JP4454260B2 - Separator for alkaline secondary battery - Google Patents

Separator for alkaline secondary battery Download PDF

Info

Publication number
JP4454260B2
JP4454260B2 JP2003272277A JP2003272277A JP4454260B2 JP 4454260 B2 JP4454260 B2 JP 4454260B2 JP 2003272277 A JP2003272277 A JP 2003272277A JP 2003272277 A JP2003272277 A JP 2003272277A JP 4454260 B2 JP4454260 B2 JP 4454260B2
Authority
JP
Japan
Prior art keywords
separator
alkaline secondary
battery
base material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003272277A
Other languages
Japanese (ja)
Other versions
JP2005032643A (en
Inventor
哲男 境
勉 岩城
知徳 岸本
伊藤  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
GS Yuasa Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, GS Yuasa Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003272277A priority Critical patent/JP4454260B2/en
Publication of JP2005032643A publication Critical patent/JP2005032643A/en
Application granted granted Critical
Publication of JP4454260B2 publication Critical patent/JP4454260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、アルカリ二次電池用セパレータ及びこれを用いたアルカリ二次電池に関する。   The present invention relates to an alkaline secondary battery separator and an alkaline secondary battery using the same.

近年、携帯用、移動用、据置き用などの各種の電池、特に二次電池について、高性能化や安全性、長期貯蔵性の向上等、高品質化の追求が進んでおり、それに伴って主要構成材料であるセパレータに対する技術的要求も高度化している。   In recent years, various types of batteries for portable, mobile, and stationary use, especially secondary batteries, have been pursued for higher quality such as higher performance, safety, and long-term storage. Technical requirements for separators, which are the main constituent materials, are also increasing.

セパレータは、正極と負極との間に介在して電解液を保持し、両電極を隔離する役割を果たすものであり、負極物質と正極物質が相互に対極へ移動することがないようにこれらを完全に分離し、電池の内部短絡を防止して自己放電を抑制する機能を有することが必要である。   The separator is interposed between the positive electrode and the negative electrode to hold the electrolytic solution and to separate both electrodes, so that the negative electrode material and the positive electrode material do not move to the counter electrode. It is necessary to have a function of completely separating and preventing self-discharge by preventing an internal short circuit of the battery.

また、電解液の保液性に優れ、イオン導電性が良好で電気抵抗が低いこともセパレータとして必要な特性である。さらに、ノイマン方式の負極でのガス吸収による過充電での電池からのガス漏れや漏液防過を防止するために、充電時に正極から発生する酸素がセパレータ中を通過できることも不可欠である。   Moreover, it is a characteristic required as a separator that it is excellent in the liquid-retention property of electrolyte solution, has good ionic conductivity, and has low electric resistance. Furthermore, in order to prevent gas leakage from the battery and leakage prevention from overcharging due to gas absorption in the Neumann negative electrode, it is also essential that oxygen generated from the positive electrode can pass through the separator during charging.

更に、高温でも物理的、化学的に安定であり、負極及び正極に悪影響を与える不純物を含まないこと等も当然要求される性能である。   Furthermore, it is a performance that is naturally required to be physically and chemically stable even at high temperatures and not to contain impurities that adversely affect the negative electrode and the positive electrode.

また、電池の種類や組立方法に応じて電解液の吸液速度が速く、十分な機械的強度を有し、柔軟性、耐熱性、切断性等が良好で電池内への組込みが容易であることも電池の生産上要求される特性である。   In addition, depending on the type of battery and the assembly method, the electrolyte absorption rate is fast, it has sufficient mechanical strength, flexibility, heat resistance, good cutting properties, etc., and easy incorporation into the battery. This is also a characteristic required for battery production.

これらの観点から、アルカリ二次電池のセパレータとしては、耐アルカリ性に優れた合成繊維の乾式不織布、湿式不織布等が用いられている。従来は、この様な不織布としては、ポリアミド不織布が主であったが、現在はポリオレフィン不織布が実用化され、セパレータの代表的な材料となっている。   From these viewpoints, dry nonwoven fabrics and wet nonwoven fabrics of synthetic fibers excellent in alkali resistance are used as separators for alkaline secondary batteries. Conventionally, as such a nonwoven fabric, a polyamide nonwoven fabric has been mainly used, but at present, a polyolefin nonwoven fabric has been put into practical use and has become a representative material for a separator.

ポリオレフィンは疎水性であり、このままではセパレータとして適さないので、電解液に対する親和性を向上させるために、界面活性剤や無機粉体の添加、スルフォン基などのイオン交換基の導入、フッ素ガス処理などの方法や、その他吸水性を向上させる方法が種々提案されている。さらに、ガス透過性部分と電解液保持部分を存在させた構造とすることや、親電解液性繊維と疎電解液性繊維の混合紡織布とすることなども提案されている。また、部分鹸化ポリビニルアルコールと界面活性剤により、親電解液性を向上させる提案もある。(例えば、下記特許文献1〜7参照)。   Polyolefins are hydrophobic and are not suitable as separators as they are, so in order to improve the affinity for electrolytes, addition of surfactants and inorganic powders, introduction of ion exchange groups such as sulfone groups, fluorine gas treatment, etc. Various methods for improving water absorption have been proposed. Furthermore, a structure in which a gas permeable portion and an electrolyte solution holding portion are present, and a mixed textile fabric of a parent electrolyte solution fiber and a lyophobic solution fiber have been proposed. There is also a proposal to improve the lyophilic property by partially saponified polyvinyl alcohol and a surfactant. (For example, refer to Patent Documents 1 to 7 below).

ところで、セパレータは、電池容量に寄与しないために、電池中の多くの部分を占めれば、それだけ電池容量の低下につながり、出力も低下するので、基本的にはできるだけ薄いことが望まれる。特に、最近注目されているハイブリッド車や電動工具などに用いる電池は、高出力が要求されるために、正極と負極の厚さを薄くして対応しており、セパレータも薄くすることが必要とされている。   By the way, since the separator does not contribute to the battery capacity, if it occupies many parts in the battery, it leads to a decrease in the battery capacity and the output, so that it is basically desired that the separator be as thin as possible. In particular, recently used batteries for hybrid vehicles and power tools are required to have high output, so the thickness of the positive and negative electrodes is reduced, and the separator needs to be thin. Has been.

