JP2002063889A - Nickel hydride secondary battery - Google Patents

Nickel hydride secondary battery

Info

Publication number
JP2002063889A
JP2002063889A JP2000246352A JP2000246352A JP2002063889A JP 2002063889 A JP2002063889 A JP 2002063889A JP 2000246352 A JP2000246352 A JP 2000246352A JP 2000246352 A JP2000246352 A JP 2000246352A JP 2002063889 A JP2002063889 A JP 2002063889A
Authority
JP
Japan
Prior art keywords
nickel
secondary battery
separator
battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000246352A
Other languages
Japanese (ja)
Inventor
Takahiko Kondo
孝彦 近藤
Takafumi Yamamizu
孝文 山水
Tetsuo Sakai
哲男 境
Nobuhiro Kuriyama
信宏 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Asahi Kasei Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Asahi Kasei Corp
Priority to JP2000246352A priority Critical patent/JP2002063889A/en
Publication of JP2002063889A publication Critical patent/JP2002063889A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nickel hydride secondary battery which can realize high capacity and long service life. SOLUTION: A separator with a hydrophilic part is formed at a part of its fine porous membrane surface being made of polyolefin with an average pore size of 0.01 to 1 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル水素二次
電池に関する。
The present invention relates to a nickel-metal hydride secondary battery.

【0002】[0002]

【従来技術】近年、ニッケル水素二次電池は、パソコ
ン、携帯電話等の電気・電子機器の電源として用いられ
ており、そのニーズの増大とともに高容量化・長寿命化
への要求がますます高まりつつある。
2. Description of the Related Art In recent years, nickel-metal hydride secondary batteries have been used as power supplies for electric and electronic devices such as personal computers and mobile phones. As their needs have increased, demands for higher capacity and longer life have increased. It is getting.

【0003】高容量化を達成する手段としては、セパレ
ータの厚さを薄くするとともに、電極活物質の電池内へ
の充填量を多くする手法が有効である。
As a means for achieving high capacity, it is effective to reduce the thickness of the separator and increase the amount of the electrode active material filled in the battery.

【0004】しかしながら、従来のセパレータの厚さを
薄くすることには問題点がある。
However, there is a problem in reducing the thickness of the conventional separator.

【0005】すなわち、従来のセパレータとしては、親
水化処理が施された厚さ120〜150μm程度の不織
布が使用されているが、厚さをこれより薄くすると強度
低下が著しくなるだけでなく、不織布の孔径の大きさに
起因して電極のバリや電極から脱落した活物質により容
易に短絡を起こす。さらに、不織布では、厚さや目付の
ムラが大きくなるといった品質上の問題点があることか
ら、これが電池性能に悪影響を及ぼすおそれもある。
That is, as a conventional separator, a nonwoven fabric having a thickness of about 120 to 150 μm subjected to a hydrophilization treatment is used. The short-circuit easily occurs due to the burr of the electrode or the active material dropped from the electrode due to the size of the hole diameter of the electrode. Furthermore, nonwoven fabrics have quality problems such as increased unevenness in thickness and basis weight, which may adversely affect battery performance.

【0006】これに対し、孔径が小さく緻密であり、厚
さが100μmより薄くても高強度であり、しかも均一
な厚さや目付が実現できる微多孔膜を使用すれば、上記
問題点は解決できる。
On the other hand, the above problem can be solved by using a microporous membrane which has a small pore size, is dense, has a high strength even if the thickness is less than 100 μm, and can realize a uniform thickness and basis weight. .

【0007】しかしながら、微多孔膜をセパレータとし
て使用する場合には別の問題が新たに生じる。すなわ
ち、微多孔膜では、保水性が低く、サイクル寿命が短い
という問題点がある。また、過充電時に正極で発生する
酸素ガスの透過性が低く、負極での再結合反応が阻害さ
れ、密閉電池の内圧が上がりやすく、漏液が起こりやす
い等の問題点もある。このため、微多孔膜をセパレータ
として使用するにはさらなる改良を加えることが必要で
ある。
However, when a microporous membrane is used as a separator, another problem newly arises. That is, the microporous membrane has a problem that water retention is low and cycle life is short. In addition, there is also a problem that the permeability of oxygen gas generated in the positive electrode at the time of overcharging is low, the recombination reaction in the negative electrode is hindered, the internal pressure of the sealed battery tends to increase, and liquid leakage easily occurs. Therefore, in order to use the microporous membrane as a separator, it is necessary to make further improvements.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明は、か
かる従来技術の問題が改善され、高容量・長寿命を実現
できるニッケル水素二次電池を提供することを目的とす
る。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a nickel-metal hydride secondary battery in which the problems of the prior art are improved and a high capacity and long life can be realized.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記の従
来技術の問題点に鑑みて鋭意検討した結果、特定の性質
を有する微多孔膜をセパレータとして使用することによ
り、上記目的を達成できることを見出し、ついに本発明
を完成するに至った。
Means for Solving the Problems The present inventors have made intensive studies in view of the above-mentioned problems of the prior art, and as a result, achieved the above object by using a microporous membrane having specific properties as a separator. They have found that they can do this and have finally completed the present invention.

【0010】すなわち、本発明は、下記のニッケル水素
二次電池に係るものである。
That is, the present invention relates to the following nickel-metal hydride secondary battery.

【0011】1.平均孔径0.01〜1μmのポリオレ
フィン製微多孔膜の膜表面の一部に親水部が設けられた
セパレータを用いることを特徴とするニッケル水素二次
電池。
1. A nickel-hydrogen secondary battery using a separator in which a hydrophilic portion is provided on a part of the surface of a microporous polyolefin membrane having an average pore diameter of 0.01 to 1 μm.

【0012】2.セパレータの親水部の面積が膜表面積
の40〜95%である上記第1項記載のニッケル水素二
次電池。
2. 2. The nickel-hydrogen secondary battery according to claim 1, wherein the area of the hydrophilic part of the separator is 40 to 95% of the membrane surface area.

【0013】3.セパレータの厚さが10〜100μm
である上記第1項又は第2項に記載のニッケル水素二次
電池。
3. Separator thickness is 10 to 100 μm
3. The nickel-metal hydride secondary battery according to the above item 1 or 2.

