JPH02155159A - Alkaline zinc storage battery - Google Patents

Alkaline zinc storage battery

Info

Publication number
JPH02155159A
JPH02155159A JP63310626A JP31062688A JPH02155159A JP H02155159 A JPH02155159 A JP H02155159A JP 63310626 A JP63310626 A JP 63310626A JP 31062688 A JP31062688 A JP 31062688A JP H02155159 A JPH02155159 A JP H02155159A
Authority
JP
Japan
Prior art keywords
battery
microporous film
zinc
separator
porosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63310626A
Other languages
Japanese (ja)
Inventor
Takashi Ueda
上田 高士
Yoshikazu Ishikura
石倉 良和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63310626A priority Critical patent/JPH02155159A/en
Publication of JPH02155159A publication Critical patent/JPH02155159A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • H01M10/286Cells or batteries with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent the penetration of electrodeposited zinc to a separator and to prevent the deterioration of the battery capacity by using an alkali-proof high polymer to form a microporous film of the separator, and making the mean bore of the microporous film 0.01-0.2mum and its porosity 30-70%. CONSTITUTION:This alkaline zinc storage battery furnishes a negative electrode 2 using zinc as its active substance, a positive electrode 1, and a separator 3 which consists of a microporous film and a nonwoven fabric placed between the positive and the negative electrodes 1 and 2. The microporous film is formed of an alkali-proof high polymer, and the mean bore of the microporous film is made 0.01-0.2mum, while its porosity is made 30-70%. That is, the porosity is increased to suppress the deterioration of ion conductivity, while the bores of the microporous film are minimized in order to suppress the penetration of zinc acid ions. Consequently, the zinc electrodeposited on the surface of the electrodes is prevented from penetrating in the separator, the deterioration of battery capacity is prevented, and the cycle property of the battery can be improved.

Description

【発明の詳細な説明】 主粟上夙杜凪分互 本発明は、ニッケルー亜鉛蓄電池、或いは銀−亜鉛蓄電
池等、負極活物質として亜鉛を用いるアルカリ亜鉛蓄電
池に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline zinc storage battery using zinc as a negative electrode active material, such as a nickel-zinc storage battery or a silver-zinc storage battery.

従米坐孜血 上記の如く負極活物質として亜鉛を用いた場合には、単
位重量当たりの高いエネルギ密度と、高い作動電圧と、
良好な低温特性とを有し、且つ経済性、安全性に優れて
いる等の利点がある。
As mentioned above, when zinc is used as the negative electrode active material, it has a high energy density per unit weight, a high operating voltage,
It has advantages such as good low-temperature properties, excellent economy and safety.

しかしながら、亜鉛極は可溶性電極であり放電時にアル
カリ電解液中に溶解して亜鉛酸イオンとなる。そして、
充電時に上記亜鉛酸イオンが亜鉛極表面に均一に電着す
す、樹枝状あるいは海綿状に電析する(以下電析亜鉛と
称する)。このため、充放電を繰り返すにともなって上
記電析亜鉛がセパレータを貫通して電池内部で短絡が生
じ、この結果、電池のサイクル寿命が短くなって、電池
性能が低下する。
However, the zinc electrode is a soluble electrode and dissolves into an alkaline electrolyte during discharge to become zincate ions. and,
During charging, the zincate ions are uniformly electrodeposited on the surface of the zinc electrode in a soot, dendritic or spongy form (hereinafter referred to as electrodeposited zinc). Therefore, as charging and discharging are repeated, the electrolytically deposited zinc penetrates the separator and a short circuit occurs inside the battery, resulting in a short cycle life of the battery and a decrease in battery performance.

そこで、上記サイクル寿命の改善のため、特公昭55−
29548号公報に示すように、実質的に遊離のものが
存在しない程度に電解液量を制限する構成の電池、或い
は特開昭57−197757号公報に示すように、負極
に接するセパレータの電解液量を正極に接する電解液量
よりも少な(するような構成の電池が提案されている。
Therefore, in order to improve the cycle life mentioned above,
As shown in Japanese Patent No. 29548, the amount of electrolyte is limited to such an extent that there is virtually no free electrolyte, or as shown in Japanese Patent Application Laid-Open No. 197757/1984, the electrolyte in the separator in contact with the negative electrode is A battery has been proposed in which the amount of electrolyte is smaller than the amount of electrolyte in contact with the positive electrode.