リチウムイオン電池などでは、厚さ40〜15μm程度の薄い微孔性のポリオレフィン製セパレータが使われているが、完全な充放電を行うニッケル−水素電池などのアルカリ二次電池では、ニッケル極のバリによる短絡防止や、過充電時の正極からの酸素を通過させる必要性等から、このような薄いセパレータは一般的には採用されていない。   Lithium ion batteries and the like use thin microporous polyolefin separators having a thickness of about 40 to 15 μm. However, in alkaline secondary batteries such as nickel-hydrogen batteries that perform complete charge and discharge, nickel electrode variability is reduced. Such a thin separator is not generally adopted because of prevention of short-circuit due to, necessity of passing oxygen from the positive electrode during overcharge, and the like.

更に、ポリオレフィン不織布は、薄くすると強度が低下して短絡の危険性が大きくなり、電池構成時にセパレータに破損が生ずるなどの問題が生じて大量生産に適さないことになる。また、電解液の保持性が良いことなども必要である。この様な観点から、アルカリ二次電池のセパレータの材料としては、通常、厚さが120〜150μm程度のポリオレフィン不織布が用いられている。
特開平5−109397号公報 特開平7−29559号公報 特開平8−64193号公報 特開平10−125300号公報 特開平11−120982号公報 特開平11−120983号公報 特開平5−193092号公報
Furthermore, when the polyolefin non-woven fabric is thinned, the strength is reduced and the risk of short-circuiting is increased, and problems such as breakage of the separator during battery construction occur, making it unsuitable for mass production. It is also necessary that the electrolyte retainability is good. From such a viewpoint, a polyolefin nonwoven fabric having a thickness of about 120 to 150 μm is usually used as a material for the separator of the alkaline secondary battery.
Japanese Patent Laid-Open No. 5-109397 JP 7-29559 A JP-A-8-64193 JP 10-125300 A Japanese Patent Application Laid-Open No. 11-120982 JP-A-11-120983 JP-A-5-193092

本発明は上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、高出力のアルカリ二次電池用のセパレータとして適する膜厚の薄いセパレータであって、大量生産に適した十分な機械的強度を有し、しかもイオン導電性が良好で電池内部抵抗が低く、良好なガス透過性を有するものであり、電池特性、特に出力特性を向上させることが可能な新規なアルカリ二次電池用セパレータを提供することである。   The present invention has been made in view of the current state of the prior art described above, and its main purpose is a thin film separator suitable as a separator for a high-power alkaline secondary battery, which is suitable for mass production. A novel alkaline secondary battery that has sufficient mechanical strength, good ionic conductivity, low battery internal resistance, and good gas permeability, and can improve battery characteristics, particularly output characteristics. It is to provide a separator for a secondary battery.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、セパレータとして汎用されているものより膜厚の薄いポリオレフィン不織布に、電解液に対する親和性を向上させる処理を施した後、ポリビニルアルコールを含浸させることによって、上記した目的を達成し得るセパレータが得られることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, a separator that can achieve the above-described object by impregnating polyvinyl alcohol after impregnating with a polyvinyl alcohol non-woven fabric having a smaller film thickness than those commonly used as separators, after being subjected to a treatment for improving the affinity for the electrolytic solution. The present invention has been found and the present invention has been completed.

即ち、本発明は、下記のアルカリ二次電池用セパレータ及びアルカリ二次電池を提供するものである。
1. 電解液に対する親和性を向上させる処理が施された厚さ50〜110μmのポリオレフィン不織布を支持体として、これにポリビニルアルコールが含浸されていることを特徴とするアルカリ二次電池用セパレータ。
2. 電解液に対する親和性を向上させる処理が、ポリオレフィン不織布を発煙硫酸又はフッ素ガスに接触させる処理である上記項1に記載のアルカリ二次電池用セパレータ。
3. ポリビニルアルコールを含浸させる前のポリオレフィン不織布の多孔度が40〜60%であり、ポリオレフィンを含浸させた後の多孔度の減少率が、含浸前の多孔度の10%以下である上記項1又は2に記載のアルカリ二次電池用セパレータ。
4. 上記項1〜3のいずれかに記載のセパレータを構成要素として含むアルカリ二次電池。
5. ニッケル−水素電池である上記項4のアルカリ二次電池。
6. ニッケル極が下記(i)又は(ii)である上記項5に記載のアルカリ二次電池:
(i)二次元構造の基材にニッケル極用活物質を塗着させてなるニッケル極、
(ii)機械的な加工によって凹凸部が形成された電極用基材及びニッケル極用活物質を含むニッケル極であって、該基材の凹部に活物質が充填され、該基材の凸部は表面が露出した状態又は活物質が付着した状態であるニッケル極。
That is, the present invention provides the following separator for an alkaline secondary battery and an alkaline secondary battery.
1. A separator for an alkaline secondary battery, wherein a polyolefin non-woven fabric having a thickness of 50 to 110 μm subjected to a treatment for improving the affinity for an electrolytic solution is used as a support and is impregnated with polyvinyl alcohol.
2. Item 2. The separator for an alkaline secondary battery according to Item 1, wherein the treatment for improving the affinity for the electrolytic solution is treatment for bringing the polyolefin nonwoven fabric into contact with fuming sulfuric acid or fluorine gas.
3. Item 1 or 2 above, wherein the porosity of the polyolefin nonwoven fabric before impregnation with polyvinyl alcohol is 40 to 60%, and the rate of decrease in porosity after impregnation with polyolefin is 10% or less of the porosity before impregnation. The separator for alkaline secondary batteries described in 1.
4). 4. An alkaline secondary battery comprising the separator according to any one of items 1 to 3 as a constituent element.
5). 5. The alkaline secondary battery according to item 4, which is a nickel-hydrogen battery.
6). Item 6. The alkaline secondary battery according to Item 5, wherein the nickel electrode is the following (i) or (ii):
(I) a nickel electrode obtained by applying a nickel electrode active material to a two-dimensional base material;
(Ii) A nickel electrode including a base material for an electrode and a nickel electrode active material on which concave and convex portions are formed by mechanical processing, wherein the concave portion of the base material is filled with the active material, and the convex portion of the base material Is a nickel electrode in which the surface is exposed or the active material is attached.