【0014】4.親水部がスルホン基及びカルボキシル
基の少なくとも1種の親水性基を有する上記第1項〜第
3項のいずれかに記載のニッケル水素二次電池。
4. 4. The nickel-metal hydride secondary battery according to any one of the above items 1 to 3, wherein the hydrophilic portion has at least one hydrophilic group of a sulfone group and a carboxyl group.

【0015】5.水酸化コバルトで粒子表面が被覆され
た水酸化ニッケル粉末を含むペーストを二次元集電体に
塗着してなるニッケル正極を用いた上記第1項〜第4項
のいずれかに記載のニッケル水素二次電池。
[0015] 5. 5. The nickel hydrogen according to any one of the above items 1 to 4, wherein a nickel positive electrode obtained by applying a paste containing nickel hydroxide powder whose particle surface is coated with cobalt hydroxide to a two-dimensional current collector is used. Rechargeable battery.

【0016】6.正極の厚さが0.1〜0.6mmであ
る上記第5項記載のニッケル水素二次電池。
6. 6. The nickel-metal hydride secondary battery according to claim 5, wherein the thickness of the positive electrode is 0.1 to 0.6 mm.

【0017】7.水素吸蔵合金が二次元集電体に固定さ
れてなる負極を用いた上記第1項〜第6項のいずれかに
記載のニッケル水素二次電池。
[7] 7. The nickel-hydrogen secondary battery according to any one of the above items 1 to 6, using a negative electrode in which the hydrogen storage alloy is fixed to a two-dimensional current collector.

【0018】8.負極の厚さが0.1〜0.6mmであ
る上記第7項記載のニッケル水素二次電池。
[8] The nickel-metal hydride secondary battery according to claim 7, wherein the thickness of the negative electrode is 0.1 to 0.6 mm.

【0019】[0019]

【発明の実施の形態】本発明のニッケル水素二次電池
は、平均孔径0.01〜1μmのポリオレフィン製微多
孔膜の膜表面の一部に親水部が設けられたセパレータを
用いることを特徴とする。以下、このセパレータ及びこ
れを用いたニッケル水素二次電池について順に説明す
る。 (1)セパレータ ポリオレフィン製微多孔膜自体は特に限定的でなく、ポ
リエチレン、ポリプロピレン、ポリメチルペンテン等か
らなる微多孔膜を採用できる。これらは市販品又は公知
の製法で得られたものを用いることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION The nickel-hydrogen secondary battery of the present invention is characterized in that a microporous polyolefin membrane having an average pore diameter of 0.01 to 1 μm is provided with a separator having a hydrophilic portion provided on a part of the membrane surface. I do. Hereinafter, the separator and the nickel-hydrogen secondary battery using the separator will be described in order. (1) Separator The polyolefin microporous membrane itself is not particularly limited, and a microporous membrane made of polyethylene, polypropylene, polymethylpentene, or the like can be used. These can also use a commercial item or the thing obtained by the well-known manufacturing method.

【0020】本発明のセパレータは、上記ポリオレフィ
ン製微多孔膜の膜表面の一部に親水部が設けられている
ものを使用する。
The separator of the present invention uses a polyolefin microporous membrane in which a hydrophilic portion is provided on a part of the membrane surface.

【0021】本発明電池のセパレータにおける親水部
は、親水性基を有する部分(領域)である。親水性基の
種類は特に限定されず、例えばスルホン基、カルボキシ
ル基、水酸基、アミド基等が挙げられる。これらは1種
又は2種以上であっても良い。本発明では、特にスルホ
ン基及びカルボキシル基の少なくとも1種であることが
好ましい。
The hydrophilic portion in the separator of the battery of the present invention is a portion (region) having a hydrophilic group. The type of the hydrophilic group is not particularly limited, and examples thereof include a sulfone group, a carboxyl group, a hydroxyl group, and an amide group. These may be one kind or two or more kinds. In the present invention, at least one of a sulfone group and a carboxyl group is particularly preferable.

【0022】本発明において、ポリオレフィン製微多孔
膜の「膜表面」とは、微多孔膜の外表面及びそれに続く
気孔(空孔)内壁表面の両者を意味する。本発明では、
親水部以外の膜表面部分(残部)は実質的に疎水部から
構成される。従って、上記微多孔膜においては、特に、
親水部では電解液を保液する役割、疎水部では過充電時
に電極で発生するガスを透過する役割をそれぞれ果た
す。
In the present invention, the “membrane surface” of the microporous polyolefin membrane means both the outer surface of the microporous membrane and the surface of the inner wall of pores (voids) following the outer surface. In the present invention,
The film surface portion (remaining portion) other than the hydrophilic portion is substantially composed of a hydrophobic portion. Therefore, in the above microporous membrane,
The hydrophilic part plays a role of retaining the electrolyte, and the hydrophobic part plays a role of permeating the gas generated at the electrode during overcharging.

【0023】上記親水部の面積は、膜表面の一部となる
ようにする。すなわち、親水部と疎水部とを有するよう
にすれば良い。本発明では、特に、親水部の面積が膜表
面積の通常40〜95%程度、好ましくは70〜90%
とする。40%未満ではセパレータの保液量が少なくな
り、結果的に膜抵抗が高くなり、放電特性が低下するお
それがある。95%を超える場合は疎水部が少なくなり
すぎるため、ガス透過性が低下するおそれがある。
The area of the hydrophilic portion is made to be a part of the film surface. That is, it is sufficient to have a hydrophilic part and a hydrophobic part. In the present invention, in particular, the area of the hydrophilic part is usually about 40 to 95% of the membrane surface area, preferably 70 to 90%.
And If it is less than 40%, the liquid retention amount of the separator decreases, and as a result, the film resistance increases, and the discharge characteristics may decrease. If it exceeds 95%, the gas permeability may be reduced because the hydrophobic portion becomes too small.

