JP2590520B2 - Sealed alkaline storage battery separator and method for producing the same - Google Patents

Sealed alkaline storage battery separator and method for producing the same

Info

Publication number
JP2590520B2
JP2590520B2 JP63076714A JP7671488A JP2590520B2 JP 2590520 B2 JP2590520 B2 JP 2590520B2 JP 63076714 A JP63076714 A JP 63076714A JP 7671488 A JP7671488 A JP 7671488A JP 2590520 B2 JP2590520 B2 JP 2590520B2
Authority
JP
Japan
Prior art keywords
storage battery
battery
alkaline storage
polyvinyl alcohol
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63076714A
Other languages
Japanese (ja)
Other versions
JPH01248462A (en
Inventor
勉 岩城
良夫 森脇
明美 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63076714A priority Critical patent/JP2590520B2/en
Publication of JPH01248462A publication Critical patent/JPH01248462A/en
Application granted granted Critical
Publication of JP2590520B2 publication Critical patent/JP2590520B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電池用とくに密閉形のアルカリ蓄電池のセ
パレータおよびその製造法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator for a battery, particularly a sealed alkaline storage battery, and a method for producing the same.

従来の技術 各種の電源のうち二次電池としては、鉛蓄電池とアル
カリ蓄電池とが広く使われている。後者のアルカリ蓄電
池では、最も広く使われているのがニッケル−カドミウ
ム蓄電池であり、密閉形構造の採用が実用の範囲を広げ
る大きな要因になった。
2. Description of the Related Art As a secondary battery among various power sources, a lead storage battery and an alkaline storage battery are widely used. Among the latter alkaline storage batteries, the most widely used one is a nickel-cadmium storage battery, and the use of a sealed structure has been a major factor in expanding the range of practical use.

これら電池に使われるセパレータとしては、ポリアミ
ド不織布が最も一般的である。しかしながら、このセパ
レータは耐アルカリ性の点で十分でないので、高温下あ
るいは連続過充放電が行われる様な過酷な条件下で使用
される電池においては、電解液の温度上昇や電気化学的
変化が著しく脆化が激しい。よって、高温用や極めて長
期にわたる用途には十分とはいえない。さらに自己放電
に関しても優れたセパレータとはいえない。
As a separator used in these batteries, a polyamide nonwoven fabric is most common. However, since this separator is not sufficient in terms of alkali resistance, in a battery used at high temperature or under severe conditions such as continuous overcharge / discharge, the temperature rise of the electrolyte and electrochemical changes are remarkable. Intense embrittlement. Therefore, it cannot be said that it is sufficient for high-temperature use or extremely long-term use. Furthermore, it cannot be said that the separator is excellent in self-discharge.

また、ポリアミド繊維とポリエチレン−ポリプロピレ
ン複合繊維をポリエチレン成分によって接着した不織布
をセパレータに用いる方法が提案されている。しかし、
この方法では、ポリエチレン−ポリプロピレン複合繊維
と接している部分のポリアミド繊維の耐アルカリ性およ
び耐酸化性を向上させることができるが、むき出しのま
まになっている部分のポリアミド繊維の脆化は避けるこ
とができない。
Further, a method has been proposed in which a nonwoven fabric in which a polyamide fiber and a polyethylene-polypropylene composite fiber are bonded by a polyethylene component is used as a separator. But,
According to this method, the alkali resistance and the oxidation resistance of the polyamide fiber in the portion in contact with the polyethylene-polypropylene conjugate fiber can be improved, but the embrittlement of the polyamide fiber in the bare portion can be avoided. Can not.