本発明では、セパレータの素材として、厚さ50〜110μm程度、好ましくは60〜95μm程度のポリオレフィン不織布を用いる。この様なポリオレフィン不織布は、汎用されているセパレータ用ポリオレフィン不織布の厚さが120〜150μm程度であることと比較するとかなり薄い膜厚であるが、後述するポリビニルアルコールによる含浸処理を行うことによって、十分な機械的強度を有するものとなる。   In the present invention, a polyolefin nonwoven fabric having a thickness of about 50 to 110 μm, preferably about 60 to 95 μm, is used as a separator material. Such a polyolefin non-woven fabric has a considerably thin film thickness as compared to the thickness of the polyolefin non-woven fabric for separators of about 120 to 150 μm, but it is sufficient by performing an impregnation treatment with polyvinyl alcohol described later. It has a high mechanical strength.

ポリオレフィンの種類としては、特に限定的ではないが、例えば、ポリエチレン、ポリプロピレン、ポリエチレンとポリプロピレンとを混合したもの等を用いることができる。
ポリオレフィン不織布としては、多孔度が40〜60%程度のものを用いることが好ましい。この様な多孔度のポリオレフィン不織布を用い、後述する方法でポリビニルアルコールを含浸させることによって、電池内部抵抗の増加を抑制でき、更に、ガス透過性も保持して、電池特性、特に、出力特性を向上させることができる。
The type of polyolefin is not particularly limited, and for example, polyethylene, polypropylene, a mixture of polyethylene and polypropylene, and the like can be used.
It is preferable to use a polyolefin nonwoven fabric having a porosity of about 40 to 60%. By using such a polyolefin non-woven fabric and impregnating with polyvinyl alcohol by the method described later, an increase in battery internal resistance can be suppressed, and further, gas permeability can be maintained, and battery characteristics, particularly output characteristics can be maintained. Can be improved.

ポリオレフィン不織布は、電解液に対する親和性を向上させるため処理、いわゆる親電解液性処理が施されていることが必要である。この様な処理を施した不織布を用いることによって、電解液の保持性に優れたものとなる。   The polyolefin non-woven fabric needs to be subjected to treatment, so-called lyophilic treatment, in order to improve the affinity for the electrolyte. By using a non-woven fabric that has been subjected to such treatment, the electrolyte retainability is excellent.

具体的には、発煙硫酸による処理、フッ素ガスによる処理などが施されたものを用いることができる。これらの処理方法については、公知の条件に従えば良く、例えば、発煙硫酸による処理は、2〜10wt%の発煙硫酸浴に15〜45℃程度で2分〜10分程度浸漬し、不織布中の発煙硫酸を除去後、水洗、中和、水洗後乾燥して、スルホン化度1〜2wt%程度まで処理すればよい。   Specifically, those treated with fuming sulfuric acid, treated with fluorine gas, or the like can be used. About these processing methods, what is necessary is just to follow well-known conditions, for example, the process by fuming sulfuric acid immerses in a 2-10 wt% fuming sulfuric acid bath at about 15-45 degreeC for about 2 minutes-10 minutes, After removing the fuming sulfuric acid, washing with water, neutralization, washing with water and drying may be performed to a degree of sulfonation of about 1 to 2 wt%.

また、フッ素ガスによる処理は、例えば、不織布を密閉容器に入れて真空状態とし、酸素もしくは亜硫酸ガス10%程度とフッ素ガスを1〜5%程度含み、残りが窒素ガスからなる混合ガスを密閉容器に導入し、室温で1分〜5分間程度反応させた後、窒素ガスによって密閉容器内を置換し、その後不織布を取り出せばよい。   In addition, the treatment with fluorine gas is, for example, putting a non-woven fabric in a sealed container to be in a vacuum state, and containing a mixed gas composed of about 10% of oxygen or sulfurous acid gas and about 1 to 5% of fluorine gas, and the remainder consisting of nitrogen gas. And after reacting at room temperature for about 1 to 5 minutes, the inside of the sealed container is replaced with nitrogen gas, and then the nonwoven fabric is taken out.

本発明のセパレータは、上記した親電解液性処理を施されたポリオレフィン不織布を支持体とし、これにポリビニルアルコールを含浸させたものである。ポリビニルアルコールは、イオン透過性でフィルム形成能に優れたものであり、これをポリオレフィン不織布に含浸させることによって、該不織布を補強して機械的強度を向上させることができ、更に、耐酸化性、耐アルカリ性などにも優れたものとすることができる。   The separator of the present invention is a polyolefin nonwoven fabric that has been subjected to the above-described lyophilic treatment as a support and is impregnated with polyvinyl alcohol. Polyvinyl alcohol is ion-permeable and excellent in film-forming ability. By impregnating this into a polyolefin nonwoven fabric, the nonwoven fabric can be reinforced to improve mechanical strength, and further, oxidation resistance, It can also be excellent in alkali resistance and the like.

ポリビニルアルコールを含浸させる方法としては、例えば、ポリビニルアルコールを含む水溶液中にポリオレフィン不織布を浸漬し、その後乾燥すればよい。   As a method of impregnating polyvinyl alcohol, for example, a polyolefin nonwoven fabric may be immersed in an aqueous solution containing polyvinyl alcohol and then dried.