【0024】なお、本発明において「親水部の面積」
(割合%)とは、図1に示すようにポリオレフィン製微
多孔膜の平面図におけるポリオレフィン製微多孔膜の面
積を100%とした場合において、その平面図において
親水部が占める割合をいう。その測定方法は、水性カラ
ーインクに親水化処理されたセパレータ(平面図10c
m×横10cm×厚さは任意)を1時間浸漬した後の着
色部分の上記面積を求めることにより実施した。つま
り、親水部の面積W(%)=100×(W/100)に
よって算出した。
In the present invention, the "area of the hydrophilic portion"
The term “ratio (%)” refers to a ratio of the hydrophilic portion in the plan view of the polyolefin microporous membrane when the area of the polyolefin microporous membrane in the plan view of the polyolefin microporous membrane is 100% as shown in FIG. The measuring method is based on a hydrophilized separator (a plan view 10c).
m × width 10 cm × thickness) was determined by determining the area of the colored portion after immersion for 1 hour. That is, it was calculated by the area W (%) of the hydrophilic part = 100 × (W / 100).

【0025】親水部及び疎水部の形状等は特に限定され
るものではなく、任意に設定することができるが、特に
親水部と疎水部とが細かく均一に分布していることが好
ましい。例えば、直径5mm以内の円形状の疎水部が親
水部中に均一に分布している形状、幅5mm以内の格子
状の疎水部が親水部中に分布している形状等を挙げるこ
とができる。
The shapes of the hydrophilic portion and the hydrophobic portion are not particularly limited, and can be set arbitrarily. In particular, it is preferable that the hydrophilic portion and the hydrophobic portion are finely and uniformly distributed. For example, a shape in which circular hydrophobic portions having a diameter of 5 mm or less are uniformly distributed in the hydrophilic portion, and a shape in which lattice-like hydrophobic portions having a width of 5 mm or less are distributed in the hydrophilic portion can be exemplified.

【0026】ポリオレフィン製微多孔膜の平均孔径は、
通常0.01〜1μm程度、好ましくは0.05〜0.
5μmとすれば良い。平均孔径が0.01μm未満の場
合には疎水部を有していてもガス透過性が低下するおそ
れがある。また、1μmより大きくなると脱落した電極
活物質あるいは電極のバリによる短絡が生じるおそれが
ある。
The average pore size of the polyolefin microporous membrane is as follows:
Usually about 0.01 to 1 μm, preferably 0.05 to 0.
The thickness may be set to 5 μm. If the average pore size is less than 0.01 μm, gas permeability may be reduced even if it has a hydrophobic part. If the thickness is larger than 1 μm, a short circuit may occur due to the dropped electrode active material or the burr of the electrode.

【0027】ポリオレフィン製微多孔膜の厚さは特に限
定的でなく、その平均孔径、所望の特性等に応じて適宜
設定することができる。通常は10〜100μm程度、
好ましくは30〜90μmとすれば良い。この範囲内に
設定することにより、膜強度、膜抵抗等をより適切に制
御することができる。
The thickness of the polyolefin microporous membrane is not particularly limited, and can be appropriately set according to the average pore diameter, desired characteristics, and the like. Usually about 10-100 μm,
Preferably, the thickness is 30 to 90 μm. By setting within this range, film strength, film resistance, and the like can be more appropriately controlled.

【0028】上記セパレータの製法は特に限定されるも
のではなく、公知の製法により得られる膜を用い、この
膜の一部を親水化処理すれば良い。例えば、特開平5−
21050号公報、特開平6−93130号公報等に開
示されている製法により得られるポリオレフィン微多孔
膜をベースとし、このポリオレフィン微多孔膜の膜表面
の一部を親水化処理すれば良い。
The method for producing the separator is not particularly limited, and a film obtained by a known method may be used, and a part of this film may be subjected to a hydrophilic treatment. For example, Japanese Patent Application Laid-Open
Based on a microporous polyolefin membrane obtained by a method disclosed in Japanese Patent No. 21050, JP-A-6-93130, etc., a part of the surface of the polyolefin microporous membrane may be subjected to a hydrophilic treatment.

【0029】親水化処理の方法は、上記多孔膜に親水性
基(好ましくはスルホン基及びカルボキシル基の少なく
とも1種)を付与できる限り特に制限されない。例え
ば、上記多孔膜にスルホン基、カルボキシル基等の高度
な親水性基を有する親水性樹脂を部分的に塗工したり、
あるいはフッ素と亜硫酸の混合ガスでのスルホン化反応
又はアクリル酸等の親水性モノマーのグラフト反応を部
分的に施すことによって、上記セパレータを得ることが
できる。 (2)ニッケル水素二次電池 本発明の電池は、上記セパレータを使用する以外は、公
知の電池の構成要素を採用することができる。好ましく
は、正極活物質として水酸化ニッケル、負極活物質とし
て水素吸蔵合金、電解液としてアルカリ水溶液を使用し
た電池を採用でき、その他の構成要素はどのような形態
のものであっても良い。
The method of the hydrophilic treatment is not particularly limited as long as a hydrophilic group (preferably at least one of a sulfone group and a carboxyl group) can be provided to the porous membrane. For example, the porous membrane is partially coated with a hydrophilic resin having a highly hydrophilic group such as a sulfone group and a carboxyl group,
Alternatively, the separator can be obtained by partially performing a sulfonation reaction with a mixed gas of fluorine and sulfurous acid or a graft reaction of a hydrophilic monomer such as acrylic acid. (2) Nickel hydrogen secondary battery The battery of the present invention can employ known battery components, except for using the separator. Preferably, a battery using nickel hydroxide as the positive electrode active material, a hydrogen storage alloy as the negative electrode active material, and an alkaline aqueous solution as the electrolytic solution can be employed, and other components may be in any form.