しかしながら、これらの電池では亜鉛が樹技状或いは海
綿状に析出することを完全に抑制することは難しい。
However, in these batteries, it is difficult to completely prevent zinc from depositing in a dendritic or spongy form.

そこで、以下に示すようなものが提案されている。Therefore, the following methods have been proposed.

■特開昭53−24541号公報等に示すように、セパ
レータとして微孔性セパレータを用い、電析亜鉛がセパ
レータを貫通するのを機械的に阻止するようなもの。
(2) As shown in Japanese Unexamined Patent Publication No. 53-24541, etc., a microporous separator is used as a separator to mechanically prevent deposited zinc from penetrating the separator.

■特開昭51−140143号公報に示すように、形状
保持の非反応性マトリクス(例えばポリテトラフルオロ
エチレン)に希土類無機酸化物(例えば水和セリウム、
水和イツトリウム)を保持させたセパレータであって、
200Å以下の平均孔直径と約50%以上の体積気孔率
とを有するセパレータを用いたもの。
■As shown in JP-A-51-140143, rare earth inorganic oxides (e.g. hydrated cerium,
A separator retaining hydrated yttrium,
A separator using a separator having an average pore diameter of 200 Å or less and a volume porosity of about 50% or more.

B <”しよ゛と るう 上記■の構造であれば、微孔性セパレータを用い孔径を
十分に小さくした場合には、負極表面に電析した電析亜
鉛がセパレータを貫通するのを阻止することができる。
B If the structure is as shown in (1) above, if a microporous separator is used and the pore diameter is made sufficiently small, the electrolytic zinc deposited on the negative electrode surface will be prevented from penetrating the separator. can do.

しかしながら、孔径が小さいと膜のイオン導電性が低下
するために、電池容量が低下するという課題を有してい
た。
However, if the pore size is small, the ionic conductivity of the membrane decreases, resulting in a decrease in battery capacity.

また、■の構造であれば、アルカリ電解液中で希土類無
機酸化物の溶解、脱落が生じるため、セパレータの孔径
が拡大し、デンドライトの貫通が生じるという課題を有
していた。
Furthermore, in the case of the structure (2), the rare earth inorganic oxide dissolves and falls off in the alkaline electrolyte, resulting in the problem that the pore size of the separator increases and dendrite penetration occurs.

そこで、本発明は上記課題を考慮してなされたものであ
り、負極表面に電析した電析亜鉛がセパレータを貫通す
るのを阻止するすると共に、電池容量の低下を防止しう
るアルカリ亜鉛蓄電池の提供を目的とする。
Therefore, the present invention has been made in consideration of the above problems, and provides an alkaline zinc storage battery that can prevent the electrodeposited zinc deposited on the surface of the negative electrode from penetrating the separator and prevent a decrease in battery capacity. For the purpose of providing.

f   °゛ るための ・ 上記目的を達成するため本発明は、活物質として亜鉛を
用いた負極と、正極と、これら正負極間に介装され微孔
性フィルム及び不繊布を有するセパレータと備えたアル
カリ亜鉛蓄電池において、前記微孔性フィルムは耐アル
カリ性高分子から成り、且つ平均孔径が0.01〜0.
2μm、気孔率が30〜70%となるように構成されて
いることを特徴とする。
To achieve the above object, the present invention comprises a negative electrode using zinc as an active material, a positive electrode, and a separator interposed between these positive and negative electrodes and having a microporous film and a nonwoven fabric. In the alkaline zinc storage battery, the microporous film is made of an alkali-resistant polymer and has an average pore diameter of 0.01 to 0.
It is characterized by being configured to have a thickness of 2 μm and a porosity of 30 to 70%.

作−一一一度 負極表面に樹技状或いは海綿状に電析した亜鉛が微孔性
フィルムを貫通するのを阻止するためには、微孔性フィ
ルムの孔径をできる限り小さくする必要がある。これは
、孔径が大きい場合には、亜鉛酸イオンの透過が容易に
生じるため、電析亜鉛が孔沿いに成長するが、孔径を小
さくすれば亜鉛酸イオンの透過が抑制されるので、負極
表面に電析した亜鉛が孔沿いに成長するのを抑制するこ
とができるためである。ところが、孔径を小さくした場
合には、微孔性フィルムのイオン導電性が低下する。
In order to prevent the zinc deposited on the surface of the negative electrode in a dendritic or spongy form from penetrating the microporous film, it is necessary to make the pore diameter of the microporous film as small as possible. . This is because when the pore size is large, zincate ions easily permeate, and deposited zinc grows along the pores, but if the pore size is made small, the permeation of zincate ions is suppressed, so the negative electrode surface This is because the growth of zinc deposited along the pores can be suppressed. However, when the pore diameter is made small, the ionic conductivity of the microporous film decreases.