ポリビニルアルコールとしては、例えば、重合度500〜2000程度のものを用いることが好ましい。   As polyvinyl alcohol, it is preferable to use a thing with a polymerization degree of about 500-2000, for example.

ポリビニルアルコールを含む水溶液としては、例えば、濃度5重量%程度以下、好ましくは、3〜5重量%程度のものを用いることが好ましい。この様な濃度の水溶液を用いることによって、酸素イオンの透過性やイオン導電性を維持した上で、不織布の機械的強度を向上させることが容易になる。この際、ポリビニルアルコール溶液の濃度が高すぎると、ポリビニルアルコールの含浸量が増加して不織布の多孔度が低下し、その結果、充電時の酸素ガスの透過が抑制されて、充電時に電池内圧が上昇することや、セパレータのイオン導電性が低下して、例えば10C以上のような高放電時に電圧が低下すること等の弊害が生じ易くなる。   As an aqueous solution containing polyvinyl alcohol, for example, a concentration of about 5% by weight or less, preferably about 3 to 5% by weight is preferably used. By using an aqueous solution having such a concentration, it becomes easy to improve the mechanical strength of the nonwoven fabric while maintaining the permeability and ion conductivity of oxygen ions. At this time, if the concentration of the polyvinyl alcohol solution is too high, the impregnation amount of the polyvinyl alcohol is increased and the porosity of the nonwoven fabric is decreased. As a result, the permeation of oxygen gas during charging is suppressed, and the battery internal pressure during charging is reduced. It is easy to cause an adverse effect such as an increase or a decrease in the ionic conductivity of the separator and a decrease in voltage during a high discharge such as 10C or more.

ポリビニルアルコールの含浸量については、ポリビニルアルコールを含浸させることによるポリオレフィン不織布の多孔度の減少率が、含浸前の不織布の多孔度の10%程度以下、特に、5〜10%程度となるようにすることが好ましい。この程度の含浸量とすることによって、ポリビニルアルコールによる補強効果を十分に発揮した上で、適度な多孔度を維持でき、良好なイオン伝導性やガス透過性を有するものとなる。   Regarding the impregnation amount of polyvinyl alcohol, the decrease rate of the porosity of the polyolefin nonwoven fabric by impregnating the polyvinyl alcohol is about 10% or less, particularly about 5 to 10% of the porosity of the nonwoven fabric before impregnation. It is preferable. By setting the impregnation amount to this level, the reinforcing effect by the polyvinyl alcohol can be sufficiently exerted, and an appropriate porosity can be maintained, and good ion conductivity and gas permeability can be obtained.

上記した方法で得られるポリオレフィン不織布は、アルカリ二次電池用のセパレータとして有用であり、特に、ニッケル−水素電池のセパレータとして優れた性能を発揮できる。   The polyolefin nonwoven fabric obtained by the above-described method is useful as a separator for alkaline secondary batteries, and in particular, can exhibit excellent performance as a separator for nickel-hydrogen batteries.

本発明のセパレータを用いてニッケル−水素電池を作製する場合には、その他の構成要素は公知のニッケル−水素電池と同様とすればよい。   When a nickel-hydrogen battery is manufactured using the separator of the present invention, other components may be the same as those of a known nickel-hydrogen battery.

但し、ニッケル極については、汎用の焼結式ニッケル極や発泡式ニッケル極に用いられている基材を用いるとバリによりセパレータを損傷させる可能性があるので、パンチングメタル、スクリーン等の二次元構造の基材を用い、これにニッケル極用活物質を塗着させたものを用いることが好ましい。本発明のセパレータは、膜厚が薄いので、この様なニッケル極を用いることによって、バリによる短絡発生を防止することが好ましい。   However, for nickel electrodes, if a base material used for general-purpose sintered nickel electrodes or foamed nickel electrodes is used, the separator may be damaged by burrs, so a two-dimensional structure such as punching metal or screen It is preferable to use a base material prepared by coating a nickel electrode active material. Since the separator of the present invention has a thin film thickness, it is preferable to prevent occurrence of a short circuit due to burrs by using such a nickel electrode.

更に、ニッケル極の基材として、機械的に加工して凹凸を設けた基材も用いることができる。この様な基材を用いたニッケル極の1例としてパンチングメタルに凹凸部を形成し、これを電極用基材として、ニッケル極用活物質ペーストを塗着させたものを挙げることができる。この様なニッケル極を用いる場合には、二次元構造の基材を用いる場合と同様に、バリによるセパレータの損傷がほとんどなく、しかも出力特性が良好で長寿命のニッケル−水素電池とすることができる。以下に、このニッケル極について説明する。   Furthermore, as a nickel electrode base material, a base material that is mechanically processed to provide unevenness can also be used. As an example of the nickel electrode using such a base material, there can be mentioned one obtained by forming a concavo-convex portion on a punching metal and applying the nickel electrode active material paste as an electrode base material. In the case of using such a nickel electrode, as in the case of using a two-dimensional base material, there is almost no damage to the separator due to burrs, and the output characteristics are good and the nickel-hydrogen battery has a long life. it can. The nickel electrode will be described below.

ニッケル極の電極用基材として、エンボス加工等の機械的加工によって凹凸部が形成されたものを用いればよく、例えば、開孔度20%以下、好ましくは5〜15%程度のパンチングメタルを用いることができる。   What is necessary is just to use what the uneven | corrugated | grooved part was formed by mechanical processing, such as embossing, as a base material for electrodes of a nickel electrode, for example, using a punching metal with a porosity of 20% or less, preferably about 5-15% be able to.

この様な電極用基材の製造方法については、特に限定的ではないが、例えば、薄板状の金属材料を用い、パンチングメタル加工可能な成型用型とエンボス構造に成型するための型を用い、機械的に加工して製造することが好ましい。   The method for producing such an electrode substrate is not particularly limited, for example, using a thin metal material, using a mold for punching metal processing and a mold for forming an embossed structure, It is preferable to manufacture by mechanical processing.