これに対してポリオレフィンつまりポリエチレンやポ
リプロピレンからなる多孔体たとえば不織布は、耐アル
カリ性の点では十分であるが、ポリアミド不織布に比べ
て電解液保持性の点で劣る。したがって、これを改良す
るためにポリオレフィン多孔体にあらかじめ界面活性剤
を含浸しておく方法が採用されている。しかし、この手
段を採用すると電解液保持能が初期においては大き過ぎ
て、密閉形での負極ガス吸収能を阻害する。また、充放
電を繰り返すと界面活性能力が低下し、電解液保持能力
も低下するので充放電特性が劣化する問題点があった。
On the other hand, a polyolefin, that is, a porous body made of polyethylene or polypropylene, for example, a nonwoven fabric, is sufficient in alkali resistance, but is inferior in electrolyte solution retention as compared with a polyamide nonwoven fabric. Therefore, in order to improve this, a method of impregnating a polyolefin porous body with a surfactant in advance has been adopted. However, when this means is adopted, the electrolyte retention ability is too large at the beginning, and impairs the negative electrode gas absorption ability in a closed form. In addition, there is a problem that the charge / discharge characteristics are deteriorated because the surface activity ability is reduced and the electrolyte retention ability is also reduced when charge / discharge is repeated.

さらに、セパレータとしての大きな役割である短絡防
止を目的に、これら不織布にイオン透過性物質であるポ
リビニルアルコール被膜などを形成することが古くから
提案されている。しかし、いずれもガスの透過が必要な
密閉形アルカリ蓄電池に適応できる配慮がない。すなわ
ち、特別な配慮なしにポリビニルアルコールをセパレー
タに塗着すると、ポリビニルアルコールがフィルム状に
なり、ガス透過性が小さくなる。その結果、ガス吸収能
の低下を招き、電解液を多量に用いるたとえば開放形の
蓄電池には用いることはできるが、ガスの透過が必要な
密閉形蓄電池には利用できない。
Further, for the purpose of preventing short-circuiting, which is a major role as a separator, it has long been proposed to form a polyvinyl alcohol coating, which is an ion-permeable substance, on these nonwoven fabrics. However, there is no consideration that can be applied to a sealed alkaline storage battery that requires gas permeation. That is, when polyvinyl alcohol is applied to the separator without special consideration, the polyvinyl alcohol becomes a film and the gas permeability decreases. As a result, the gas absorption capacity is reduced, and the gas absorption capacity can be used for, for example, an open type storage battery using a large amount of an electrolytic solution, but cannot be used for a closed type storage battery requiring gas permeation.

その他に、ポリオレフィン多孔体を発煙硫酸で処理し
たり、高温の濃硫酸中に浸漬する方法が提案されてい
る。しかしながら、発煙硫酸や濃硫酸を用いるので、装
置の材料や取扱いの上で問題があり、また、セパレータ
中からこれらの酸を取り除くのも煩雑である。したがっ
て、工程が複雑になり高価になる。
In addition, a method has been proposed in which a polyolefin porous body is treated with fuming sulfuric acid or immersed in high-temperature concentrated sulfuric acid. However, since fuming sulfuric acid or concentrated sulfuric acid is used, there is a problem in the material and handling of the apparatus, and it is also troublesome to remove these acids from the separator. Therefore, the process becomes complicated and expensive.

発明が解決しようとする課題 本発明は上記問題点に鑑み、電池用セパレータ、特に
密閉形アルカリ蓄電池用のセパレータとして、安価に得
られるとともに、ポリオレフィンからなる多孔体が耐電
解液性を保ちつつ、初期においては電解液保持能力が大
きすぎることによるガス吸収特性低下を抑制し、長期に
わたっては充放電特性が劣化しないセパレータを提供す
るものである。
Problem to be Solved by the Invention In view of the above problems, the present invention is a battery separator, in particular, as a separator for a sealed alkaline storage battery, while being obtained at low cost, while maintaining a porous body made of polyolefin electrolyte resistance, An object of the present invention is to provide a separator which suppresses a decrease in gas absorption characteristics due to an excessively large electrolyte retention capacity at an initial stage and does not deteriorate charge / discharge characteristics for a long period of time.

課題を解決するための手段 本発明の密閉形アルカリ蓄電池用セパレータは、硫酸
処理によりスルフォン基が導入されたポリビニルアルコ
ール系繊維とポリオレフィン繊維とからなる多孔体で構
成されている。ポリオレフィンは、ポリエチレンあるい
はポリプロピレンからなり、多孔体が不織布であること
が好ましい。
Means for Solving the Problems The sealed alkaline storage battery separator of the present invention is formed of a porous body composed of a polyvinyl alcohol fiber into which a sulfone group has been introduced by sulfuric acid treatment and a polyolefin fiber. The polyolefin is made of polyethylene or polypropylene, and the porous body is preferably a nonwoven fabric.