【0030】例えば、正極には水酸化ニッケルを含むペ
ーストを発泡ニッケル基体等の3次元集電体に含浸させ
てプレス成形したシート状の電極が本発明電池の高容量
化を達成する上で好ましい。さらに好ましくは、水酸化
コバルトで粒子表面が被覆された水酸化ニッケル粉末を
含むペーストを二次元集電体に塗着してなるニッケル正
極を用いる。かかる構成を採用することにより、特に、
捲回時にバリ等が発生しにくく、上記セパレータをさら
に薄くすること(例えば、セパレータ厚み50μm以
下)ができるため、よりいっそうの高容量化あるいは小
型化が可能である。すなわち、上記セパレータは、上記
ニッケル正極との組み合わせで採用することによってよ
り優れた電池特性を得ることができる。
For example, for the positive electrode, a sheet-like electrode obtained by impregnating a three-dimensional current collector such as a foamed nickel base with a paste containing nickel hydroxide and press-molding the same is preferable in achieving high capacity of the battery of the present invention. . More preferably, a nickel positive electrode obtained by applying a paste containing nickel hydroxide powder whose particle surface is coated with cobalt hydroxide to a two-dimensional current collector is used. By adopting such a configuration, in particular,
Burrs and the like hardly occur at the time of winding, and the separator can be further thinned (for example, the separator thickness is 50 μm or less), so that the capacity can be further increased or the size can be further reduced. That is, by adopting the separator in combination with the nickel positive electrode, more excellent battery characteristics can be obtained.

【0031】正極の厚さは特に限定されないが、通常は
0.1〜0.6mm程度とすることが好ましい。この範
囲内で高容量、高出力放電特性等をより確実に得ること
ができる。
The thickness of the positive electrode is not particularly limited, but is usually preferably about 0.1 to 0.6 mm. Within this range, high capacity, high output discharge characteristics and the like can be obtained more reliably.

【0032】正極で使用される上記二次元集電体として
は、例えばニッケルめっきした穿孔鋼板、ニッケルメッ
シュ、エキスパンドメタル、ニッケル箔等の公知の集電
体を用いることができる。水酸化ニッケル粉末粒子の表
面を被覆する水酸化コバルトとしては、電子導電性に優
れた低結晶性α型が好ましい。また、これを二次元集電
体に塗着するための結着材としては公知のものが使用で
き、例えばポリテトラフルオロエチレン(PTFE)、
ポリフッ化ビニリデン、スチレン-ブタジエン系ゴム等
を好適に用いることができる。導電助剤としては、例え
ば表面積が広く軟化処理したニッケルフレーク等を好適
に用いることができる。
As the two-dimensional current collector used in the positive electrode, a known current collector such as a nickel-plated perforated steel sheet, nickel mesh, expanded metal, nickel foil, or the like can be used. As the cobalt hydroxide for coating the surface of the nickel hydroxide powder particles, a low crystalline α-type having excellent electronic conductivity is preferable. Further, as a binder for applying this to a two-dimensional current collector, a known binder can be used, for example, polytetrafluoroethylene (PTFE),
Polyvinylidene fluoride, styrene-butadiene rubber and the like can be suitably used. As the conductive additive, for example, nickel flake having a large surface area and softening treatment can be suitably used.

【0033】負極には水素吸蔵合金をニッケルめっき穿
孔鋼板等の二次元集電体に固定したものが好ましい。こ
の場合、負極の厚さは0.1〜0.6mm程度であるこ
とが好ましい。この範囲内にすることによって、より確
実に高容量、高出力放電特性等を得ることができる。二
次元集電体としては、前記正極で使用されるものと同様
のものを用いることができる。
The negative electrode is preferably one in which a hydrogen storage alloy is fixed to a two-dimensional current collector such as a nickel-plated perforated steel plate. In this case, the thickness of the negative electrode is preferably about 0.1 to 0.6 mm. Within this range, high capacity, high output discharge characteristics, and the like can be obtained more reliably. As the two-dimensional current collector, the same one as that used in the positive electrode can be used.

【0034】本発明の電池の形態は特に限定されず、公
知の形態をいずれも採用することができる。特に、本発
明電池では、密閉型の円筒、角型等が最も高容量化に適
している。
The form of the battery of the present invention is not particularly limited, and any known form can be adopted. In particular, in the battery of the present invention, a closed cylinder, a square or the like is most suitable for increasing the capacity.

【0035】本発明ニッケル水素二次電池は、セパレー
タのガス透過性が良好なために電池内圧が上昇しにく
く、かつ、セパレータをより薄くすることができるた
め、電極活物質をより多く充填できる結果、大幅な高容
量化を実現することができる。
In the nickel-hydrogen secondary battery of the present invention, since the separator has good gas permeability, the internal pressure of the battery is hardly increased, and the separator can be made thinner, so that the electrode active material can be filled more. , A large increase in capacity can be realized.

【0036】さらに驚くべきことに、本発明の電池は、
サイクル寿命も従来に比べて長くなる。従来の不織布セ
パレータでは、セパレータの電解液の液がれがサイクル
劣化の原因と考えられているが、部分的に親水部を設け
たセパレータでは孔径が比較的小さいために電解液の保
液力が強く、充放電を繰り返しても電解液の液がれが抑
制ないしは防止されているためである。
More surprisingly, the battery of the present invention
The cycle life is longer than before. In conventional nonwoven fabric separators, it is thought that the electrolyte leakage of the separator causes cycle deterioration.However, the separator having a partially hydrophilic portion has a relatively small pore size, so that the electrolyte retention ability is low. This is because, even when charge and discharge are repeated, leakage of the electrolytic solution is suppressed or prevented.

【0037】[0037]

【発明の効果】本発明によれば、特に、ポリオレフィン
製多孔膜の膜表面の一部に親水部を設けたセパレータを
用いることにより、高容量・長寿命のニッケル水素二次
電池を提供することができる。
According to the present invention, it is possible to provide a high capacity and long life nickel-metal hydride secondary battery by using a separator provided with a hydrophilic part on a part of the surface of a polyolefin porous membrane. Can be.

【0038】[0038]

【実施例】以下、実施例及び比較例を示し、本発明の特
徴とするところをより詳細に説明する。なお、本発明の
範囲は、これら実施例に限定されるものではない。
The present invention will now be described in more detail with reference to examples and comparative examples. Note that the scope of the present invention is not limited to these examples.

【0039】製造例1(セパレータの製造) セパレータとしてサンプルA〜Cの3種を製造した。Production Example 1 (Production of Separator) Three types of samples A to C were produced as separators.