電極用基材の材質については、特に限定はなく、例えば、ニッケル板やニッケルめっきを施した鉄板等の金属板を用いることができる。   The material of the electrode substrate is not particularly limited, and for example, a metal plate such as a nickel plate or a nickel-plated iron plate can be used.

電極用基材を形成するためのパンチングメタルの厚さについては、特に限定はなく、機械的加工を容易に行うことができる厚さであれば良く、例えば、15〜60μm程度、好ましくは、20〜50μmとすればよい。   The thickness of the punching metal for forming the electrode substrate is not particularly limited as long as it can be easily machined, for example, about 15 to 60 μm, preferably 20 What is necessary is just to be 50 micrometers.

パンチングメタルの孔径については特に限定はないが、通常、0.1〜1mm程度とすれば良く、0.3〜0.8mm程度とすることが好ましい。   Although there is no limitation in particular about the hole diameter of a punching metal, Usually, it may be about 0.1-1 mm, and it is preferable to set it as about 0.3-0.8 mm.

エンボス加工によって形成する凹凸部の大きさにについては、とくに限定は無く、活物質を充填できる程度の凹凸部が交互に形成されていればよい。例えば、凹部と凹部の間隔、即ち、凹部の幅を0.5〜1.5mm程度とすればよい。   There is no particular limitation on the size of the concavo-convex portions formed by embossing, and it is only necessary that the concavo-convex portions that can be filled with the active material are alternately formed. For example, the distance between the recesses, that is, the width of the recesses may be about 0.5 to 1.5 mm.

パンチングメタル基材にエンボス加工を施した後の基材の見掛けの厚さについては、特に限定はないが、例えば、0.2〜0.5mm程度とすればよい。また、基材の単位面積あたりの重量については、通常、200〜500g/m2程度とすればよい。 The apparent thickness of the base material after embossing the punched metal base material is not particularly limited, but may be, for example, about 0.2 to 0.5 mm. In addition, the weight per unit area of the substrate is usually about 200 to 500 g / m 2 .

基材は、全体として面状であればよく、電極の使用形態に応じて平面状や曲面状とすることができる。   The base material should just be planar as a whole, and can be made into planar shape or curved surface shape according to the usage form of an electrode.

上記した構造の電極用基材の凹部に電極用活物質を充填する方法としては、ニッケル極用活物質を含むペーストを用い、これを電極用基材の凹部を含む全体に十分に塗着させればよい。活物質を含むペースト自体は、従来からペーストを塗着させて形成される電極、いわゆるペースト式電極において使用されているペーストと同様のものを使用できる。   As a method of filling the electrode active material into the recesses of the electrode base material having the above-described structure, a paste containing a nickel electrode active material is used, and this is sufficiently applied to the whole of the electrode base material including the recesses. Just do it. As the paste itself containing the active material, the same paste as that conventionally used for electrodes formed by applying paste, so-called paste type electrodes, can be used.

ニッケル極用活物質を含むペーストを電極用基材に塗着させる方法については特に限定はなく、通常のペースト塗着法と同様とすれば良い。最も簡単な方法としては、ペースト中に基材を通過させる方法が挙げられる。その他、ペーストを両面から噴射させる方法等の方法を適宜適用して、凹部を含む基材の全体にペーストを塗着させればよい。   The method for applying the paste containing the nickel electrode active material to the electrode substrate is not particularly limited, and may be the same as the usual paste application method. The simplest method includes a method of passing a substrate through the paste. In addition, a method such as a method of spraying the paste from both sides may be applied as appropriate to apply the paste to the entire substrate including the recesses.

この様にして凹凸構造を有する基材に活物質を含むペーストを塗着させた後、基材を通過させる際に該基材の見掛けの厚さと実質的に同じ間隔となるスリット間に該基材を通過させる。これにより、活物質を含むペーストの大部分を基材の凹部に充填することができる。この際、基材の凸部における活物質の付着量については、活物質の全充填量の10重量%程度以下であることが好ましく、5重量%程度以下であることがより好ましい。   After applying the paste containing the active material to the base material having the concavo-convex structure in this manner, the base is interposed between the slits that are substantially the same as the apparent thickness of the base material when passing through the base material. Allow the material to pass through. Thereby, most of the paste containing the active material can be filled in the recesses of the base material. At this time, the adhesion amount of the active material on the convex portions of the substrate is preferably about 10% by weight or less of the total filling amount of the active material, and more preferably about 5% by weight or less.

このための方法としては、例えば、スリット間隔を狭くする方向に弾性付勢されたスリット形成部材を用い、スリットの間隔を基材の厚さと同一、或いは、基材の厚さより若干狭い間隔に設定し、このスリット間に基材を通過させればよい。弾性付勢されたスリット形成部材としては、ゴムなどの弾性を有する材料、スプリング等を用いてスリット間隔を狭くする方向に押しつけることが可能な構造とした部材、両端が弾性体で固定された円柱状の部材等を用いることができる。この様なスリット形成部材において、弾性の強さを適宜設定することによって、スリット間を基材が通過する際に、スリットの間隔を基材の厚さと実質的に同じ厚さとすることができる。   As a method for this, for example, a slit forming member elastically biased in the direction of narrowing the slit interval is used, and the slit interval is set to be the same as the base material thickness or slightly narrower than the base material thickness. And what is necessary is just to let a base material pass between these slits. The elastically formed slit forming member includes a material having elasticity such as rubber, a member that can be pressed in the direction of narrowing the slit interval using a spring, etc., and a circle having both ends fixed by an elastic body. A columnar member or the like can be used. In such a slit forming member, by appropriately setting the strength of elasticity, when the base material passes between the slits, the interval between the slits can be made substantially the same as the thickness of the base material.

