JP4443842B2 - Manufacturing method of battery and separator used therefor - Google Patents

Manufacturing method of battery and separator used therefor Download PDF

Info

Publication number
JP4443842B2
JP4443842B2 JP2003063320A JP2003063320A JP4443842B2 JP 4443842 B2 JP4443842 B2 JP 4443842B2 JP 2003063320 A JP2003063320 A JP 2003063320A JP 2003063320 A JP2003063320 A JP 2003063320A JP 4443842 B2 JP4443842 B2 JP 4443842B2
Authority
JP
Japan
Prior art keywords
separator
battery
electrode plate
discharge
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003063320A
Other languages
Japanese (ja)
Other versions
JP2004273306A (en
Inventor
琢磨 飯田
直慶 渋谷
宏樹 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003063320A priority Critical patent/JP4443842B2/en
Publication of JP2004273306A publication Critical patent/JP2004273306A/en
Application granted granted Critical
Publication of JP4443842B2 publication Critical patent/JP4443842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、電池の内部抵抗を低減し、特に電池の放電特性を向上させるものである。
【0002】
【従来の技術】
近年、各種ポータブル型の電気機器の発達に伴い、その駆動電源となる電池が重要なキーデバイスの1つとして、その開発が重要視されている。その電池の中でも充電可能なニッケル−水素蓄電池やリチウムイオン電池といった二次電池は、携帯電話やノートパソコン等の駆動電源として高容量化が強く望まれている。
【0003】
また、ニッケル−水素蓄電池をはじめとする水溶液系電池では、ハイレ−ト放電特性に優れている利点を生かして多セル直列使用によって高電圧化し、電動工具、電気自動車等の電源(パック)として用いられている。これらの直列使用による高電圧化電源(パック)では、パック内の電池容量バラツキが生じると電池が過充電しやすいため、寿命劣化しやすくなるという課題があった。
【0004】
電池の容量バラツキには、初期電池の容量バラツキの他に、自己放電量のバラツキによる要因がある。このため自己放電によるバラツキを抑制するために自己放電特性に優れたセパレ−タを用いた電池が幅広く使用されている。これら自己放電に最も優れたセパレ−タとして、スルホン基をもつスルホン化セパレ−タが知られている(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平04−36954号公報(第2頁)
【0006】
【発明が解決しようとする課題】
しかしながら、スルホン基をもつスルホン化セパレ−タを電池に用いた場合、スルホン基の量を適性にしても、十分な親水性が得られず、電池の内部抵抗が高くなるという課題があった。
【0007】
本発明は上記課題に鑑み、自己放電特性に優れ、かつ親水性に富み、内部抵抗が低く放電特性に優れた電池用セパレータを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は、正極板と、負極板と、その両者間に親水化処理としてスルホン化処理されたセパレータを配置した電極群を有する電池において、前記スルホン化処理されたセパレータ中のスルホン基のSOとSOの割合(SO/SO)が0.4〜2.5であるものとし、前記スルホン化処理は、SO ガスを10%含む窒素ガスにより、室温で、前記セパレータに対し、処理を行い、その後、処理されたセパレータをpH13のNaOH溶液のアルカリ槽で中和させ、その後、水洗・乾燥する工程であるものとした。
