JPH02216757A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPH02216757A
JPH02216757A JP1038731A JP3873189A JPH02216757A JP H02216757 A JPH02216757 A JP H02216757A JP 1038731 A JP1038731 A JP 1038731A JP 3873189 A JP3873189 A JP 3873189A JP H02216757 A JPH02216757 A JP H02216757A
Authority
JP
Japan
Prior art keywords
thin film
electrode
surface active
anionic surface
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1038731A
Other languages
Japanese (ja)
Inventor
Yoshiki Fujiwara
藤原 孝樹
Yoshikazu Ishikura
石倉 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1038731A priority Critical patent/JPH02216757A/en
Publication of JPH02216757A publication Critical patent/JPH02216757A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To make the wettability of a thin film uniform so as to reduce time depending deterioration, and so as to make electrode reaction uniform by constituting a battery with a positive electrode, a zinc electrode, a separator made of a polyolefine microporous thin film, and an alkaline electrolyte, and by attaching an anionic surface active agent having sulfonic groups to the polyolefine thin film. CONSTITUTION:An anionic surface active agent having sulfonic groups was found to be especially stable among anionic surface active agents in an electrolyte having such a severe condition that alkali concentration is 20% or more and adapted. A microporous thin film of polyolefine such as polypropylene and polyethylene is treated with the anionic surface active agent having sulfonic groups. By this treatment, the wettability of the thin film is made uniform, the electrode reaction is made also uniform, and current concentration in a zinc electrode is prevented to retard the deposition and growth of dendrite. Practically, the microporous thin film is immersed in the anionic surface active agent comprising 10wt.% alkyl benzene sulfonate based in the weight of the thin film to retain it, and stacked with nylon nonwoven fabrics to form a laminated separator 3.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、銀−亜鉛蓄電池、ニッケルー亜j9蓄電池等
のアルカリ亜鉛蓄電池に係り、特にそのセパレータの改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to alkaline zinc storage batteries such as silver-zinc storage batteries and nickel-AJ9 storage batteries, and particularly to improvements in separators thereof.

(ロ)従来の技術 負極活物質としての亜鉛は、単位重量あたりのエネルギ
ー密度が高く、安価であり、且つ無公害であることから
、数多くの実用化研究が行なわれてきているが、未だ満
足な性能を有するものが得られていない。
(b) Conventional technology Since zinc as a negative electrode active material has a high energy density per unit weight, is inexpensive, and is non-polluting, many studies have been conducted to put it into practical use, but the results are still unsatisfactory. However, we have not yet obtained a product with excellent performance.

これは、亜鉛極が可溶性であることに起因している。即
ち、放電時に、亜鉛がアルカリ電解液中に溶解し、充電
時に溶解時と異なる部分に電着するので、充放電を繰り
返すと、電極の形状変形が生じ、反応面積が減少し、電
池の容量低下を招来する。また、アルカリ電解液中に溶
出した亜鉛酸イオンが亜鉛極表面に、デンドライト亜鉛
として析出し、充放電サイクルの進行と共にデンドライ
ト亜鉛が生長し、正極と内部短絡を生じ、サイクルが命
となってしまうためである。
This is due to the fact that the zinc electrode is soluble. That is, during discharging, zinc dissolves in the alkaline electrolyte, and during charging, it is electrodeposited in a different part from when it was dissolved. Therefore, when charging and discharging are repeated, the electrode shape deforms, the reaction area decreases, and the battery capacity decreases. cause a decline. In addition, zincate ions eluted into the alkaline electrolyte precipitate on the surface of the zinc electrode as dendrite zinc, and as the charge/discharge cycle progresses, the dendrite zinc grows, causing an internal short circuit with the positive electrode, and ending the cycle. It's for a reason.