上記した方法によって、基材の凹部に活物質を充填した後、常法に従ってニッケル極とすることができる。例えば、活物質を充填した基材を乾燥し、所定の厚さとなるように平板加圧やローラープレス等により加圧加工する操作を行えばよい。加圧後のニッケル極の厚さについては、特に限定的ではないが、高出力特性と活物質利用率を勘案すると、0.4mm程度以下であることが好ましく、0.2〜0.35mm程度であることがより好ましい。   By filling the concave portion of the base material with the active material by the above method, a nickel electrode can be formed according to a conventional method. For example, the base material filled with the active material may be dried and subjected to pressure processing by a flat plate pressure, a roller press or the like so as to have a predetermined thickness. The thickness of the nickel electrode after pressurization is not particularly limited, but is preferably about 0.4 mm or less in consideration of high output characteristics and active material utilization, and about 0.2 to 0.35 mm. It is more preferable that

以上の方法によれば、基材の凹部には活物質が均一に充填されて部分的なバラツキが大幅に削減でき、安定した性能の電極となる。この様なニッケル極を用いる場合には、バリによるセパレータの損傷をなくして短絡を防止でき、更に、出力特性が良好で長寿命のニッケル−水素電池とすることができる。   According to the above method, the concave portion of the base material is uniformly filled with the active material, so that the partial variation can be greatly reduced, and the electrode has stable performance. When such a nickel electrode is used, the separator can be prevented from being damaged by burrs, and a short circuit can be prevented. Furthermore, a nickel-hydrogen battery having good output characteristics and a long life can be obtained.

本発明のセパレータは、高出力のアルカリ二次電池用のセパレータとして適した膜厚の薄いセパレータであって、大量生産にも適した十分な機械的強度を有するものである。このようなセパレータを用いることにより、電池の構成時にセパレータに損傷が生じることを防止でき、更に、極間距離を小さくしても、短絡を防止することが可能となる。   The separator of the present invention is a thin separator suitable for use as a separator for a high output alkaline secondary battery, and has sufficient mechanical strength suitable for mass production. By using such a separator, it is possible to prevent the separator from being damaged during the construction of the battery, and it is possible to prevent a short circuit even if the distance between the electrodes is reduced.

また、本発明のセパレータは、耐酸化性、耐アルカリ性などが良好であり、適度な多孔度を有することにより、イオン伝導性やガス透過性にも優れたものである。   In addition, the separator of the present invention has good oxidation resistance, alkali resistance and the like, and is excellent in ion conductivity and gas permeability by having an appropriate porosity.

更に親電解液性処理が施されているために、電解液の保持性も良好である。   Furthermore, since the lyophilic treatment is performed, the electrolyte retainability is also good.

従って、本発明のセパレータを用いることにより、電池特性、特に出力特性に優れ、長寿命のアルカリ二次電池を得ることができる。   Therefore, by using the separator of the present invention, an alkaline secondary battery having excellent battery characteristics, particularly output characteristics, and a long life can be obtained.

以下、実施例を挙げて本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

市販の平均厚さ95μm、目付け重量37g/m2、多孔度約50%のポリプロピレン不織布を3%発煙硫酸に2分間浸漬して、親電解液性ポリプロピレン不織布を得た。 A commercially available polypropylene nonwoven fabric having an average thickness of 95 μm, a weight per unit area of 37 g / m 2 , and a porosity of about 50% was immersed in 3% fuming sulfuric acid for 2 minutes to obtain an electrophilic polypropylene nonwoven fabric.

このポリプロピレン不織布を、重合度約2,000のポリビニルアルコールの3重量%水溶液に浸漬した後、80℃で2時間乾燥して、ポリビニルアルコールを含浸させた。   This polypropylene nonwoven fabric was immersed in a 3% by weight aqueous solution of polyvinyl alcohol having a degree of polymerization of about 2,000 and then dried at 80 ° C. for 2 hours to impregnate polyvinyl alcohol.

処理後のポリプロピレン不織布は、多孔度45%であり、引張り強度は厚さ130μm、目付け重量42g/m2のセパレータと同程度となった。 The polypropylene nonwoven fabric after the treatment had a porosity of 45%, and the tensile strength was about the same as that of a separator having a thickness of 130 μm and a basis weight of 42 g / m 2 .

これをセパレータとして、下記の方法でニッケル−水素電池を作製した。   Using this as a separator, a nickel-hydrogen battery was produced by the following method.

ニッケル極の基材としては、鉄にニッケルめっきを施した35μmの薄板に機械的な押圧と加工を施して凹凸構造を形成して得られた見掛けの厚さ420μmの基板を用いた。   As the nickel electrode base material, a substrate having an apparent thickness of 420 μm obtained by forming a concavo-convex structure by mechanically pressing and processing a 35 μm thin plate obtained by plating nickel on iron was used.

ニッケル極用活物質ペーストとしては、3%のオキシ水酸化コバルトで被覆された水酸化ニッケル粉末92部に水酸化コバルト4部を加え、混合後1%のカルボキシメチルセルロース水溶液でペースト状とし、バインダーとしてポリプロピレンエマルジョンを3.5%加えたものを用い、このペーストを上記した基材の両面に塗着させた。   As an active material paste for nickel electrode, 4 parts of cobalt hydroxide is added to 92 parts of nickel hydroxide powder coated with 3% cobalt oxyhydroxide, and after mixing, paste it with 1% carboxymethylcellulose aqueous solution as a binder. A paste containing 3.5% polypropylene emulsion was used, and this paste was applied to both sides of the substrate.

その後、両端を弾性体で固定した2本の円柱状構造のスリット形成部材を用い、2本の柱状構造物を拡げるようにして、上記した方法でペーストを塗着させた基材を通過させて、表面を平滑化した。次いで、乾燥後、ローラープレスで加圧して厚さを平均280μmとして、ニッケル極を得た。   After that, using two cylindrical slit forming members fixed at both ends with an elastic body, the two columnar structures are expanded, and the substrate coated with the paste by the above method is passed through. The surface was smoothed. Next, after drying, a nickel electrode was obtained by pressing with a roller press to obtain an average thickness of 280 μm.