【0009】
これにより、自己放電特性に優れ、かつ親水性に優れ、内部抵抗も低いままで維持でき、なお且つ放電特性をも向上させることができる。
【0010】
【発明の実施の形態】
本発明の請求項1記載の発明は、正極板と、負極板と、その両者間にスルホン化処理されたポリオレフィン系セパレータを配置した電極群を有する電池において、前記スルホン化処理されたセパレータ中のスルホン基のSOとSOの割合(SO/SO)が0.4〜2.5である電池とし、前記スルホン化処理は、SO ガスを10%含む窒素ガスにより、室温で、前記セパレータに対し、処理を行い、その後、処理されたセパレータをpH13のNaOH溶液のアルカリ槽で中和させ、その後、水洗・乾燥する工程であるものとした。これは、セパレータ表面に存在するスルホン基のSO/SOの割合が0.4〜2.5になることにより、セパレ−タの親水性が著しく向上することから内部抵抗が低減できるためである。
【0011】
このセパレ−タに用いるポリオレフィン系繊維としては、ポリプロピレン、及びポリエチレンを主成分としており、さらにはこれらの混紡であってもかまわない。
【0012】
また、前記セパレータの繊維径は3〜15μmであることが好ましい。これは、繊維径が3μmより小さい場合、繊維強度が弱くなりすぎて不織布の強度が十分確保できなくなるためである。逆に繊維径が15μmより大きい場合は、細径分布が大きくなりすぎて、疎密が多くなり、電池の信頼性が低下するからである。
【0013】
さらに、前記セパレータの平均細孔径は10〜30μmであることが好ましい。前記セパレ−タの平均細孔径が10μm未満の場合には、セパレ−タの通気性が低下し、電池内圧の上昇が大きかった。また平均細孔径が30μmを超えると、不織布の強度が低下し十分な信頼性を確保できなくなる。
【0014】
【実施例】
次に、本発明の具体例について説明する。
【0015】
(実施例1)
従来のセパレータとしては、ポリプロピレンの繊維表面をポリエチレンで混紡した10μmの繊維を水に分散してスラリーとし、このスラリーを湿式抄造法により抄紙してウェブを形成し、目付重量64g/m2の不織布を作製し、熱カレンダーロールによりセパレ−タの繊維がフィルム化しないようにセパレータの厚み調整を行った。これをスルホン化処理により、親水化処理を行った。スルホン化条件としては、SO3ガスを10%含む窒素ガスにより、室温で、30秒処理を行った。これらをpH13のNaOH溶液のアルカリ槽で中和させ、その後、水洗・乾燥して、SO4とSO3の割合(SO4/SO3)が1.0である本発明の実施例におけるセパレータ1を得た。スルホン化の時間を15秒と60秒に変更して、SO4/SO3が0.4のセパレータ2と、2.5のセパレ−タ3を得た。また比較のためにスルホン化の時間を4秒と180秒に変更してSO4/SO3が0.1のセパレータ4と、3.0のセパレ−タ5を作製した。これらの物性を(表1)に示す。
【0016】
【表1】

Figure 0004443842
正極板は、発泡メタル基板に、水酸化ニッケルを主成分としてなる正極活物質ペーストを、後に集電体を溶接するための芯材露出部を設けて塗布させ、乾燥させた後、厚み0.5mmになるまで圧延し、高さ45mm、芯材露出幅1mm、長さ200mmになるように切断して作製した。
【0017】
また、負極板は60μmのパンチングメタル芯材に水素吸蔵合金を主成分とする負極活物質ペーストを、後に集電体を溶接するための芯材露出部を設けて塗布・乾燥させた後、厚み0.3mmになるまで圧延し、高さ45mm、芯材露出幅1mm、長さ240mmになるように切断して作製した。
【0018】
上記のように作製した正極板と負極板との間に、(表1)に示したセパレータを介在させ、正極板の芯材が露出した部分を上方に、負極板の芯材の露出した部分を下方突出させながら巻回させて、高さ47.2mmの電極群No.1〜5を作製した。
【0019】
ついで、上方の正極板の芯材露出部に正極集電体を溶接し、下方の負極板の芯材露出部に負極集電体を溶接する。集電体が溶接された電極群を上部が開口した電池ケースに収納し、注液前の電池No.1〜5を作製した。電池への注液は、比重1.3g/ccのKOHを主成分とする電解液を遠心注液法を用いて、4cc注液した。
【0020】
電池ケースの上部開口部を封口板で密閉してAサイズ(標準容量2500mAh)の電池No.1〜5を組み立てた。これを周囲温度25℃で12時間放置後、初充放電(充電は0.1It(250mA)の電流値で15時間、放電は0.2It(500mA)の電流値で4時間)を行い、本発明のニッケル−水素蓄電池No.1〜3と比較の電池No.4〜5を得た。これらの電池を初充放電後に内部抵抗を測定した結果を(表2)に示す。