【0040】微粉珪酸22重量%とジオクチルフタレー
ト44重量%をヘンシェルミキサーで混合し、これに粘
度平均分子量30万のポリエチレン樹脂34重量%を添
加し、再度ヘンシェルミキサーで混合した。この混合物
を30mmφ二軸押出機に450mm幅のTダイスを取
り付けたフィルム製造装置により厚さ160μmの平膜
状に成形した。
22% by weight of finely divided silica and 44% by weight of dioctyl phthalate were mixed with a Henschel mixer, and 34% by weight of a polyethylene resin having a viscosity average molecular weight of 300,000 was added thereto, followed by mixing with a Henschel mixer again. This mixture was formed into a flat film having a thickness of 160 μm by a film manufacturing apparatus in which a T-die having a width of 450 mm was attached to a 30 mmφ twin screw extruder.

【0041】成形した膜を塩化メチレン中に10分間浸
漬し、ジオクチルフタレートを抽出した後、乾燥した。
さらに、これを60℃の25%苛性ソーダ中に60分間
浸漬して微粉珪酸を抽出した後、水洗し、乾燥した。こ
の膜を、二軸延伸機を用いて110℃で縦2〜5倍及び
横1.1〜2倍延伸することにより所定の膜厚、気孔率
及び孔径のポリエチレン微多孔膜を得た。
The formed film was immersed in methylene chloride for 10 minutes to extract dioctyl phthalate and then dried.
Further, this was immersed in 25% caustic soda at 60 ° C. for 60 minutes to extract finely divided silica, washed with water and dried. This film was stretched 2 to 5 times vertically and 1.1 to 2 times horizontally at 110 ° C. using a biaxial stretching machine to obtain a microporous polyethylene film having a predetermined film thickness, porosity and pore diameter.

【0042】得られたポリエチレン微多孔膜を用いて、
イソプレン60モル%とスチレン40モル%の共重合体
でスルホン基の導入率がイソプレンに対して15モル%
のスルホン化共重合体を固形分比率15重量%で水中に
微分散したラテックス水溶液にイソプロパノールを20
重量%加えた溶液をグラビア印刷法により塗布し、溶剤
を蒸発させて親水部を形成した。
Using the obtained polyethylene microporous membrane,
A copolymer of 60 mol% of isoprene and 40 mol% of styrene, wherein the introduction ratio of sulfone groups is 15 mol% based on isoprene.
Isopropanol was added to an aqueous latex solution obtained by finely dispersing the sulfonated copolymer of
The solution added by weight% was applied by a gravure printing method, and the solvent was evaporated to form a hydrophilic portion.

【0043】このとき、サンプルA及びサンプルCは残
存する疎水部の形状は直径3mmの島状で疎水部全体の
面積は全体に対して20%となるようにした。また、サ
ンプルBは膜表面を全て親水化処理した。各サンプルの
物性を表1に示す。
At this time, in the samples A and C, the shape of the remaining hydrophobic portion was an island having a diameter of 3 mm, and the area of the entire hydrophobic portion was 20% of the whole. In sample B, the entire surface of the film was subjected to a hydrophilic treatment. Table 1 shows the physical properties of each sample.

【0044】[0044]

【表1】 [Table 1]

【0045】表1中の各物性は次のようにして測定し
た。 (1)膜厚 ダイヤルゲージ(尾崎製作所製「PEACOCK No.25」)に
より測定した。 (2)気孔率 水銀ポロシメータを用いて測定した。 (3)平均孔径 水銀ポリシメータを用いて測定した。装置「ボアサイザ
ー9320型(島津製作所製)」を用い、サンプル重量
0.02〜0.04mgについて、前処理として真空脱
気を5分間行った後、2.0psiaより測定した。得
られた細孔分布データから圧入体積の最も大きい点(モ
ード系)を平均孔径とした。
Each physical property in Table 1 was measured as follows. (1) Film thickness It was measured with a dial gauge (“PEACOCK No. 25” manufactured by Ozaki Seisakusho). (2) Porosity Measured using a mercury porosimeter. (3) Average pore size It was measured using a mercury polysimeter. Using a device "Bore Sizer 9320 type (manufactured by Shimadzu Corporation)", a sample weight of 0.02 to 0.04 mg was subjected to vacuum degassing as a pretreatment for 5 minutes, and then measured from 2.0 psia. From the obtained pore distribution data, the point (mode system) having the largest press-fit volume was defined as the average pore diameter.

【0046】実施例1 水酸化ニッケル粉末100重量部に対し、酸化コバルト
7重量部、カルボキシメチルセルロース水溶液(固形分
濃度10重量%)3重量部、ポリテトラフルオロエチレ
ン分散剤溶液(固形分濃度60重量%)3重量部及び水
23重量部を混合してペースト状合剤とした。このペー
スト状合剤をニッケル発泡体基材に塗布して充填させ、
80℃で1時間乾燥した後、1トン/cm2の圧力で圧
縮成型した。その後、所定のサイズに裁断して、正極シ
ートとした。
Example 1 7 parts by weight of cobalt oxide, 3 parts by weight of an aqueous solution of carboxymethyl cellulose (solids concentration 10% by weight), and polytetrafluoroethylene dispersant solution (solids concentration 60 parts by weight) per 100 parts by weight of nickel hydroxide powder %) 3 parts by weight and 23 parts by weight of water were mixed to obtain a paste mixture. This paste mixture is applied and filled on a nickel foam base material,
After drying at 80 ° C. for 1 hour, compression molding was performed at a pressure of 1 ton / cm 2 . Thereafter, the sheet was cut into a predetermined size to obtain a positive electrode sheet.

【0047】希土類水素吸蔵合金(MmNi3.5Co0.8
A10.4Mn0.3)粉末100重量部に対して、カルボキ
シメチルセルロース水溶液(固形分濃度10重量%)5
重量部、ポリテトラフルオロエチレン分散剤溶液(固形
分濃度60重量%)5重量部及び水23重量部を混合し
てペースト状合剤とした。このペースト状合剤をニッケ
ルめっき穿孔鋼板に塗布して充填させ、80℃で1時間
乾燥した後、1トン/cm2の圧力で圧縮成型した。そ
の後、所定のサイズに裁断して、負極シートとした。
Rare earth hydrogen storage alloy (MmNi 3.5 Co 0.8
A1 0.4 Mn 0.3 ) Aqueous carboxymethylcellulose solution (solids concentration 10% by weight) per 100 parts by weight of powder
5 parts by weight of a polytetrafluoroethylene dispersant solution (solid content concentration: 60% by weight) and 23 parts by weight of water were mixed to obtain a paste mixture. The paste mixture was applied to a nickel-plated perforated steel sheet, filled and dried at 80 ° C. for 1 hour, and then compression molded at a pressure of 1 ton / cm 2 . Thereafter, the sheet was cut into a predetermined size to obtain a negative electrode sheet.