このような欠点を解消するため、例えば遊離の電解液が
存在しないよう電池内における電解液量を規制して、亜
鉛酸イオンの拡散を抑制したつ、されている、しかしな
がら、これらの手法でデンドライトの析出、生長を防止
することはほとんどは、負極に接するセパレータの電解
液量を正極に接するセパレータの電解液量より小となる
ように構成することが提案されているが、この方法であ
ってもデンドライトの発生及び生長を完全に抑制するこ
とは難しい。
In order to overcome these drawbacks, for example, the amount of electrolyte in the battery is regulated so that no free electrolyte exists, and the diffusion of zincate ions is suppressed. It has been proposed that most of the methods for preventing the precipitation and growth of electrolyte are to configure the amount of electrolyte in the separator in contact with the negative electrode to be smaller than the amount of electrolyte in the separator in contact with the positive electrode. However, it is difficult to completely suppress the occurrence and growth of dendrites.

そこで、特開昭53−211541号公報等に記載され
た如く、亜鉛極に近接するセパレータとして微孔性セパ
レータを使用することで、亜鉛極表面に電析したデンド
ライト亜鉛がセパレータを貫通するのを物理的に抑制す
る技術が知られている。
Therefore, as described in JP-A-53-211541, etc., by using a microporous separator as a separator close to the zinc electrode, it is possible to prevent the dendrite zinc electrodeposited on the surface of the zinc electrode from penetrating the separator. Techniques for physically suppressing it are known.

(ハ) 発明が解決しようとする課題 −成功に、微孔性セパレータとしてはポリオレフィン系
、例えばポリプロピレン又はポリエチレンなどが用いら
れている。しかしながら、ポリオレフィン系微孔性膜は
、疎水性なので電解液に漏れにくく、微孔性薄膜に濡れ
の不均一が生じ、亜鉛極においてそれに対応して局部反
応が生じるので、デンドライト発生、生長が観察される
という問題点があった。
(c) Problems to be Solved by the Invention - Polyolefins, such as polypropylene or polyethylene, have been successfully used as microporous separators. However, since polyolefin microporous membranes are hydrophobic, they do not easily leak into the electrolyte, resulting in uneven wetting of the microporous thin membrane and a corresponding local reaction at the zinc electrode, resulting in dendrite formation and growth. There was a problem that

そこで、本発明は前記問題点に鑑みてなされたものであ
って、アルカリ亜鉛蓄電池のセパレータとして用いられ
るポリオレフィン系微孔性薄膜の濡れ性を改善し、嵩れ
を均一化させるものである。このようにすることで、亜
鉛極における局部反応が抑えられ、デンドライト発生、
生長が抑制されるので、サイクル寿命の長いアルカリ亜
鉛蓄電池が提供できる。
The present invention has been made in view of the above-mentioned problems, and is intended to improve the wettability of a polyolefin microporous thin film used as a separator for alkaline zinc storage batteries and to make the bulk uniform. By doing this, local reactions at the zinc electrode are suppressed, dendrite formation,
Since growth is suppressed, an alkaline zinc storage battery with a long cycle life can be provided.

(ニ)課題を解決するための手段 本発明のアルカリ亜鉛蓄電池は、正極と、亜鉛極と、セ
パレータとしてのポリオレフィン系微孔性薄膜と、アル
カリ電解液とからなり、前記ポリオレフィン系微孔性薄
膜に、スルホン酸基を有するアニオン界面活性剤を付着
させたことを特徴とするものである。
(d) Means for Solving the Problems The alkaline zinc storage battery of the present invention comprises a positive electrode, a zinc electrode, a polyolefin microporous thin film as a separator, and an alkaline electrolyte. It is characterized by having an anionic surfactant having a sulfonic acid group attached thereto.

また、前記スルホン酸基を有するアニオン界面活性剤と
しては、アルキルベンゼンスルホン酸塩、アルキルスル
ホン酸塩、アルキルスルホン酸エステルからなる群より
選ばれた、少なくとも1つを用いることが好ましい。
Further, as the anionic surfactant having a sulfonic acid group, it is preferable to use at least one selected from the group consisting of alkylbenzene sulfonates, alkyl sulfonates, and alkyl sulfonate esters.

また前記ポリオレフィン系微孔性薄膜として、ポリプロ
ピレンフィルムもしくはポリエチレンフィルムを用いる
ことができる。
Moreover, a polypropylene film or a polyethylene film can be used as the polyolefin microporous thin film.