【0021】
次に大電流放電特性の評価を行った。大電流放電特性の評価方法としては、1It(充電は2.6A)の充電電流で1.2時間充電をした後、10Aの放電電流で放電終止電圧が0.8Vになるまで放電させて、放電時間から放電容量を算出して大電流放電容量とした。
【0022】
次に自己放電特性の評価を行った。自己放電特性の評価方法としては、1It(充電は2.6A)の充電電流で1.2時間充電をした後、1.0It(2.6A)の放電電流で放電終止電圧が1.0Vになるまで放電させて、放電時間から放電容量を算出して初期容量とした。
【0023】
この電池を1Itで1.2時間充電をして満充電した後に、45℃の環境下で2週間放置した後、1.0It(2.6A)の放電電流で放電終止電圧が1.0Vになるまで放電させて、放電時間から放電容量を算出して保存後の容量とした。
【0024】
これらから容量維持率を算出し、自己放電特性の評価を行った。
【0025】
容量維持率(%)= 保存後の容量/初期容量
上記の電池特性を(表2)に示す
【0026】
【表2】
Figure 0004443842
(表1)から明らかなようにSO4/SO3の割合が0.4未満、又は2.5以上になると急減に内部抵抗が上昇しているのがわかる。このことから本発明の範囲内のセパレータを用いた電池であれば、内部抵抗は抑制できることが分かる。さらに内部抵抗が抑制できるため、10Aの放電容量も著しく向上している。
【0027】
また、スルホン化したセパレ−タを用いることにより自己放電特性も容量維持率が高くなっている。
【0028】
本発明のセパレ−タを用いた電池は、自己放電特性を確保しつつ、内部抵抗が抑制できるため大電流放電特性が著しく向上している。
【0029】
これは、この2つの親水基構造が、両方とも4面体構造を有しているが、SO3では、硫黄原子の電子構造が、3個の酸素原子と結合し、sp3混成軌道のうち1隅を非共有電子対が占めるのに対し、SO4は4個の酸素原子と結合して、sp3混成軌道をとるため、イオンとしては安定な状態にある。SO4基の方が安定なため、親水性に優れ、内部抵抗が低減したと推定している。
【0030】
以上のことから、セパレータ表面に存在するスルホン基のSO4/SO3の割合は0.4〜2.5であることが好ましい。
【0031】
(実施例2)
同様な方法で、セパレ−タの繊維径を3〜15μmの範囲のものを用いてセパレ−タNo.6〜9を作製した。これをスルホン化処理により、親水化処理を行い、スルホン化度(セパレ−タ中の硫黄とカ−ボンの割合(S/C)が0.003で、SO4とSO3の割合(SO4/SO3)が1.0になるように親水化処理を行った。これらの物性値を(表3)に示す。
【0032】
【表3】
Figure 0004443842
これらのセパレ−タを実施例1と同様な方法で電池No.6〜9を作製した。これらの電池の1It(2500mA)で120%充電したときの電池内圧を測定した結果を(表4)に示す。
【0033】
【表4】
Figure 0004443842
上記の結果より、細孔径を小さくした電池の電池内圧は、高いことが分かる。
【0034】
これらアルカリ蓄電池では、充電末期になると、正極で酸素発生反応が水酸化ニッケルの充電反応と競合して起こる。その際、発生したガスを負極での還元反応により消費させるために負極容量を正極容量に対して大きくして電池内の圧力を一定範囲内に保持する構成がとられている。この時、セパレ−タの通気性が低下すると正極で発生したガスを効率よく負極で消費することができなくなるため電池内圧が上昇する。通常細孔径が小さい場合、通気性が低下するため電池内圧は上昇する。
【0035】
種々検討の結果、セパレータの繊維径としては3〜15μm、細孔径としては、10〜30μmであることが好ましいことがわかった。
【0036】
【発明の効果】
正極板と、負極板と、その両者間に親水化処理としてスルホン化されたセパレータを配置した電極群を有する電池において、前記スルホン化されたセパレータ中のスルホン基のSO4とSO3の割合(SO4/SO3)を0.4〜2.5とすることにより、自己放電特性に優れ、放電特性に優れた電池が得られる。[0001]
BACKGROUND OF THE INVENTION
The present invention reduces the internal resistance of the battery, and in particular improves the discharge characteristics of the battery.