本発明のセパレータを得る最も簡単な方法は、ポリビ
ニルアルコール系繊維とポリオレフィン繊維とからなる
多孔体に硫酸を含む溶液を含浸後、加熱乾燥する方法で
ある。なお、ポリビニルアルコール系繊維としてはポリ
ビニルアルコールを各種アルデヒドで処理したものが一
般的であり、そのうちホルマール化した後、さらに熱処
理して得られたものが好ましい一例である。
The simplest method of obtaining the separator of the present invention is a method of impregnating a solution containing sulfuric acid into a porous body composed of polyvinyl alcohol-based fibers and polyolefin fibers, followed by heating and drying. In addition, as the polyvinyl alcohol-based fibers, those obtained by treating polyvinyl alcohol with various aldehydes are generally used, and one obtained by formalizing and then heat-treating is a preferable example.

作 用 ポリビニルアルコール系繊維とポリオレフィン繊維と
からなる多孔体に硫酸溶液を加え、これを60〜100℃程
度で加熱すると、この多孔体は黒褐色に変化する。この
処理によりポリビニルアルコール系繊維に、少量ではあ
るがスルフォン基が導入され、これによって親液性が付
与される。一方のポリオレフィン繊維は、この程度の処
理では、ほとんど影響を受けないので、多孔体の強度低
下はない。
Action When a sulfuric acid solution is added to a porous body composed of a polyvinyl alcohol fiber and a polyolefin fiber and heated at about 60 to 100 ° C., the porous body turns black-brown. This treatment introduces a small amount of a sulfone group into the polyvinyl alcohol-based fiber, thereby imparting lyophilicity. On the other hand, polyolefin fibers are hardly affected by this level of treatment, so that the strength of the porous body does not decrease.

さらに、この硫酸処理によりスルフォン基が導入され
たポリビニルアルコール系繊維とポリオレフィン繊維と
からなる多孔体は、公知の界面活性剤を含浸させた多孔
体ほど異常な親液性がなく適度の親液性を長期にわたっ
て保つことができる。
Furthermore, the porous body composed of the polyvinyl alcohol fiber into which the sulfone group is introduced by the sulfuric acid treatment and the polyolefin fiber is not abnormally lyophilic and has a moderate lyophilicity as compared with a porous body impregnated with a known surfactant. Can be kept for a long time.

以上のことから本発明によるセパレータは、充電時の
正極から負極への酸素ガスの到達の困難さを取り除く効
果があるとともに、優れた充放電特性と一層の長寿命が
得られる。
As described above, the separator according to the present invention has an effect of removing the difficulty of the oxygen gas from reaching the positive electrode to the negative electrode during charging, and has excellent charge / discharge characteristics and a longer life.

その他に、本発明によるセパレータは、ポリアミドの
ような窒素を含む官能基を持っていないので、電池の充
放電時に、たとえば窒素酸化物のような窒素化合物が生
成することもない。したがって、自己放電はポリアミド
系セパレータより少ない。
In addition, since the separator according to the present invention does not have a nitrogen-containing functional group such as polyamide, a nitrogen compound such as nitrogen oxide is not generated during charge and discharge of a battery. Therefore, self-discharge is smaller than that of the polyamide-based separator.

実 施 例 ポリビニルアルコール系繊維としてホリマール化後熱
処理してえられた商品名ビニロン繊維40%とポリプロピ
レン60%からなる(市販の界面活性剤を含む厚さ0.16mm
の)不織布を5倍に希釈した濃硫酸溶液中に浸漬後、85
℃で1時間加熱乾燥する。その後未反応の硫酸と大部分
の界面活性剤を除くために水洗する。水洗により黒褐色
からやや薄い黒褐色に変化する。ふたたび乾燥してセパ
レータを得る。
Example: Polyvinyl alcohol fiber consisting of 40% vinylon fiber and 60% polypropylene obtained by heat treatment after folimarization (0.16mm thickness including commercially available surfactant)
After immersing the nonwoven fabric in concentrated sulfuric acid solution diluted 5 times,
Heat and dry at ℃ for 1 hour. Thereafter, washing is performed with water to remove unreacted sulfuric acid and most of the surfactant. The color changes from dark brown to slightly light brown due to washing with water. It is dried again to obtain a separator.