(ホ)作 用 電池電解液のアルカリ濃度が20%以上という過酷な条
件下において、アニオン界面活性剤の中でも特にスルホ
ン酸基を有するものが、安定であることを見い出し、本
発明を完成するに至ったものである。
(E) Function It has been discovered that among anionic surfactants, those having a sulfonic acid group are particularly stable under severe conditions where the alkaline concentration of the battery electrolyte is 20% or more, and in order to complete the present invention. This is what we have come to.

ポリオレフィン系、例えばポリプロピレン、ポリエチレ
ン等の微孔性薄膜を、スルホン酸基を有するアニオン界
面活性剤で処理することにより、微孔性薄膜の濡れが十
分となり、濡れの均一化が計られ、その結果、電極反応
が均一化される。そして、亜鉛極における電流集中が防
止されるので、亜鉛極においてデンドライト析出、生長
が抑制される。
By treating a microporous thin film made of polyolefin, such as polypropylene or polyethylene, with an anionic surfactant having a sulfonic acid group, the wetting of the microporous thin film becomes sufficient and uniform wetting is achieved. , the electrode reaction is homogenized. Since current concentration at the zinc electrode is prevented, dendrite precipitation and growth at the zinc electrode are suppressed.

また、充放電サイクルを繰り返し行っても、前記界面活
性剤が安定に保持され、界面活性剤の分解に起因せる電
解液のイオン伝導性の低下も観察されないので5前記添
加効果が十分に発揮される。
In addition, even after repeated charging and discharging cycles, the surfactant is stably retained, and no decrease in the ionic conductivity of the electrolytic solution due to decomposition of the surfactant is observed, so the effects of the addition mentioned above are fully exhibited. Ru.

(へ)実施例 以下に、本発明の実施例を詳述し、比較例との対比に言
及する。
(f) Examples Below, examples of the present invention will be described in detail, and comparisons with comparative examples will be mentioned.

実施例1゜ ポリプロピレン(ポリオレフィン系)微孔性薄膜を、前
記薄膜重量に対して10重量%のアルキルベンゼンスル
ホン酸塩からなるアニオン界面活性剤を付着、保持させ
た。この操作は前記薄膜をアルキルベンゼンスルホン酸
塩の溶液に浸漬するというものである。そしてこのポリ
プロピレン微孔性薄膜とナイロン不織布(厚み1120
μm)とを用い、多層セパレータ3とした。尚、ここで
用いる薄膜としては、厚さ20〜30μmのものが好ま
しい。また、ナイロン不織布は、保液層として用いてお
り、厚さ100〜200μmのものが好適する。
Example 1 A microporous polypropylene (polyolefin) thin film was coated with an anionic surfactant consisting of an alkylbenzene sulfonate in an amount of 10% by weight based on the weight of the thin film. This operation involves immersing the thin film in a solution of alkylbenzene sulfonate. This polypropylene microporous thin film and nylon nonwoven fabric (thickness: 1120 mm)
A multilayer separator 3 was prepared by using .mu.m). Note that the thin film used here preferably has a thickness of 20 to 30 μm. Further, the nylon nonwoven fabric is used as a liquid retaining layer, and a thickness of 100 to 200 μm is suitable.

亜鉛極2は、以下のようにして作製した。活物質として
の酸化亜鉛60重量%、及び金属亜鉛30重量%と、添
加剤としての水酸化インジウム5重量%と、結着剤とし
てのフッ素樹脂5重量%とからなる混合粉末に、水を加
えて混練した後、ローラを用いて活物質シートを作製す
る。このシートを銅等よりなる集電体上に付着する。こ
れを加圧成型後、乾燥して亜鉛8i!2を得る。
Zinc electrode 2 was produced as follows. Water was added to a mixed powder consisting of 60% by weight of zinc oxide and 30% by weight of zinc metal as active materials, 5% by weight of indium hydroxide as an additive, and 5% by weight of fluororesin as a binder. After kneading, an active material sheet is produced using a roller. This sheet is attached onto a current collector made of copper or the like. After pressure molding this, it is dried and becomes Zinc 8i! Get 2.

これらセパレータ3及び亜鉛極2を用い、公称容量50
0mAhの単玉サイズのニッケルー亜鉛蓄電池を作製し
、本発明電池Aとした。
Using these separators 3 and zinc electrodes 2, the nominal capacity is 50
A 0 mAh single-cell size nickel-zinc storage battery was produced and designated as a battery A of the present invention.

