bは8.
5Kg/cm2 、Cは3.7Kg/cm2 であった。こ
のようにAはガス吸収の点でも優れていた。
Finally, the rapid chargeability was investigated. Ambient temperature 3
First, at 0.7 ° C, when 0.7C was charged, the capacity was 150
% When the battery is charged, the pressure inside the battery is 1.3 Kg / cm 2 , B
Is 3.9 Kg / cm 2 , C is 1.8 Kg / cm 2 , then A is 3.1 Kg / cm 2 and B is 8.
It was 5 Kg / cm 2 and C was 3.7 Kg / cm 2 . Thus, A was also excellent in terms of gas absorption.

【0022】[0022]

【発明の効果】前記実施例の説明より明らかなように、
本発明は発煙硫酸あるいは濃硫酸など硫酸基を持つ酸で
処理したポリオレフィン製多孔体に界面活性剤を添加し
てなるセパレータと、表面に撥水性樹脂粉末を塗着した
負極を用いることにより、ガス吸収特性の劣化がなく高
容量を示し、長寿命の密閉形アルカリ電池が得られる。
As is clear from the description of the above embodiment,
The present invention uses a separator formed by adding a surfactant to a polyolefin porous body treated with an acid having a sulfuric acid group such as fuming sulfuric acid or concentrated sulfuric acid, and a negative electrode coated with a water-repellent resin powder on the surface of a gas. It is possible to obtain a sealed alkaline battery that has a long capacity and shows a high capacity without deterioration of absorption characteristics.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 庸一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoichiro Tsuji 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硫酸根を持つ酸で処理したポリオレフィ
ン製多孔体に界面活性剤を添加してなるセパレータと、
表面に撥水性樹脂粉末を塗着してなる負極を備えた密閉
形アルカリ蓄電池。
1. A separator obtained by adding a surfactant to a polyolefin porous body treated with an acid having a sulfate group,
A sealed alkaline storage battery having a negative electrode having a surface coated with a water-repellent resin powder.
【請求項2】 硫酸根を持つ酸が発煙硫酸、濃硫酸、無
水硫酸のいずれかである請求項1記載の密閉形アルカリ
蓄電池。
2. The sealed alkaline storage battery according to claim 1, wherein the acid having a sulfate group is fuming sulfuric acid, concentrated sulfuric acid, or anhydrous sulfuric acid.
【請求項3】 ポリオレフィン製多孔体がポリプロピレ
ン製不織布である請求項1記載の密閉形アルカリ蓄電
池。
3. The sealed alkaline storage battery according to claim 1, wherein the polyolefin porous body is a polypropylene nonwoven fabric.
【請求項4】 撥水性樹脂粉末が4−フッ化エチレン−
6フッ化プロピレン共重合体の粉末である請求項1記載
の密閉形アルカリ蓄電池。
4. The water-repellent resin powder is 4-fluoroethylene-
The sealed alkaline storage battery according to claim 1, which is a powder of a hexafluoropropylene copolymer.
JP4333924A 1992-12-15 1992-12-15 Sealed type alkaline storage battery Pending JPH06181068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4333924A JPH06181068A (en) 1992-12-15 1992-12-15 Sealed type alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4333924A JPH06181068A (en) 1992-12-15 1992-12-15 Sealed type alkaline storage battery

Publications (1)

Publication Number Publication Date
JPH06181068A true JPH06181068A (en) 1994-06-28

Family

ID=18271493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4333924A Pending JPH06181068A (en) 1992-12-15 1992-12-15 Sealed type alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH06181068A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040010015A (en) * 2002-07-18 2004-01-31 미츠비시덴키 가부시키가이샤 A heating appliance for cooking
JP2010080291A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Hydrogen storage alloy powder, manufacturing method therefor, and alkaline accumulator of alkaline storage battery
WO2014083741A1 (en) * 2012-11-28 2014-06-05 パナソニック株式会社 Nickel-hydrogen storage battery and battery pack

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040010015A (en) * 2002-07-18 2004-01-31 미츠비시덴키 가부시키가이샤 A heating appliance for cooking
JP2010080291A (en) * 2008-09-26 2010-04-08 Sanyo Electric Co Ltd Hydrogen storage alloy powder, manufacturing method therefor, and alkaline accumulator of alkaline storage battery
WO2014083741A1 (en) * 2012-11-28 2014-06-05 パナソニック株式会社 Nickel-hydrogen storage battery and battery pack
US9755226B2 (en) 2012-11-28 2017-09-05 Panasonic Intellectual Property Management Co., Ltd. Nickel-hydrogen storage battery and battery pack

Similar Documents

Publication Publication Date Title
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
JPH06181068A (en) Sealed type alkaline storage battery
JP3006371B2 (en) Battery
JPS60167280A (en) Electrochemical device capable of recharging
JP3533032B2 (en) Alkaline storage battery and its manufacturing method
JPH06140018A (en) Separator for alkali battery and its manufacture
JPH0729559A (en) Separator for alkaline battery
JP2926732B2 (en) Alkaline secondary battery
JPH07130392A (en) Alkaline storage battery
JP3436058B2 (en) Alkaline storage battery
JPH03184257A (en) Battery
JPH04286864A (en) Secondary battery
JP2590519B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPH06196143A (en) Manufacture of separator for alkaline battery
JPH06150920A (en) Hydrogen storage alloy electrode for battery and manufacture thereof
JPH02216757A (en) Alkaline zinc storage battery
JPH04188561A (en) Alkaline storage battery
JPH08236094A (en) Separator for alkaline storage battery
JPH10106525A (en) Sealed alkaline storage battery
JPH113697A (en) Chargeable/dischargeable battery and its manufacture
JP3136688B2 (en) Nickel-hydrogen storage battery
CN118738594A (en) Zinc secondary battery
JPH0722028A (en) Sealed alkaline zinc storage battery
JPH07220713A (en) Nickel-hydrogen secondary battery
JPH059815Y2 (en)