ここで、微孔性フィルムの孔径をできる限り小さくしつ
つイオン導電性の低下を抑制する方法としては、気孔率
を高くする方法がある。
Here, as a method of suppressing a decrease in ionic conductivity while reducing the pore diameter of the microporous film as much as possible, there is a method of increasing the porosity.

上記の構成の如く、平均孔径が0.01〜0゜2μmで
、気孔率が30〜70%であれば、微孔性フィルムの孔
径が小さいので、負極表面に電析した亜鉛が微孔性フィ
ルムを貫通するのを防止することができると共に、気孔
率が高いので、微孔性フィルムのイオン導電性が低下す
るのを抑制することができる。
As in the above configuration, if the average pore diameter is 0.01 to 0.2 μm and the porosity is 30 to 70%, the pore diameter of the microporous film is small, so the zinc electrodeposited on the negative electrode surface becomes microporous. It can prevent the microporous film from penetrating the film, and since it has a high porosity, it can prevent the ionic conductivity of the microporous film from decreasing.

また、微孔性フィルムが耐アルカリ性高分子から構成さ
れているので、充放電を繰り返し行った場合であっても
、微孔性フィルムの孔径が拡大するのを防止することが
できる。
Furthermore, since the microporous film is made of an alkali-resistant polymer, the pore diameter of the microporous film can be prevented from expanding even when charging and discharging are repeated.

茅土実為■ 本発明の一実施例を、第1図に基づいて、以下に説明す
る。
Minoru Kayato ■ An embodiment of the present invention will be described below with reference to FIG.

〔実施例!〕〔Example! ]

第1図は公称容1500mAhの単玉サイズのニッケル
ー亜鉛蓄電池の断面図であり、公知の焼結式ニッケルか
ら成る正極1と、亜鉛を活物質とする負極2と、これら
正負両極1・2間に介挿された多層セパレータ3とから
成る電極群4は渦巻状に巻回されている。この電極群は
熱収縮チューブ11に包含されて負極端子兼用の外装工
6内に配置されており、この外装工6と上記負極2とは
負極用導電タブ5により接続されている。上記外装工6
の上部開口にはバッキング7を介して封口体8が装着さ
れており、この封口体8の内部にはコイルスプリング9
が設けられている。このコイルスプリング9は電池内部
の内圧が異常上昇したときに矢印A方向に押圧されて内
部のガスが大気中に開放されるように構成されている。
Figure 1 is a cross-sectional view of a single-cell sized nickel-zinc storage battery with a nominal capacity of 1500 mAh, showing a positive electrode 1 made of known sintered nickel, a negative electrode 2 made of zinc as an active material, and a gap between these positive and negative electrodes 1 and 2. An electrode group 4 consisting of a multilayer separator 3 inserted therein is spirally wound. This electrode group is enclosed in a heat-shrink tube 11 and placed in an exterior work 6 which also serves as a negative electrode terminal, and this exterior work 6 and the negative electrode 2 are connected by a conductive tab 5 for the negative electrode. Above exterior work 6
A sealing body 8 is attached to the upper opening of the housing via a backing 7, and a coil spring 9 is installed inside the sealing body 8.
is provided. This coil spring 9 is configured so that when the internal pressure inside the battery rises abnormally, it is pressed in the direction of arrow A and the gas inside is released to the atmosphere.

また、上記封口体8と前記正極1とは正極用導電タブ1
0にて接続されている。
Further, the sealing body 8 and the positive electrode 1 are connected to the conductive tab 1 for the positive electrode.
Connected at 0.