第1図は、この電池の断面図であり、水酸化ニッケルを
活物質とする焼結式正極1と、亜鉛極(負極)2と、こ
れら正負両f!1.2間に介挿された多層セパレータ3
とからなる電極群4は渦巻状に巻回され構成されている
。この電極群4は、熱収縮チューブ5に内包され、この
熱収縮チューブ5を介して、上記亜鉛極2は負極端子兼
用の外装缶6に負極用導電タブ11にて、電気接続され
るように構成されている。この外装缶6の上部開口には
、バッキング7を介して、封口体8が装着されており、
この封口体8の内部には、コイルスプリング9が設けら
れている。このコイルスブリされるように構成されてい
る。また、上記封口体8と前記正8i!1とは正極用導
電タブ10にて接続されている。
FIG. 1 is a cross-sectional view of this battery, showing a sintered positive electrode 1 made of nickel hydroxide as an active material, a zinc electrode (negative electrode) 2, and both positive and negative f! 1. Multilayer separator 3 inserted between 2
The electrode group 4 consisting of is spirally wound. This electrode group 4 is enclosed in a heat-shrinkable tube 5, and through the heat-shrinkable tube 5, the zinc electrode 2 is electrically connected to an external can 6 which also serves as a negative electrode terminal with a conductive tab 11 for the negative electrode. It is configured. A sealing body 8 is attached to the upper opening of the outer can 6 via a backing 7.
A coil spring 9 is provided inside the sealing body 8 . This coil is configured to be submerged. Moreover, the above-mentioned sealing body 8 and the above-mentioned positive 8i! 1 through a conductive tab 10 for the positive electrode.

実施例2゜ 前記実施例1において用いたアルキルベンゼンスルホン
酸塩に代えて、アルキルスルホン酸塩を使用した以外は
同様にして1本発明電池Bを作製した。
Example 2 A battery B according to the present invention was prepared in the same manner as in Example 1 except that an alkyl sulfonate was used instead of the alkylbenzene sulfonate used in Example 1.

実施例3゜ 前記実施例1において用いたアルキルベンゼンスルホン
酸塩に代えて、アルキルスルホン酸エステルを使用した
以外は同様にして、本発明電池Cを作製した。
Example 3 A battery C of the present invention was produced in the same manner as in Example 1 except that an alkyl sulfonic acid ester was used in place of the alkyl benzene sulfonate used in Example 1.

比較例1゜ 前記実施例1において用いたアルキルベンゼンスルホン
酸塩に代えて、脂肪酸塩を使用した以外は同様にして、
比較電池りを作製した。
Comparative Example 1゜Similarly except that a fatty acid salt was used in place of the alkylbenzene sulfonate used in Example 1,
A comparative battery was prepared.

比較例2゜ 前記実施例1において用いたアルキルベンゼンスルホン
酸塩に代えて、アルキルリン酸エステルを使用した以外
は同様にして、比較電池Eを作製した。
Comparative Example 2 Comparative battery E was produced in the same manner as in Example 1, except that an alkyl phosphoric acid ester was used in place of the alkylbenzene sulfonate used in Example 1.

尚、各種電池に用いた界面活性剤とその構造式を第1表
に示す。
Table 1 shows the surfactants used in various batteries and their structural formulas.

第  1  表 これら電池は、ポリプロピレン微孔性薄膜が亜鉛極と当
接し、この薄膜と正極との間にナイロン不織布が保液層
として介挿された構成となっている。
Table 1 These batteries have a structure in which a polypropylene microporous thin film is in contact with a zinc electrode, and a nylon nonwoven fabric is interposed as a liquid retaining layer between this thin film and the positive electrode.

そして、これら電池を用い、電池のサイクル特性を比較
した。この時のサイクル試験の条件は電池を1ACの電
流で5時間充電を行なった後、lへCの電流で放電し、
電池電圧が1.OVに達した時点で放電を終了すると0
うものであり、電池容量が初期容量の50%以下になっ
た時点で充放電サイクルを停止した。
Using these batteries, the cycle characteristics of the batteries were compared. The conditions for the cycle test at this time were to charge the battery with a current of 1 AC for 5 hours, then discharge it with a current of C to l.
Battery voltage is 1. If you stop discharging when it reaches OV, it will be 0.
The charge/discharge cycle was stopped when the battery capacity became 50% or less of the initial capacity.