電池としては、SubC形の密閉形ニッケル−カドミウム
蓄電池を例にした。ニッケル極としては、公知の発泡式
ニッケル極を選び、幅3.3cm,長さ17cmとした。厚さは0.
7mmである。一方カドミウム極としては、公知のペース
ト式カドミウム極を選び、これにガス吸収能を向上させ
るために電極表面にニッケルメッキを行なっている。こ
の電極を幅3.3cm,長さ20cmに裁断して、リード板を所定
の2ケ所にスポット溶接により取り付けた。セパレータ
は負極の両面に配して構成したので、長さ約40cmとし
た。
As the battery, a sealed nickel-cadmium storage battery of SubC type was taken as an example. As the nickel electrode, a known foamed nickel electrode was selected, with a width of 3.3 cm and a length of 17 cm. The thickness is 0.
7 mm. On the other hand, as a cadmium electrode, a known paste-type cadmium electrode is selected, and nickel plating is performed on the electrode surface to improve the gas absorbing ability. This electrode was cut into a width of 3.3 cm and a length of 20 cm, and lead plates were attached to two predetermined spots by spot welding. Since the separators were arranged on both sides of the negative electrode, the length was about 40 cm.

なお、負極に、放電補償用容量を保持させるために、
この極を14A/dm2の電流密度,時間5分,電解浴、比重
1.15の苛性カリ水溶液,温度25℃の条件で対極にニッケ
ル板を用いて充電した。この充電量は、計算の上では、
全体のカドミウム論理容量の約18〜20%に相当するが、
充電効率が低いので実際には約10%が充電されたとみて
よい。
In addition, in order for the negative electrode to hold a discharge compensation capacity,
This electrode is set to a current density of 14 A / dm 2 , a time of 5 minutes, an electrolytic bath, and a specific gravity.
The battery was charged using a nickel plate as the counter electrode under the conditions of a caustic potassium solution of 1.15 and a temperature of 25 ° C. This charge is calculated as
Equivalent to about 18-20% of the total cadmium logic capacity,
Since the charging efficiency is low, it can be considered that about 10% is actually charged.

電解液としては、比重1.22の苛性カリ水溶液に水酸化
リチウムを25g/l溶解して用いた。公称容量は2.3Ahであ
る。この電池を(A)とする。
As an electrolytic solution, 25 g / l of lithium hydroxide was dissolved in an aqueous solution of caustic potassium having a specific gravity of 1.22. Nominal capacity is 2.3Ah. This battery is referred to as (A).

つぎに、比較のために、市販の界面活性剤を含む厚さ
0.16mmのポリプロピレン不織布をそのまま用い、他は電
池(A)と同じ条件を採用した電池を(B)、同じくセ
パレータとして、やはり公知のポリアミド不織布を用い
た電池を(C)として加えた。
Next, for comparison, the thickness including the commercially available surfactant
A battery using the same conditions as the battery (A) was used as a separator (B), and a battery using a known polyamide nonwoven fabric was also used as a separator (C).

まず各電池の急速充電特性を調べた。電池は、いずれ
も10セル用いた。周囲温度を5℃とし、各充電率で充電
した際の電池内の圧力の変化を測定した。なお充電は、
放電容量の1.5倍まで各充電率で行なった。1C充電(2.3
A)時での各電池の最高内圧は、電池(A)では0.3〜0.
5kg/cm2,電池(B)では、2.1〜2.5kg/cm2,電池(C)
では、0.4〜0.7kg/cm2であった。
First, the quick charging characteristics of each battery were examined. Each battery used 10 cells. With the ambient temperature set to 5 ° C., the change in pressure in the battery when charged at each charging rate was measured. In addition, charge
The test was performed at each charging rate up to 1.5 times the discharge capacity. 1C charge (2.3
The maximum internal pressure of each battery at the time of A) is 0.3 to 0.1 for the battery (A).
For 5 kg / cm 2 , battery (B), 2.1 to 2.5 kg / cm 2 , battery (C)
Was 0.4 to 0.7 kg / cm 2 .