ここで、前記セパレータ3は、微孔性フィルム(厚さ0
.0251m、平均孔径、01μm、気孔率50%)と
、ナイロン不繊布(厚さ0.200sn、87g/m”
 )とから成り、上記微孔性フィルムが負極2側となる
ようにして正負極1・2間に配置されている。
Here, the separator 3 is a microporous film (thickness 0
.. 0251 m, average pore diameter, 01 μm, porosity 50%) and nylon nonwoven fabric (thickness 0.200 sn, 87 g/m"
), and is arranged between the positive and negative electrodes 1 and 2, with the microporous film facing the negative electrode 2 side.

上記の構成において、負極2は以下のようにして作製し
た。
In the above configuration, the negative electrode 2 was manufactured as follows.

先ず初めに、亜鉛活物質としての酸化亜鉛45重量部と
、金属亜鉛45重量部とに添加剤としての酸化水銀5重
量部を加えてこれらを十分に混合する。次に、この混合
物にポリテトラフルオロエチレン(PTFE)ディスバ
ージョン5重量部を加えて水で希釈した後、これを混練
しベーストを作成する。次いで、このペーストを圧延ロ
ーラで圧延して所定の厚みのカレンダーシートを作製す
る。しかる後、このカレンダーシートを集電体の両側に
貼り合わせて圧着ローラで圧着して負極2を作製した。
First, 5 parts by weight of mercury oxide as an additive is added to 45 parts by weight of zinc oxide as a zinc active material and 45 parts by weight of metal zinc, and these are thoroughly mixed. Next, 5 parts by weight of polytetrafluoroethylene (PTFE) dispersion is added to this mixture, diluted with water, and then kneaded to prepare a base. Next, this paste is rolled with a rolling roller to produce a calender sheet of a predetermined thickness. Thereafter, this calendar sheet was attached to both sides of the current collector and pressed with a pressure roller to produce a negative electrode 2.

このようにして作製した電池を、以下(A1)電池と称
する。
The battery thus produced is hereinafter referred to as (A1) battery.

〔実施例■〜■〕[Examples ■~■]

下記第1表に示すように、微孔性薄膜の平均孔径と気孔
率とをそれぞれ0.2μm、70%、0.2μm、38
%、0.05μm、60%、0.05μm。
As shown in Table 1 below, the average pore diameter and porosity of the microporous thin film are 0.2 μm, 70%, 0.2 μm, and 38%, respectively.
%, 0.05 μm, 60%, 0.05 μm.

30%、0.01 pm、30%とする以外は、上記実
施例■と同様にして電池を作製した。このようにして作
製した電池を、下記第2表に示すように、(A2)電池
〜(A、)電池と称する。
A battery was produced in the same manner as in Example 2 above, except that the concentrations were 30%, 0.01 pm, and 30%. The batteries thus produced are referred to as (A2) battery to (A,) battery, as shown in Table 2 below.

尚、第2表はセパレータの配置状態を示している。Incidentally, Table 2 shows the arrangement of the separators.

第1表 第2表 〔比較例1.  II) 上記第1表に示すように、微孔性薄膜の平均孔径と気孔
率とをそれぞれ0.4μm、70%、0.4pm、45
%、0.2μm、80%、0.01μm。
Table 1 Table 2 [Comparative Example 1. II) As shown in Table 1 above, the average pore diameter and porosity of the microporous thin film are 0.4 μm, 70%, 0.4 pm, and 45 μm, respectively.
%, 0.2 μm, 80%, 0.01 μm.

20%とする以外は、上記実施例■と同様にして電池を
作製した。このようにして作製した電池を、上記第2表
に示すように、(A2)電池〜(A6)電池と称する。
A battery was produced in the same manner as in Example 2 above, except that the concentration was 20%. The batteries thus produced are referred to as (A2) batteries to (A6) batteries, as shown in Table 2 above.

〔実験l〕[Experiment 1]

上記本発明の(AI)電池〜(A6)電池及び比較例の
(B、)電池〜(B4)電池のサイクル特性試験を行っ
たので、その結果を第2図に示す。
Cycle characteristic tests were conducted on the above-mentioned batteries (AI) to (A6) of the present invention and batteries (B,) to (B4) of the comparative examples, and the results are shown in FIG.

尚、サイクル条件は、1/4Cの電流で5時間充電した
後、1/4Cの電流で電池電圧が1.0■に達するまで
放電するという条件で行い、電池容量が初期容量の50
%以下になった時点で電池寿命とした。
The cycle conditions were to charge for 5 hours with a 1/4C current, then discharge with a 1/4C current until the battery voltage reached 1.0■, and the battery capacity was 50% of the initial capacity.
% or less, the battery life was reached.