この結果を、第2図に示す。第2図より明らかな如く、
本発明電池A=B、Cのサイクル特性が、比較電池り、
Eよりも、優れていることがわかる。
The results are shown in FIG. As is clear from Figure 2,
The cycle characteristics of the batteries A=B and C of the present invention are as follows:
It can be seen that it is better than E.

これは比較電池り、Hの場合、界面活性剤処理により微
孔性薄膜の濡れが均一となるが、スルホン酸基を有する
界面活性剤ではないので、濃厚なアルカリ電解液中では
安定ではなく、充放電サイクルの進行に住い、界面活性
剤が電解液と反応し分解するので、電解液濃度が低下す
る。その結果、微孔性薄膜中における保液量が減少し、
イオン伝導性が低下し、電池性能が劣化したものと考え
られる。
In the case of the comparative battery H, the microporous thin film becomes uniformly wetted by surfactant treatment, but since the surfactant does not have a sulfonic acid group, it is not stable in a concentrated alkaline electrolyte. As the charge/discharge cycle progresses, the surfactant reacts with the electrolyte and decomposes, resulting in a decrease in the electrolyte concentration. As a result, the amount of liquid retained in the microporous thin film decreases,
It is thought that the ionic conductivity decreased and the battery performance deteriorated.

一方、本発明電池A、B、Cでは、界面活性剤処理によ
り微孔性薄膜の濡れが均一となり、更にスルホン酸基を
有する界面活性剤を用いているので濃厚なアルカリ電解
液中においても安定であって、経時変化がないので界面
活性剤の分解もなく、イオン伝導性の低下がなく、電池
のサイクル特性が向上したと考えられる。
On the other hand, in the batteries A, B, and C of the present invention, the wetting of the microporous thin film becomes uniform due to the surfactant treatment, and since a surfactant having a sulfonic acid group is used, it is stable even in a concentrated alkaline electrolyte. Since there is no change over time, there is no decomposition of the surfactant, and there is no decrease in ionic conductivity, which is thought to improve the cycle characteristics of the battery.

(ト)発明の効果 以上、上述した如く、本発明によればポリオレフィン系
微孔性薄膜にスルホン酸基を有するアニオン界面活性剤
を付着させ、これをセパレータに用いているので、前記
薄膜の濡れが均一となり、経時変化が少ないものが得ら
れる。その結果、電極反応が均一化され、亜鉛極におけ
るデンドライト発生、生長が抑制されるので、サイクル
特性に優れたアルカリ亜鉛蓄電池を提供できるものであ
り、その工業的価値は極めて大きい。
(G) Effects of the Invention As described above, according to the present invention, an anionic surfactant having a sulfonic acid group is attached to a polyolefin microporous thin film and this is used as a separator, so that the wetting of the thin film is reduced. It is possible to obtain a product with uniformity and little change over time. As a result, the electrode reaction is made uniform and the generation and growth of dendrites in the zinc electrode are suppressed, so that an alkaline zinc storage battery with excellent cycle characteristics can be provided, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の縦断面図、第2図は電池のサイク
ル特性図である。 A、B、C・・・本発明電池、 D、E・・比較電池。
FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIG. 2 is a cycle characteristic diagram of the battery. A, B, C... Batteries of the present invention, D, E... Comparative batteries.