[0002]
[Prior art]
In recent years, with the development of various portable electric devices, the development of the battery as a driving power source is regarded as one of important key devices. Among such batteries, rechargeable secondary batteries such as rechargeable nickel-hydrogen storage batteries and lithium ion batteries are strongly desired to have a high capacity as a driving power source for mobile phones, notebook computers and the like.
[0003]
In addition, in aqueous solution batteries such as nickel-hydrogen storage batteries, taking advantage of superior high-rate discharge characteristics, the voltage is increased by using multiple cells in series and used as a power source (pack) for electric tools, electric vehicles, etc. It has been. These high-voltage power supplies (packs) that are used in series have a problem that if the battery capacity varies within the pack, the battery is likely to be overcharged, and the life is likely to deteriorate.
[0004]
In addition to the capacity variation of the initial battery, the battery capacity variation is caused by the variation in the self-discharge amount. For this reason, in order to suppress variations due to self-discharge, batteries using a separator having excellent self-discharge characteristics are widely used. A sulfonated separator having a sulfone group is known as the most excellent separator for these self-discharges (see, for example, Patent Document 1).
[0005]
[Patent Document 1]
JP 04-36954 A (page 2)
[0006]
[Problems to be solved by the invention]
However, when a sulfonated separator having a sulfone group is used in a battery, there is a problem that even if the amount of the sulfone group is appropriate, sufficient hydrophilicity cannot be obtained and the internal resistance of the battery is increased.
[0007]
In view of the above problems, an object of the present invention is to provide a battery separator excellent in self-discharge characteristics, rich in hydrophilicity, low in internal resistance and excellent in discharge characteristics.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a battery having an electrode group in which a positive electrode plate, a negative electrode plate, and a separator that is sulfonated as a hydrophilic treatment are disposed therebetween, and the sulfonated separator. The ratio of SO 4 and SO 3 of the sulfone group therein (SO 4 / SO 3 ) is 0.4 to 2.5, and the sulfonation treatment is performed using nitrogen gas containing 10% SO 3 gas, The separator was treated at room temperature, and then the treated separator was neutralized in an alkaline bath of a pH 13 NaOH solution, and then washed and dried .
[0009]
Thereby, it is excellent in a self-discharge characteristic, it is excellent in hydrophilicity, it can maintain with low internal resistance, and also can improve a discharge characteristic.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a battery having a positive electrode plate, a negative electrode plate, and an electrode group in which a sulfonated polyolefin separator is disposed between the positive electrode plate and the negative electrode plate. A battery in which the ratio of SO 4 and SO 3 of the sulfone group (SO 4 / SO 3 ) is 0.4 to 2.5, and the sulfonation treatment is performed at room temperature with nitrogen gas containing 10% SO 3 gas. The separator was treated, and then the treated separator was neutralized in an alkaline bath of a pH 13 NaOH solution, and then washed and dried . This is because when the ratio of SO 4 / SO 3 of the sulfone group existing on the separator surface is 0.4 to 2.5, the hydrophilicity of the separator is remarkably improved, so that the internal resistance can be reduced. is there.
[0011]
Polyolefin fibers used in this separator are mainly composed of polypropylene and polyethylene, and may be a blend of these.
[0012]
Moreover, it is preferable that the fiber diameter of the said separator is 3-15 micrometers. This is because when the fiber diameter is smaller than 3 μm, the fiber strength becomes too weak to ensure sufficient strength of the nonwoven fabric. On the contrary, when the fiber diameter is larger than 15 μm, the fine diameter distribution becomes too large, the density is increased, and the reliability of the battery is lowered.
[0013]
Furthermore, the average pore diameter of the separator is preferably 10 to 30 μm. When the average pore diameter of the separator was less than 10 μm, the air permeability of the separator was lowered and the battery internal pressure was greatly increased. On the other hand, if the average pore diameter exceeds 30 μm, the strength of the nonwoven fabric is lowered and sufficient reliability cannot be ensured.