つまり、電池(A)に比べて、とくに(B)ではガス
吸収の点で劣っている。その理由は、すでに述べたよう
に電池(B)の場合には界面活性剤による異常な親液性
により充電時での正極から負極への酸素ガスの到達が困
難になることにあると思われる。
In other words, the battery (A) is inferior to the battery (A) particularly in gas absorption. The reason seems to be that, as described above, in the case of the battery (B), it is difficult to reach oxygen gas from the positive electrode to the negative electrode during charging due to abnormal lyophilicity of the surfactant. .

つぎに、充放電サイクルによる寿命特性を調べた。各
電池について0.2C充電−1.0C放電を繰返した。その結
果、まず、5サイクルでの放電容量は、電池(A)では
平均2.350Ah(B)では同じく2.362Ah、(C)では2.29
7Ahであった。ところが500サイクルになると、それぞれ
同じく平均で2.338Ah、1.987Ah、2.165Ahとなり、電池
(A)の容量低下は極めて少ない。
Next, the life characteristics due to charge / discharge cycles were examined. Each battery was repeatedly charged at 0.2 C and discharged at 1.0 C. As a result, first, the discharge capacity in 5 cycles was 2.350 Ah for battery (A) and 2.362 Ah for (B), and 2.29 A for (C).
7Ah. However, at 500 cycles, the average is 2.338 Ah, 1.987 Ah, and 2.165 Ah, respectively, and the decrease in the capacity of the battery (A) is extremely small.

最後に自己放電について調べた。各電池を25℃のもと
0.3Cで前回放電容量の150%充電した後、50℃で10日間
放置した。その後25℃に戻し、0.2Cで放電を行なったと
ころ電池(A)では、容量維持率が平均78%であったの
に対して(B)では73%、(C)では55%にとどまっ
た。
Finally, self-discharge was examined. Operate each battery at 25 ° C
After charging at 150% of the previous discharge capacity at 0.3 C, the battery was left at 50 ° C. for 10 days. Thereafter, the temperature was returned to 25 ° C. and the battery was discharged at 0.2 C. As a result, the capacity retention rate of the battery (A) was 78% on average, whereas it was 73% in (B) and 55% in (C). .

なお、ポリビニールアルコール繊維とポリオレフィン
繊維の割合については、前者が多過ぎると硫酸処理後に
強度の低下があり、後者が多いと硫酸による効果が少な
い。従って前者が20〜50%程度が適当である。
With respect to the ratio of the polyvinyl alcohol fiber and the polyolefin fiber, if the former is too large, the strength is reduced after the sulfuric acid treatment, and if the latter is too large, the effect of sulfuric acid is small. Therefore, the former is suitably about 20 to 50%.