【0048】上記正極シートと負極シートを負極容量:
正極容量=1.5:1となるようにセパレータAを介し
て捲回し、subCサイズの電池缶に入れた。これに電
解液(30重量%KOH水溶液1リットルにLiOH1
7gを溶解させたアルカリ水溶液)を注入した。樹脂製
パッキングを付けた可逆弁付き封口体に正極タブをスポ
ット溶接し、負極の最外周部を缶の側面に接触させた
後、密閉した。次いで、これを45℃で14時間保存
し、理論容量に対して0.2Cで6時間充電後、0.2
Cで0.9Vまで放電した。この充放電サイクルを放電
容量が一定になるまで繰り返して、ニッケル水素電池を
作成した。
The positive electrode sheet and the negative electrode sheet were combined with each other for a negative electrode capacity:
It was wound through a separator A so that the positive electrode capacity was 1.5: 1, and was placed in a subC-sized battery can. This was mixed with an electrolyte (1 liter of a 30 wt% KOH aqueous solution and LiOH 1
7 g of an alkaline aqueous solution). The positive electrode tab was spot-welded to the sealing body with the reversible valve provided with the resin packing, and the outermost peripheral portion of the negative electrode was brought into contact with the side surface of the can, followed by sealing. Then, this was stored at 45 ° C. for 14 hours, and charged at 0.2 C with respect to the theoretical capacity for 6 hours.
Discharged to 0.9 V at C. This charge / discharge cycle was repeated until the discharge capacity became constant, thereby producing a nickel-metal hydride battery.

【0049】さらに、充電1C(−ΔV=5mV)、放
電1C(0.9Vカット)のサイクルで充放電し、放電
容量が500mAhに劣化するまでのサイクル数を評価
した。その結果を表2に示す。
Further, the number of cycles until charging and discharging were performed in a cycle of charging 1 C (−ΔV = 5 mV) and discharging 1 C (0.9 V cut) until the discharge capacity was reduced to 500 mAh was evaluated. Table 2 shows the results.

【0050】比較例1 セパレータとして厚さ150μmのスルホン化処理され
た不織布(気孔率60%、平均孔径20μm)を用いた
以外は実施例1と同様にして電池を作成した。このと
き、セパレータの体積が実施例1の場合に比べ大きいた
め、詰め込めた電極活物質量は約17%少なかった。こ
の電池について実施例1と同様にして電池特性を調べ
た。その結果を表2に示す。
Comparative Example 1 A battery was prepared in the same manner as in Example 1 except that a sulfonated nonwoven fabric having a thickness of 150 μm (porosity: 60%, average pore diameter: 20 μm) was used as a separator. At this time, since the volume of the separator was larger than that of Example 1, the amount of the electrode active material packed was about 17% less. The battery characteristics of this battery were examined in the same manner as in Example 1. Table 2 shows the results.

【0051】比較例2 セパレータBを用いた以外は実施例1と同様にして電池
を作製し、実施例1と同様に電池特性を調べようとし
た。ところが、セパレータに疎水部が全くないため、初
期充電時から電池内圧が上昇し、電解液が漏液した。
Comparative Example 2 A battery was manufactured in the same manner as in Example 1 except that the separator B was used, and the battery characteristics were examined in the same manner as in Example 1. However, since the separator had no hydrophobic portion, the internal pressure of the battery increased from the time of initial charging, and the electrolyte leaked.

【0052】比較例3 セパレータとして厚さ80μmのスルホン化処理された
不織布(気孔率60%、平均孔径15μm)を用いた以
外は実施例1と同様にして電池を作製し、実施例1と同
様に電池特性を調べようとした。ところが、この電池は
短絡不良が多く、試験を実施することができなかった。
Comparative Example 3 A battery was prepared in the same manner as in Example 1 except that a 80 μm-thick sulfonated nonwoven fabric (porosity: 60%, average pore diameter: 15 μm) was used as a separator. I tried to examine the battery characteristics. However, this battery had many short-circuit failures and could not be tested.

【0053】実施例2 水酸化コバルトで粒子表面が被覆された水酸化ニッケル
粉末を電極活物質として用い、これを長径50〜100
μm、短径1〜10μmのひずみの少ないフレーク状ニ
ッケル粉末に重量比で5:1の割合で混合した。その
後、結着剤としてポリテトラフルオロエチレン溶液を上
記水酸化ニッケル粉末100重量部に対して固形分量で
2.4重量部添加・混合し、得られた混合物を混練した
後、ローラを用いて引き延ばすことによって、シート状
成形物を得た。
Example 2 Nickel hydroxide powder having a particle surface coated with cobalt hydroxide was used as an electrode active material, and this was treated with a long diameter of 50 to 100.
The powder was mixed with the flaky nickel powder having a small diameter of 1 μm and a short diameter of 1 to 10 μm at a weight ratio of 5: 1. Thereafter, a polytetrafluoroethylene solution as a binder is added and mixed in a solid content of 2.4 parts by weight with respect to 100 parts by weight of the above nickel hydroxide powder, and the resulting mixture is kneaded and then stretched using a roller. As a result, a sheet-like molded product was obtained.

【0054】得られたシート状成形物を、ニッケルめっ
き穿孔鋼板の両側に位置させ、平板プレスを用いて5ト
ン/cm2の圧力で1分間圧着成形することによって、
ニッケル正極を作製した。
The obtained sheet-like molded product was placed on both sides of a nickel-plated perforated steel plate and pressed and formed at a pressure of 5 ton / cm 2 for 1 minute using a flat plate press.
A nickel positive electrode was manufactured.