[0014]
【Example】
Next, specific examples of the present invention will be described.
[0015]
Example 1
As a conventional separator, a 10 μm fiber obtained by blending a polypropylene fiber surface with polyethylene is dispersed in water to form a slurry, and a paper is formed by wet papermaking to form a web, and a nonwoven fabric having a basis weight of 64 g / m 2 The thickness of the separator was adjusted so that the separator fibers were not formed into a film by a thermal calendar roll. This was hydrophilized by sulfonation. As sulfonation conditions, treatment was performed at room temperature for 30 seconds with nitrogen gas containing 10% SO 3 gas. These are neutralized in an alkaline bath of a pH 13 NaOH solution, then washed and dried, and the separator 1 in the example of the present invention in which the ratio of SO 4 to SO 3 (SO 4 / SO 3 ) is 1.0. Got. The sulfonation time was changed to 15 seconds and 60 seconds to obtain a separator 2 with SO 4 / SO 3 of 0.4 and a separator 3 with 2.5. For comparison, the sulfonation time was changed to 4 seconds and 180 seconds to produce a separator 4 with 0.1 SO 4 / SO 3 and a separator 5 with 3.0. These physical properties are shown in (Table 1).
[0016]
[Table 1]
Figure 0004443842
The positive electrode plate is coated with a positive electrode active material paste mainly composed of nickel hydroxide on a foamed metal substrate with a core material exposed portion for later welding the current collector, dried, and then dried to a thickness of 0. It was rolled to 5 mm and cut to a height of 45 mm, a core material exposed width of 1 mm, and a length of 200 mm.
[0017]
In addition, the negative electrode plate was coated with a negative electrode active material paste mainly composed of a hydrogen storage alloy on a 60 μm punched metal core, and then dried by providing a core material exposed portion for welding the current collector. It was rolled to 0.3 mm and cut to a height of 45 mm, a core material exposed width of 1 mm, and a length of 240 mm.
[0018]
The separator shown in (Table 1) is interposed between the positive electrode plate and the negative electrode plate produced as described above, and the portion where the core material of the positive electrode plate is exposed upward and the portion where the core material of the negative electrode plate is exposed Is wound while protruding downward, and the electrode group No. 4 having a height of 47.2 mm is wound. 1-5 were produced.
[0019]
Next, the positive electrode current collector is welded to the core material exposed portion of the upper positive electrode plate, and the negative electrode current collector is welded to the core material exposed portion of the lower negative electrode plate. The electrode group to which the current collector is welded is housed in a battery case having an upper opening, and the battery no. 1-5 were produced. For the injection into the battery, 4 cc of an electrolytic solution mainly composed of KOH having a specific gravity of 1.3 g / cc was injected using a centrifugal injection method.
[0020]
The upper opening of the battery case is sealed with a sealing plate, and an A size (standard capacity 2500 mAh) battery No. 1-5 were assembled. This was left for 12 hours at an ambient temperature of 25 ° C., and then subjected to initial charge / discharge (charging was performed at a current value of 0.1 It (250 mA) for 15 hours, and discharging was performed at a current value of 0.2 It (500 mA) for 4 hours). Nickel-hydrogen storage battery No. 1 of the invention. Battery No. 1 and 3 compared with 4-5 were obtained. The results of measuring the internal resistance of these batteries after initial charge / discharge are shown in Table 2.
[0021]
Next, evaluation of large current discharge characteristics was performed. As a method for evaluating the large current discharge characteristics, after charging for 1.2 hours with a charging current of 1 It (charging is 2.6 A), discharging is performed until the final discharge voltage is 0.8 V with a discharging current of 10 A, The discharge capacity was calculated from the discharge time to obtain a large current discharge capacity.
[0022]
Next, self-discharge characteristics were evaluated. As a method for evaluating the self-discharge characteristics, after charging for 1.2 hours with a charging current of 1 It (charging is 2.6 A), the end-of-discharge voltage is 1.0 V with a discharging current of 1.0 It (2.6 A). It was made to discharge until it was, and discharge capacity was computed from discharge time, and it was set as the initial stage capacity.