一方、公知の水素吸蔵合金であるMmNi3.6Co0.6Al0.4Mn0.4に1%のカルボキシメチルセルロース水溶液を加えてペースト状とし、これを厚さ50μmで開孔度50%のパンチングメタルに塗着させた。その後、ペーストを塗着させたパンチングメタルを、間隔220μmのスリット間を通過させ、乾燥後ローラープレスで加圧して厚さを180μmとして、水素吸蔵合金負極を得た。正極の容量に対して負極容量を170%とした。 On the other hand, 1% carboxymethylcellulose aqueous solution was added to MmNi 3.6 Co 0.6 Al 0.4 Mn 0.4 , which is a known hydrogen storage alloy, to form a paste, which was applied to a punching metal having a thickness of 50 μm and a porosity of 50%. . Thereafter, the punching metal coated with the paste was passed through slits with an interval of 220 μm, dried, and then pressed with a roller press to a thickness of 180 μm to obtain a hydrogen storage alloy negative electrode. The negative electrode capacity was set to 170% with respect to the positive electrode capacity.

この両極間に上記セパレータを配し、電極群を捲回し、通称SubCの電槽に挿入した。電解液として30%の水酸化カリウムに25g/リットルの水酸化リチウムを溶解した電解液を添加した。その後、電極群にタブレス方式でニッケル端子を溶接で取り付け、蓋と正極をニッケル板で溶接した後、封口した。このようにして得られたニッケル−水素電池を電池Aとする。   The separator was placed between the two electrodes, the electrode group was wound, and inserted into a so-called SubC battery case. As an electrolytic solution, an electrolytic solution in which 25 g / liter of lithium hydroxide was dissolved in 30% potassium hydroxide was added. Then, a nickel terminal was attached to the electrode group by welding in a tabless manner, and the lid and the positive electrode were welded with a nickel plate and then sealed. The nickel-hydrogen battery thus obtained is referred to as battery A.

比較として、上記したものと同一の平均厚さ95μmの親電解液性処理を施されたポリプロピレン不織布について、ポリビニルアルコールを含浸させることなく、そのままセパレータとして用い、その他は、電池Aと同様にしてニッケル−水素電池を作製した。これを電池Bとする。   As a comparison, a polypropylene non-woven fabric having an average thickness of 95 μm and having the same average thickness as that described above was used as a separator without impregnation with polyvinyl alcohol. -A hydrogen battery was made. This is referred to as battery B.

上記した電池Aと電池Bについて、電極群捲回時のセパレータの破損状態を調べたところ、電池Bでは100セル中4セルに部分的な破損が生じ、残りの96セル中2セルは短絡していたのに対して、電池Aでは、破損も短絡も生じていなかった。   Regarding the battery A and battery B described above, when the damage state of the separator when the electrode group was wound was examined, in battery B, 4 cells out of 100 cells were partially damaged, and 2 cells out of the remaining 96 cells were short-circuited. In contrast, battery A was neither damaged nor short-circuited.

この結果から、ポリプロピレン不織布にポリビニルアルコールを含浸させることによって機械的強度が向上し、電池を構成する際のセパレータの破損を防止できることが確認できた。   From this result, it was confirmed that by impregnating the polypropylene non-woven fabric with polyvinyl alcohol, the mechanical strength was improved and the separator could be prevented from being damaged during the construction of the battery.

一方、厚さ130μmのポリプロピレン不織布を3%発煙硫酸に2分間浸漬して親電解液性処理を施したポリプロピレン不織布について、ポリビニルアルコールを含浸させることなく、そのままセパレータとして用い、その他は、電池Aと同様にしてニッケル−水素電池を作製した。これを電池Cとする。   On the other hand, a polypropylene nonwoven fabric in which a polypropylene nonwoven fabric having a thickness of 130 μm was immersed in 3% fuming sulfuric acid for 2 minutes and subjected to an electrolysis treatment was used as it was as a separator without impregnation with polyvinyl alcohol. A nickel-hydrogen battery was produced in the same manner. This is referred to as a battery C.

この様にして得られた電池Aと電池Cを用いて、以下の方法で充放電試験を行った。これらの電池について、完全充電での0.2C放電における容量は、電池Aは3.1Ah、電池Cは2.6Ahであった。   Using the battery A and the battery C thus obtained, a charge / discharge test was performed by the following method. About these batteries, the capacity | capacitance in 0.2 C discharge in a full charge was 3.1 Ah for battery A, and 2.6 Ah for battery C.

まず両電池について、公知の化成後の放電容量を調べた。充電は放電容量の120%、周囲温度は35℃とした。この測定は、50〜54サイクルで行った。結果を下記表1に示す。   First, the known discharge capacity after chemical conversion was examined for both batteries. Charging was performed at 120% of the discharge capacity, and the ambient temperature was 35 ° C. This measurement was performed in 50 to 54 cycles. The results are shown in Table 1 below.

Figure 0004454260
Figure 0004454260

表1から明らかなように、膜厚の薄いセパレータを用いた電池Aのほうが高い放電容量を示した。   As is clear from Table 1, the battery A using the separator having a thin film thickness showed a higher discharge capacity.

つぎに両電池の放電電流と放電平均電圧の関係を求めた。充電は放電容量の120%、周囲温度は35℃とした。この測定は、60〜64サイクルで行った。結果を下記表2に示す。   Next, the relationship between the discharge current and discharge average voltage of both batteries was determined. Charging was performed at 120% of the discharge capacity, and the ambient temperature was 35 ° C. This measurement was performed in 60 to 64 cycles. The results are shown in Table 2 below.

Figure 0004454260
Figure 0004454260

以上の結果から明らかなように、電池Aのほうが高出力であった。電池Aではセパレータの厚さが薄く、極間距離が小さいので、これが高出力の原因と考えられる。   As is clear from the above results, the battery A had higher output. In battery A, the separator is thin and the distance between the electrodes is small, which is considered to be the cause of high output.