第2図に示すように、本発明の(AI)電池〜(A6)
電池は340サイクル以上にならないと電池寿命となら
ないのに対して、比較例の(Bl)電池〜(B4)電池
では250サイクル以下で電池寿命となることが認めら
れる。したがって、本発明の電池は比較例の電池と比べ
てサイクル性能が著しく向上していることが伺える。
As shown in FIG. 2, the (AI) battery of the present invention ~ (A6)
It is recognized that the battery life does not reach the end of the battery life until 340 cycles or more, whereas the battery life of the batteries (Bl) to (B4) of the comparative examples reach the end of the battery life after 250 cycles or less. Therefore, it can be seen that the cycle performance of the battery of the present invention is significantly improved compared to the battery of the comparative example.

これは、以下に示す理由によるものと考えられる。This is considered to be due to the following reasons.

先ず、比較例の(Bl)電池、(Bz)電池では、微孔
性フィルムの孔径が共に0.4μmであって非常に大き
いため、デンドライトの貫通を防止することができず、
内部短絡を生じる。また、比較例の(B、)電池では、
微孔性フィルムの孔径は0.02μmであって十分に小
さいが、気孔率が80%と非常に高いため、微孔性フィ
ルムの強度が低下する。このため、電池作製時に微孔性
フィルムの変形が生じて孔径が拡大するため、やはりデ
ンドライトの貫通が生じる。更に、比較例の(B4)電
池では、微孔性フィルムの孔径は0゜01μmであるの
でデンドライトの貫通を抑制することはできるが、気孔
率が20%であって非常に低い。このため、微孔性フィ
ルムのイオン導電性が低下して充放電効率が低下するた
め、電池容量が早期に低下する。これらのことから、比
較例の(B、)電池〜(B4)電池ではサイクル特性に
劣る。
First, in the comparative examples (Bl) battery and (Bz) battery, the pore diameters of the microporous films were both 0.4 μm, which was very large, so it was not possible to prevent the dendrites from penetrating.
Causes internal short circuit. In addition, in the battery (B,) of the comparative example,
Although the pore diameter of the microporous film is 0.02 μm, which is sufficiently small, the porosity is extremely high at 80%, which reduces the strength of the microporous film. For this reason, during battery production, the microporous film is deformed and the pore diameter expands, resulting in dendrite penetration. Furthermore, in the battery of Comparative Example (B4), the pore diameter of the microporous film is 0.01 μm, so penetration of dendrites can be suppressed, but the porosity is 20%, which is very low. For this reason, the ionic conductivity of the microporous film decreases and the charging/discharging efficiency decreases, resulting in an early decrease in battery capacity. For these reasons, batteries (B,) to (B4) of Comparative Examples have inferior cycle characteristics.

これに対して、本発明の(AI )電池〜(A6)電池
では平均孔径が0.01〜0.2μmでしって非常に小
さいので、デンドライトの貫通を抑制することができる
。加えて、気孔率を30〜70%に維持しているので、
微孔性フィルムのイオン導電性の低下を抑制することが
できる。これらのことから、本発明の(A1)電池〜(
A6)電池ではサイクル特性に優れる。
On the other hand, in the (AI) to (A6) batteries of the present invention, the average pore diameter is very small at 0.01 to 0.2 μm, so that dendrite penetration can be suppressed. In addition, the porosity is maintained at 30-70%, so
Decrease in ionic conductivity of the microporous film can be suppressed. From these facts, (A1) battery of the present invention ~ (
A6) Batteries have excellent cycle characteristics.

特に、(A、)電池、(A2)電池及び(A4)電池で
は、平均孔径が小さく且つ気孔率が60〜70%であっ
てイオン導電性が著しく高いので、サイクル寿命が38
0〜400ザイクルと、非常に長くなっていることが認
められる。
In particular, the (A,) battery, (A2) battery, and (A4) battery have a small average pore diameter, a porosity of 60 to 70%, and extremely high ionic conductivity, so the cycle life is 38%.
It is recognized that the period is extremely long, ranging from 0 to 400 cycles.

したがって、気孔率は60〜70%であることが望まし
い。
Therefore, it is desirable that the porosity is 60 to 70%.