【0055】上記正極及び微多孔膜セパレータCを用い
た以外は、実施例1と同様にして電池を作成したとこ
ろ、実施例1よりもさらに約7%多い電極活物質を詰め
込むことができた。この電池について実施例1と同様に
して電池特性を調べた。その結果を表2に示す。
A battery was prepared in the same manner as in Example 1 except that the above positive electrode and the microporous membrane separator C were used. As a result, about 7% more electrode active material than in Example 1 could be packed. The battery characteristics of this battery were examined in the same manner as in Example 1. Table 2 shows the results.

【0056】実施例3 セパレータとして微多孔膜セパレータAを用いたほか
は、実施例2と同様にして電池を作成した。この電池に
ついて実施例1と同様にして電池特性を調べた。その結
果を表2に示す。
Example 3 A battery was prepared in the same manner as in Example 2 except that the microporous membrane separator A was used as the separator. The battery characteristics of this battery were examined in the same manner as in Example 1. Table 2 shows the results.

【0057】比較例4 セパレータとして厚さ30μmのスルホン化処理された
不織布(気孔率50%、平均孔径10μm)を用いた以
外は実施例2と同様にして電池を作製し、実施例1と同
様に電池特性を調べようとした。ところが、この電池は
短絡不良が激しく、電池として使用できるものではなか
った。
Comparative Example 4 A battery was produced in the same manner as in Example 2 except that a 30 μm-thick sulfonated nonwoven fabric (porosity: 50%, average pore diameter: 10 μm) was used as a separator. I tried to examine the battery characteristics. However, this battery was severely short-circuited and could not be used as a battery.

【0058】[0058]

【表2】 [Table 2]

【0059】表2の結果より、膜表面の一部に親水部を
設けたセパレータを有する本発明の電池が優れた諸特性
を発揮できることがわかる。
From the results shown in Table 2, it can be seen that the battery of the present invention having the separator provided with a hydrophilic portion on a part of the membrane surface can exhibit excellent characteristics.

【0060】特に、水酸化コバルトで粒子表面が被覆さ
れた水酸化ニッケル粉末を含むペーストを二次元集電体
に塗着してなるニッケル正極を用いた実施例2では、セ
パレータ厚みが30μmという薄いセパレータを使用す
ることができ、実施例1よりもいっそう優れた放電容量
が得られることがわかる。すなわち、水酸化コバルトで
粒子表面が被覆された水酸化ニッケル粉末を含むペース
トを二次元集電体に塗着してなるニッケル正極とセパレ
ータ厚み50μm以下の薄いセパレータとの組み合わせ
において特に優れた効果を達成できることがわかる。
In particular, in Example 2 using a nickel positive electrode obtained by applying a paste containing nickel hydroxide powder whose surface is coated with cobalt hydroxide to a two-dimensional current collector, the separator thickness is as thin as 30 μm. It can be seen that a separator can be used, and a more excellent discharge capacity than in Example 1 can be obtained. That is, a particularly excellent effect is obtained in a combination of a nickel positive electrode obtained by applying a paste containing nickel hydroxide powder having a particle surface coated with cobalt hydroxide to a two-dimensional current collector and a separator having a separator thickness of 50 μm or less. It can be seen that it can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ポリオレフィン製微多孔膜の平面の模式図であ
る。
FIG. 1 is a schematic plan view of a polyolefin microporous membrane.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 10/30 H01M 10/30 Z (72)発明者 山水 孝文 滋賀県守山市小島町515番地 旭化成工業 株式会社内 (72)発明者 境 哲男 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 栗山 信宏 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 Fターム(参考) 5H021 AA06 BB09 BB12 EE04 EE17 EE18 EE34 HH03 HH04 5H028 AA01 AA05 EE01 EE05 EE10 HH06 5H050 AA07 AA08 BA14 CA03 CA30 CB17 DA02 DA03 DA04 DA19 FA13 FA17 FA18 GA22 HA04 HA06 HA07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 10/30 H01M 10/30 Z (72) Inventor Takafumi Sansui 515 Kojimacho, Moriyama-shi, Shiga Asahi Kasei Kogyo Co., Ltd. In-house (72) Inventor Tetsuo Sakai 1-81-31 Midorioka, Ikeda-shi, Osaka Industrial Technology Institute Inside Osaka Institute of Industrial Technology (72) Inventor Nobuhiro Kuriyama 1-81-31 Midorioka, Ikeda-shi, Osaka Industrial Technology F-term in the Osaka Institute of Industrial Technology (reference) 5H021 AA06 BB09 BB12 EE04 EE17 EE18 EE34 HH03 HH04 5H028 AA01 AA05 EE01 EE05 EE10 HH06 5H050 AA07 AA08 BA14 CA03 CA30 CB17 DA02 DA03 DA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】平均孔径0.01〜1μmのポリオレフィ
ン製微多孔膜の膜表面の一部に親水部が設けられたセパ
レータを用いることを特徴とするニッケル水素二次電
池。
1. A nickel-hydrogen secondary battery comprising a microporous polyolefin membrane having an average pore diameter of 0.01 to 1 .mu.m, wherein a separator having a hydrophilic portion provided on a part of the membrane surface is used.
【請求項2】セパレータの親水部の面積が膜表面積の4
0〜95%である請求項1記載のニッケル水素二次電
池。
2. The separator according to claim 1, wherein the area of the hydrophilic portion is 4% of the membrane surface area.
The nickel-metal hydride secondary battery according to claim 1, wherein the content is 0 to 95%.
【請求項3】セパレータの厚さが10〜100μmであ
る請求項1又は2に記載のニッケル水素二次電池。
3. The nickel-metal hydride secondary battery according to claim 1, wherein the thickness of the separator is 10 to 100 μm.
【請求項4】親水部がスルホン基及びカルボキシル基の
少なくとも1種の親水性基を有する請求項1〜3のいず
れかに記載のニッケル水素二次電池。
4. The nickel-hydrogen secondary battery according to claim 1, wherein the hydrophilic portion has at least one hydrophilic group of a sulfone group and a carboxyl group.
【請求項5】水酸化コバルトで粒子表面が被覆された水
酸化ニッケル粉末を含むペーストを二次元集電体に塗着
してなるニッケル正極を用いた請求項1〜4のいずれか
に記載のニッケル水素二次電池。
5. The nickel positive electrode according to claim 1, wherein a paste containing nickel hydroxide powder whose surface is coated with cobalt hydroxide is applied to a two-dimensional current collector. Nickel-metal hydride secondary battery.
【請求項6】正極の厚さが0.1〜0.6mmである請
求項5記載のニッケル水素二次電池。
6. The nickel-metal hydride secondary battery according to claim 5, wherein the thickness of the positive electrode is 0.1 to 0.6 mm.
【請求項7】水素吸蔵合金が二次元集電体に固定されて
なる負極を用いた請求項1〜6のいずれかに記載のニッ
ケル水素二次電池。
7. The nickel-hydrogen secondary battery according to claim 1, wherein a negative electrode in which the hydrogen storage alloy is fixed to a two-dimensional current collector is used.
【請求項8】負極の厚さが0.1〜0.6mmである請
求項7記載のニッケル水素二次電池。
8. The nickel-hydrogen secondary battery according to claim 7, wherein the thickness of the negative electrode is 0.1 to 0.6 mm.
JP2000246352A 2000-08-15 2000-08-15 Nickel hydride secondary battery Pending JP2002063889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000246352A JP2002063889A (en) 2000-08-15 2000-08-15 Nickel hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000246352A JP2002063889A (en) 2000-08-15 2000-08-15 Nickel hydride secondary battery