発明の効果 硫酸処理によりスルフォン基が導入されたポリビニル
アルコール系繊維とポリオレフィン繊維とからなる多孔
体で構成されているセパレータを用いることにより、密
閉型アルカリ蓄電池の充電時のガス吸収特性の改善と、
一層の長寿命化が可能になった。また、自己放電の改良
も可能になった。
Effect of the Invention By using a separator composed of a porous body composed of polyvinyl alcohol-based fibers and polyolefin fibers into which sulfone groups have been introduced by sulfuric acid treatment, improvement in gas absorption characteristics during charging of a sealed alkaline storage battery,
The service life can be further extended. In addition, the self-discharge can be improved.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】硫酸処理によりスルフォン基が導入された
ポリビニルアルコール系繊維とポリオレフィン繊維とか
らなる多孔体で構成されている密閉形アルカリ蓄電池用
セパレータ。
1. A sealed alkaline storage battery separator comprising a porous body comprising a polyvinyl alcohol fiber into which a sulfone group has been introduced by sulfuric acid treatment and a polyolefin fiber.
【請求項2】ポリオレフィン繊維がポリエチレンあるい
はポリプロピレンからなり、多孔体が不織布である請求
項1記載の密閉形アルカリ蓄電池用セパレータ。
2. The sealed alkaline storage battery separator according to claim 1, wherein the polyolefin fiber is made of polyethylene or polypropylene, and the porous body is a nonwoven fabric.
【請求項3】ポリビニルアルコール系繊維がポリビニル
アルコールをホルマール化して得られたものであること
を特徴とする請求項1記載の密閉形アルカリ蓄電池用セ
パレータ。
3. The sealed alkaline storage battery separator according to claim 1, wherein the polyvinyl alcohol-based fiber is obtained by formalizing polyvinyl alcohol.
【請求項4】ポリビニルアルコール系繊維とポリオレフ
ィン繊維とからなる多孔体に硫酸を含浸後加熱乾燥する
ことからなる密閉形アルカリ蓄電池用セパレータの製造
法。
4. A method for producing a separator for a sealed alkaline storage battery, comprising impregnating sulfuric acid into a porous body comprising polyvinyl alcohol-based fibers and polyolefin fibers and heating and drying.
【請求項5】多孔体を硫酸を含む溶液中に浸漬加熱する
請求項4記載の密閉形アルカリ蓄電池用セパレータの製
造法。
5. The method according to claim 4, wherein the porous body is immersed and heated in a solution containing sulfuric acid.
JP63076714A 1988-03-30 1988-03-30 Sealed alkaline storage battery separator and method for producing the same Expired - Lifetime JP2590520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076714A JP2590520B2 (en) 1988-03-30 1988-03-30 Sealed alkaline storage battery separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076714A JP2590520B2 (en) 1988-03-30 1988-03-30 Sealed alkaline storage battery separator and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01248462A JPH01248462A (en) 1989-10-04
JP2590520B2 true JP2590520B2 (en) 1997-03-12

Family

ID=13613220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076714A Expired - Lifetime JP2590520B2 (en) 1988-03-30 1988-03-30 Sealed alkaline storage battery separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP2590520B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154745A (en) * 1974-06-05 1975-12-13
JPS5365931A (en) * 1976-11-25 1978-06-12 Kanai Hiroyuki Sepator for alkaline battery and method of manufacturing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50154745A (en) * 1974-06-05 1975-12-13
JPS5365931A (en) * 1976-11-25 1978-06-12 Kanai Hiroyuki Sepator for alkaline battery and method of manufacturing same

Also Published As

Publication number Publication date
JPH01248462A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US6033806A (en) Method of producing a cross-linked polyvinyl alcohol separator for an alkali-zinc secondary battery
JP3216592B2 (en) Alkaline storage battery
JP2590520B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPS62115657A (en) Sealed nickel-hydrogen storage battery
JP2590519B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPH0732008B2 (en) Method for manufacturing battery separator
JPH06140018A (en) Separator for alkali battery and its manufacture
JPH01255162A (en) Battery separator and its manufacture
JPH01248460A (en) Separator for battery and manufacture thereof
JPH0729559A (en) Separator for alkaline battery
JPS58194254A (en) Manufacturing method of battery separator
JPH06196141A (en) Nickel-hydrogen battery
JPH07134979A (en) Battery
JP4454260B2 (en) Separator for alkaline secondary battery
JPH08236094A (en) Separator for alkaline storage battery
JP2950935B2 (en) Alkaline storage battery
JPH07130392A (en) Alkaline storage battery
JPH01100872A (en) Sealed type nickel-zinc cell
JPH10247485A (en) Separator for secondary battery
JPH06181068A (en) Sealed type alkaline storage battery
JPH02216757A (en) Alkaline zinc storage battery
JPS63170851A (en) Cadmium electrode for alkaline storage battery
JPH04121948A (en) Separater for alkaline battery and its manufacture
JP3234244B2 (en) Method for producing separator for nickel-cadmium battery
JPS6065449A (en) Sealed type alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 12