第」JΩΩ川 伝実施例■〕 下記(1)式に示す微孔性フィルムの保液率が100%
となるようにする以外は上記第1実施例の実施例■と同
様にして電池を作製した。
"JΩΩ Kawaden Example ■] The liquid retention rate of the microporous film shown in the following formula (1) is 100%
A battery was produced in the same manner as in Example 2 of the first example above, except that the following was made.

このようにして作製した電池を、下記第4表に示すよう
に、(CI ’)電池と称する。
The battery thus produced is referred to as a (CI') battery, as shown in Table 4 below.

尚、微孔性薄膜の電解液保持量は、微孔性フィルムの湿
重量と、水洗、乾燥後の乾燥重量とを測定し、上記湿重
量から乾燥重量を減算して算出した。
The amount of electrolyte retained by the microporous thin film was calculated by measuring the wet weight of the microporous film and the dry weight after washing with water and drying, and subtracting the dry weight from the wet weight.

〔実施例n、 m) 下記第3表に示すように、微孔性薄膜の保液率をそれぞ
れ85%、60%とする以外は、上記実施例■と同様に
して電池を作製した。
[Examples n and m] As shown in Table 3 below, batteries were produced in the same manner as in Example 2 above, except that the liquid retention rate of the microporous thin film was 85% and 60%, respectively.

このようにして作製した電池を、下記第4表に示すよう
に、(C2)電池、(C3)電池と称する。
The batteries thus produced are referred to as (C2) battery and (C3) battery, as shown in Table 4 below.

尚、第4表にはセパレータの配置状態を示している。Incidentally, Table 4 shows the arrangement of the separators.

〔以下余白〕[Margin below]

第3表 250サイクルで電池寿命となることが認められC実験
〕 上記本発明の(C1)電池〜(C1)電池のサイクル特
性試験を、前記第1実施例の実験と同様の条件で行った
ので、その結果を上記第4表に併せて示す。
Table 3: Experiment C where it was observed that the battery life reached 250 cycles] The cycle characteristic test of the batteries (C1) to (C1) of the present invention was conducted under the same conditions as the experiment of the first example. Therefore, the results are also shown in Table 4 above.

第4表に示すように、(C1)電池及び(CZ)電池で
は、350サイクル以上にならないと電池寿命とならな
いのに対して、(C1)電池ではる。
As shown in Table 4, the (C1) battery and the (CZ) battery do not reach their battery life until 350 cycles or more, whereas the (C1) battery does.

これは、(C3)電池では微孔性フィルムの保液率が低
く (60%)く膜の濡れが不均一であるため、電極反
応が不均一化する。このため、亜鉛の樹枝状成長が促進
され、電池の内部短絡を早期に引き起こす。これに対し
て、(C2)電池及び(C2)電池では微孔性薄膜の保
液率が高い(85%以上)ため、電極反応が均一化し、
亜鉛の樹枝状成長が抑制されるということに起因するも
のと考えられる。
This is because in the (C3) battery, the liquid retention rate of the microporous film is low (60%) and the wetting of the film is uneven, resulting in uneven electrode reactions. This promotes the dendritic growth of zinc, leading to early internal short circuits in the battery. On the other hand, in the (C2) battery and the (C2) battery, the liquid retention rate of the microporous thin film is high (85% or more), so the electrode reaction becomes uniform.
This is thought to be due to the fact that dendritic growth of zinc is suppressed.

したがって、微孔性フィルムの保液率は85%以上であ
ることが望ましい。
Therefore, it is desirable that the liquid retention rate of the microporous film is 85% or more.

尚、上記第1及び第2実施例では微孔性フィルムとして
ポリプロピレン膜を用いたが、これに限定するものでは
なく、例えばポリエチレン膜を用いた場合であっても同
様の効果を奏する。
In the first and second embodiments described above, a polypropylene membrane was used as the microporous film, but the present invention is not limited to this, and even if a polyethylene membrane is used, for example, the same effect can be achieved.

発皿Ω力沫− 以上説明したように本発明によれば、微孔性フィルムの
孔径が小さいので、負極表面に電析した亜鉛が微孔性フ
ィルムを貫通するのを防止することができ、且つ気孔率
が高いので、微孔性フィルムのイオン導電性が低下する
のを抑制することができる。
As explained above, according to the present invention, since the pore diameter of the microporous film is small, it is possible to prevent zinc electrodeposited on the negative electrode surface from penetrating the microporous film. Moreover, since the porosity is high, it is possible to suppress a decrease in the ionic conductivity of the microporous film.