Publications (1)

Publication Number Publication Date
JP2002063889A true JP2002063889A (en) 2002-02-28

Family

ID=18736682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000246352A Pending JP2002063889A (en) 2000-08-15 2000-08-15 Nickel hydride secondary battery

Country Status (1)

Country Link
JP (1) JP2002063889A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297415A (en) * 2002-03-28 2003-10-17 National Institute Of Advanced Industrial & Technology Secondary battery
JP2003317694A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Nickel hydride storage battery
JP2004342519A (en) * 2003-05-16 2004-12-02 M & G Eco Battery Institute Co Ltd Battery using paste type thin electrode and its manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205719A (en) * 1992-01-23 1993-08-13 Asahi Chem Ind Co Ltd Porous membrane for separator of alkaline battery
JPH0850890A (en) * 1994-08-09 1996-02-20 Asahi Chem Ind Co Ltd Composite film for alkaline battery separator
JPH1021897A (en) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd Secondary battery electrode
JPH1125966A (en) * 1997-07-01 1999-01-29 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for alkaline secondary battery
JPH11288710A (en) * 1998-04-02 1999-10-19 Agency Of Ind Science & Technol Foam-less nickel positive electrode and its manufacture
JP2000077068A (en) * 1998-08-31 2000-03-14 Agency Of Ind Science & Technol Nickel positive electrode for alkaline secondary battery
JP2000230074A (en) * 1999-02-12 2000-08-22 Asahi Chem Ind Co Ltd Novel partially hydrophilic fine porous membrane and preparation thereof
JP2000248095A (en) * 1999-02-26 2000-09-12 Asahi Chem Ind Co Ltd Partially hydrophilized microporous polyolefin membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05205719A (en) * 1992-01-23 1993-08-13 Asahi Chem Ind Co Ltd Porous membrane for separator of alkaline battery
JPH0850890A (en) * 1994-08-09 1996-02-20 Asahi Chem Ind Co Ltd Composite film for alkaline battery separator
JPH1021897A (en) * 1996-06-27 1998-01-23 Sanyo Electric Co Ltd Secondary battery electrode
JPH1125966A (en) * 1997-07-01 1999-01-29 Matsushita Electric Ind Co Ltd Manufacture of positive electrode active material for alkaline secondary battery
JPH11288710A (en) * 1998-04-02 1999-10-19 Agency Of Ind Science & Technol Foam-less nickel positive electrode and its manufacture
JP2000077068A (en) * 1998-08-31 2000-03-14 Agency Of Ind Science & Technol Nickel positive electrode for alkaline secondary battery
JP2000230074A (en) * 1999-02-12 2000-08-22 Asahi Chem Ind Co Ltd Novel partially hydrophilic fine porous membrane and preparation thereof
JP2000248095A (en) * 1999-02-26 2000-09-12 Asahi Chem Ind Co Ltd Partially hydrophilized microporous polyolefin membrane

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003297415A (en) * 2002-03-28 2003-10-17 National Institute Of Advanced Industrial & Technology Secondary battery
JP2003317694A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Nickel hydride storage battery
US7435511B2 (en) 2002-04-25 2008-10-14 Matsushita Electric Industrial Co., Ltd. Nickel-metal hydride storage battery
JP2004342519A (en) * 2003-05-16 2004-12-02 M & G Eco Battery Institute Co Ltd Battery using paste type thin electrode and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5361712B2 (en) New silver positive electrode for alkaline storage batteries
JP5062724B2 (en) Method for producing nickel electrode for alkaline battery and nickel electrode for alkaline battery
JP4230592B2 (en) Partially hydrophilic polyolefin microporous membrane
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP2002063889A (en) Nickel hydride secondary battery
US20030124428A1 (en) Alkaline storage battery
JP2002157988A (en) Nickel hydrogen secondary battery
JP3006371B2 (en) Battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP2019139986A (en) Negative electrode for zinc battery and zinc battery
JP2004079242A (en) Alkali storage battery
JP4178226B2 (en) Secondary battery
JP2926732B2 (en) Alkaline secondary battery
JP2019145359A (en) Zinc battery
WO2003023882A2 (en) High discharge rate alkaline battery cathode with large pores
JPH09213362A (en) Alkali storage battery
JP4454260B2 (en) Separator for alkaline secondary battery
JP6787728B2 (en) Negative electrode for nickel-metal hydride secondary battery, nickel-metal hydride secondary battery including this negative electrode
JPH11250908A (en) Electrode for alkaline secondary battery and alkaline secondary battery
JP2000113871A (en) Alkaline secondary battery
JP3456217B2 (en) Nickel-based secondary battery
JP2021174609A (en) Zinc battery
JP2022048597A (en) Secondary battery
JP2021185560A (en) Negative electrode for zinc battery and zinc battery
JP3558082B2 (en) Nickel-cadmium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080905

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090421

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110906