つぎに、25℃、0.5Cで放電容量の110%充電、5Cで端子電圧0.9Vの条件で充放電を繰り返し、電池寿命を確認した。20サイクルでの容量を100とした場合のサイクル数と容量維持率の関係を表3に示す。   Next, charging and discharging were repeated under the conditions of 110% charge of discharge capacity at 25 ° C. and 0.5 C, and terminal voltage of 0.9 V at 5 C, and the battery life was confirmed. Table 3 shows the relationship between the number of cycles and the capacity retention rate when the capacity in 20 cycles is 100.

Figure 0004454260
Figure 0004454260

以上の結果から明らかなように、ポリビニルアルコールを含浸させたポリプロピレン不織布をセパレータとした電池Aは、これより厚い不織布をセパレータとした電池Cより長寿命であった。この結果から、ポリビニルアルコールを含浸させることにより、セパレータの電解液保持性能が向上することが判る。   As is clear from the above results, the battery A using a polypropylene nonwoven fabric impregnated with polyvinyl alcohol as a separator had a longer life than the battery C using a thicker nonwoven fabric as a separator. From this result, it can be seen that impregnation with polyvinyl alcohol improves the electrolytic solution holding performance of the separator.

Claims (4)

電解液に対する親和性を向上させる処理が施された厚さが50〜110μmであるポリオレフィン不織布を支持体として、これにポリビニルアルコール(但し、硫酸で処理されたものを除く)が含浸されていることを特徴とするアルカリ二次電池用セパレータ。 A polyolefin non-woven fabric having a thickness of 50 to 110 μm, which has been subjected to a treatment for improving the affinity for the electrolyte , is used as a support, and this is impregnated with polyvinyl alcohol (excluding those treated with sulfuric acid). A separator for an alkaline secondary battery. 電解液に対する親和性を向上させる処理が、ポリオレフィン不織布を発煙硫酸又はフッ素ガスに接触させる処理である請求項1に記載のアルカリ二次電池用セパレータ。 The separator for an alkaline secondary battery according to claim 1, wherein the treatment for improving the affinity for the electrolytic solution is a treatment for bringing the polyolefin nonwoven fabric into contact with fuming sulfuric acid or fluorine gas. ポリビニルアルコールを含浸させる前のポリオレフィン不織布の多孔度が40〜60%であり、ポリオレフィンを含浸させた後の多孔度の減少率が、含浸前の多孔度の10%以下である請求項1又は2に記載のアルカリ二次電池用セパレータ。 A porosity of 40 to 60% of the previous polyolefin nonwoven impregnating polyvinyl alcohol, the reduction rate of porosity after impregnation with polyolefin is 10% or less of porosity before impregnation claim 1 or 2 The separator for alkaline secondary batteries described in 1. 請求項1〜のいずれかに記載のアルカリ二次電池用セパレータを構成要素として含み、更に、ニッケル極が下記(ii)であるアルカリ二次電池:
(ii)機械的な加工によって凹凸部が形成された電極用基材及びニッケル極用活物質を含むニッケル極であって、該基材の凹部に活物質が充填され、該基材の凸部は表面が露出した状態又は活物質が付着した状態であるニッケル極。
The alkaline secondary battery which contains the separator for alkaline secondary batteries in any one of Claims 1-3 as a component, and also has a nickel electrode of following (ii):
(Ii) A nickel electrode including a base material for an electrode and a nickel electrode active material on which concave and convex portions are formed by mechanical processing, wherein the concave portion of the base material is filled with the active material, and the convex portion of the base material Is a nickel electrode in which the surface is exposed or the active material is attached.
JP2003272277A 2003-07-09 2003-07-09 Separator for alkaline secondary battery Expired - Lifetime JP4454260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003272277A JP4454260B2 (en) 2003-07-09 2003-07-09 Separator for alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003272277A JP4454260B2 (en) 2003-07-09 2003-07-09 Separator for alkaline secondary battery

Publications (2)

Publication Number Publication Date
JP2005032643A JP2005032643A (en) 2005-02-03
JP4454260B2 true JP4454260B2 (en) 2010-04-21

Family

ID=34209884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003272277A Expired - Lifetime JP4454260B2 (en) 2003-07-09 2003-07-09 Separator for alkaline secondary battery

Country Status (1)

Country Link
JP (1) JP4454260B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059807A (en) * 2004-07-23 2006-03-02 M & G Eco Battery Institute Co Ltd Nickel electrode and alkali storage battery using the same
JP2008059955A (en) 2006-08-31 2008-03-13 Kokusai Kiban Zairyo Kenkyusho:Kk Secondary battery, and its manufacturing method

Also Published As

Publication number Publication date
JP2005032643A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
CA1060949A (en) Rechargeable nickel-zinc battery
KR100299389B1 (en) Sealed lead acid battery
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
JPH08273653A (en) Separator for alkaline battery and alkaline battery
JP4454260B2 (en) Separator for alkaline secondary battery
JP3654634B2 (en) Alkaline secondary battery separator, alkaline secondary battery using the same, and method for producing the same
EP1154502B1 (en) Method for manufacturing positive electrode for alkaline storage battery
JP2917702B2 (en) Sealed nickel-hydrogen battery
JP3006371B2 (en) Battery
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP3928039B2 (en) Active material filling method of nickel electrode for secondary battery
CN113474920B (en) Electrode for rechargeable energy storage device
JP3332139B2 (en) Sealed alkaline storage battery
JP2013122862A (en) Cylindrical alkaline storage battery
JP2003142063A (en) Separator for alkaline storage battery and alkaline storage battery using the same
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP4193923B2 (en) Alkaline storage battery
JP3436058B2 (en) Alkaline storage battery
JP4443842B2 (en) Manufacturing method of battery and separator used therefor
JP2755634B2 (en) Alkaline zinc storage battery
CN114651346A (en) Lead-acid battery with fibrous electrode having lead-calcium strip
JP2002063889A (en) Nickel hydride secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080229

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4454260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term