Claims (3)

【特許請求の範囲】[Claims] (1)正極と、亜鉛極と、セパレータとしてのポリオレ
フィン系微孔性薄膜と、アルカリ電解液とからなる電池
であって、 前記ポリオレフィン系微孔性薄膜に、スルホン酸基を有
するアニオン界面活性剤を付着させたことを特徴とする
アルカリ亜鉛蓄電池。
(1) A battery comprising a positive electrode, a zinc electrode, a polyolefin microporous thin film as a separator, and an alkaline electrolyte, wherein the polyolefin microporous thin film contains an anionic surfactant having a sulfonic acid group. An alkaline zinc storage battery characterized by adhering.
(2)前記スルホン酸基を有するアニオン界面活性剤は
、アルキルベンゼンスルホン酸塩、アルキルスルホン酸
塩、アルキルスルホン酸エステルからなる群より選ばれ
た、少なくとも1つであることを特徴とする請求項(1
)記載のアルカリ亜鉛蓄電池。
(2) The anionic surfactant having a sulfonic acid group is at least one selected from the group consisting of alkylbenzene sulfonates, alkyl sulfonates, and alkyl sulfonate esters. 1
) described alkaline zinc storage battery.
(3)前記ポリオレフィン系微孔性薄膜がポリプロピレ
ンフィルムもしくはポリエチレンフィルムであることを
特徴とする請求項(1)記載のアルカリ亜鉛蓄電池。
(3) The alkaline zinc storage battery according to claim (1), wherein the polyolefin microporous thin film is a polypropylene film or a polyethylene film.
JP1038731A 1989-02-17 1989-02-17 Alkaline zinc storage battery Pending JPH02216757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038731A JPH02216757A (en) 1989-02-17 1989-02-17 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038731A JPH02216757A (en) 1989-02-17 1989-02-17 Alkaline zinc storage battery

Publications (1)

Publication Number Publication Date
JPH02216757A true JPH02216757A (en) 1990-08-29

Family

ID=12533473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038731A Pending JPH02216757A (en) 1989-02-17 1989-02-17 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH02216757A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012544A1 (en) * 1990-12-28 1992-07-23 Yuasa Battery Co., Ltd. Separator for alkali zinc battery
JP2009218047A (en) * 2008-03-10 2009-09-24 Nippon Kodoshi Corp Separator for alkaline storage battery and manufacturing method thereof, and alkaline storage battery
JP2009218048A (en) * 2008-03-10 2009-09-24 Nippon Kodoshi Corp Separator for alkaline storage battery and manufacturing method thereof, and alkaline storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992012544A1 (en) * 1990-12-28 1992-07-23 Yuasa Battery Co., Ltd. Separator for alkali zinc battery
US5320916A (en) * 1990-12-28 1994-06-14 Yuasa Corporation Separator for alkali-zinc battery
US5547779A (en) * 1990-12-28 1996-08-20 Yuasa Corporation Separator for alkali-zinc battery
JP2009218047A (en) * 2008-03-10 2009-09-24 Nippon Kodoshi Corp Separator for alkaline storage battery and manufacturing method thereof, and alkaline storage battery
JP2009218048A (en) * 2008-03-10 2009-09-24 Nippon Kodoshi Corp Separator for alkaline storage battery and manufacturing method thereof, and alkaline storage battery

Similar Documents

Publication Publication Date Title
US4372823A (en) Rechargeable electrical storage battery with zinc anode and aqueous alkaline electrolyte
US20210143386A1 (en) Zinc secondary battery
US5532087A (en) Electrochemical cell
JP4240030B2 (en) Alkaline zinc storage battery
JPH02216757A (en) Alkaline zinc storage battery
JPS59501521A (en) sealed nickel-zinc battery
JP3944887B2 (en) Alkaline zinc storage battery
JP2926732B2 (en) Alkaline secondary battery
JP2755634B2 (en) Alkaline zinc storage battery
JPH06310116A (en) Zinc alkaline secondary battery
JPH07161376A (en) Sealed alkaline zinc storage battery
JPS63261670A (en) Alkaline zinc storage battery
JP2590519B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPH01100872A (en) Sealed type nickel-zinc cell
JPH07134979A (en) Battery
JPH06310131A (en) Zinc negative electrode for zinc alkaline secondary battery
KR100264774B1 (en) Alkali zinc battery
JPH06181068A (en) Sealed type alkaline storage battery
JPH02155159A (en) Alkaline zinc storage battery
JPH059815Y2 (en)
JPH0722028A (en) Sealed alkaline zinc storage battery
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH0434842A (en) Enclosed type secondary battery
JPH0765854A (en) Alkaline zinc storage battery
KR100287123B1 (en) Alkali-zinc secondary battery