また、微孔性フィルムが耐アルカリ性高分子から構成さ
れているので、孔径が拡大するのを防止することができ
る。
Furthermore, since the microporous film is made of an alkali-resistant polymer, it is possible to prevent the pore diameter from expanding.

これらのことから、アルカリ亜鉛蓄電池のサイクル特性
を飛躍的に向上させることができるという効果を奏する
For these reasons, it is possible to dramatically improve the cycle characteristics of the alkaline zinc storage battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアルカリ亜鉛蓄電池の断面図である。 第1図 1・・・正極、2・・・負極、3・・・セパレータ。 特許出願人:三洋電機 株式会社 FIG. 1 is a sectional view of the alkaline zinc storage battery of the present invention. Figure 1 1...Positive electrode, 2...Negative electrode, 3...Separator. Patent applicant: Sanyo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)活物質として亜鉛を用いた負極と、正極と、これ
ら正負極間に介装され微孔性フィルム及び不繊布を有す
るセパレータと備えたアルカリ亜鉛蓄電池において、 前記微孔性フィルムは耐アルカリ性高分子から成り、且
つ平均孔径が0.01〜0.2μm、気孔率が30〜7
0%となるように構成されていることを特徴とするアル
カリ亜鉛蓄電池。
(1) In an alkaline zinc storage battery comprising a negative electrode using zinc as an active material, a positive electrode, and a separator interposed between these positive and negative electrodes and having a microporous film and a nonwoven fabric, the microporous film has alkali resistance. Made of polymer, with an average pore diameter of 0.01-0.2μm and a porosity of 30-7
An alkaline zinc storage battery characterized by being configured such that
JP63310626A 1988-12-07 1988-12-07 Alkaline zinc storage battery Pending JPH02155159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63310626A JPH02155159A (en) 1988-12-07 1988-12-07 Alkaline zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63310626A JPH02155159A (en) 1988-12-07 1988-12-07 Alkaline zinc storage battery

Publications (1)

Publication Number Publication Date
JPH02155159A true JPH02155159A (en) 1990-06-14

Family

ID=18007524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63310626A Pending JPH02155159A (en) 1988-12-07 1988-12-07 Alkaline zinc storage battery

Country Status (1)

Country Link
JP (1) JPH02155159A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163857A (en) * 1990-10-29 1992-06-09 Furukawa Battery Co Ltd:The Sealed type alkaline zinc secondary battery
JP2013211192A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous film and lithium ion secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163857A (en) * 1990-10-29 1992-06-09 Furukawa Battery Co Ltd:The Sealed type alkaline zinc secondary battery
JP2013211192A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous film and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
US4372823A (en) Rechargeable electrical storage battery with zinc anode and aqueous alkaline electrolyte
US7153607B2 (en) Alkaline zinc secondary cell and method for preparation thereof
US4207391A (en) Rechargeable electrical storage battery with zinc anode and aqueous alkaline electrolyte
US4307164A (en) Rechargeable electrical storage battery with zinc anode and aqueous alkaline electrolyte
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
EP0821422A2 (en) Sealed lead-acid battery
US5532087A (en) Electrochemical cell
Jindra Sealed nickel—zinc cells
Pavlov et al. Nickel-zinc batteries with long cycle life
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
JPH02155159A (en) Alkaline zinc storage battery
JP4007745B2 (en) Alkaline storage battery
JP2884570B2 (en) Sealed alkaline secondary battery
JP2755634B2 (en) Alkaline zinc storage battery
JP2926732B2 (en) Alkaline secondary battery
JP3203083B2 (en) Alkaline storage battery
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP3558082B2 (en) Nickel-cadmium secondary battery
JPH01294353A (en) Alkaline zinc storage battery
JPS63261670A (en) Alkaline zinc storage battery
KR100287122B1 (en) Alkali-zinc secondary battery
JPH01100872A (en) Sealed type nickel-zinc cell
JPH02216757A (en) Alkaline zinc storage battery
KR20230044876A (en) Electrode plate manufacturing method of lead-acid battery using carbon paper
JPH10284117A (en) Alkaline storage battery