[0023]
The battery was charged at 1 It for 1.2 hours and fully charged, and then left for 2 weeks in an environment of 45 ° C., and then the discharge end voltage was set to 1.0 V with a discharge current of 1.0 It (2.6 A). It was made to discharge until it became, and the discharge capacity was computed from the discharge time, and it was set as the capacity | capacitance after a preservation | save.
[0024]
The capacity retention rate was calculated from these, and the self-discharge characteristics were evaluated.
[0025]
Capacity retention rate (%) = Capacity after storage / Initial capacity The above battery characteristics are shown in Table 2.
[Table 2]
Figure 0004443842
As apparent from Table 1, it can be seen that when the ratio of SO 4 / SO 3 is less than 0.4 or 2.5 or more, the internal resistance rapidly increases. From this, it can be seen that the internal resistance can be suppressed if the battery uses a separator within the scope of the present invention. Furthermore, since the internal resistance can be suppressed, the discharge capacity of 10 A is also significantly improved.
[0027]
In addition, the use of a sulfonated separator increases the capacity retention rate of the self-discharge characteristics.
[0028]
The battery using the separator of the present invention has a significantly improved large current discharge characteristic because the internal resistance can be suppressed while ensuring the self-discharge characteristic.
[0029]
This is because both of these two hydrophilic group structures have a tetrahedral structure, but in SO 3 , the electronic structure of the sulfur atom is bonded to three oxygen atoms, and one of the sp 3 hybrid orbitals. While the corners are occupied by unshared electron pairs, SO 4 is bonded to four oxygen atoms and has a sp 3 hybrid orbital, so that it is in a stable state as an ion. Since the SO 4 group is more stable, it is estimated that the hydrophilicity is excellent and the internal resistance is reduced.
[0030]
From the above, it is preferable that the ratio of SO 4 / SO 3 of the sulfone group present on the separator surface is 0.4 to 2.5.
[0031]
(Example 2)
In the same manner, using a separator having a fiber diameter in the range of 3 to 15 μm, the separator No. 6-9 were produced. This was hydrophilized by sulfonation treatment, and the degree of sulfonation (the ratio of sulfur and carbon in the separator (S / C) was 0.003, and the ratio of SO 4 and SO 3 (SO 4 / SO 3 ) was hydrophilized so as to be 1.0, and these physical property values are shown in Table 3.
[0032]
[Table 3]
Figure 0004443842
These separators were prepared in the same manner as in Example 1 with the battery No. 6-9 were produced. The results of measuring the internal pressure of these batteries when they are charged 120% at 1 It (2500 mA) are shown in Table 4.
[0033]
[Table 4]
Figure 0004443842
From the above results, it can be seen that the battery internal pressure of the battery having a small pore diameter is high.
[0034]
In these alkaline storage batteries, at the end of charging, the oxygen generation reaction occurs at the positive electrode in competition with the nickel hydroxide charging reaction. At this time, in order to consume the generated gas by the reduction reaction at the negative electrode, the negative electrode capacity is increased with respect to the positive electrode capacity to maintain the pressure in the battery within a certain range. At this time, if the air permeability of the separator is lowered, the gas generated at the positive electrode cannot be efficiently consumed at the negative electrode, so that the battery internal pressure increases. Usually, when the pore diameter is small, the air permeability decreases, so the battery internal pressure increases.
[0035]
As a result of various studies, it has been found that the fiber diameter of the separator is preferably 3 to 15 μm and the pore diameter is preferably 10 to 30 μm.
[0036]
【The invention's effect】
In a battery having an electrode group in which a positive electrode plate, a negative electrode plate, and a separator sulfonated as a hydrophilization treatment are disposed between the positive electrode plate and the both, the ratio of SO 4 and SO 3 of the sulfone group in the sulfonated separator ( By setting SO 4 / SO 3 ) to 0.4 to 2.5, a battery having excellent self-discharge characteristics and excellent discharge characteristics can be obtained.

Claims (3)

正極板と、負極板と、その両者間にスルホン化処理されたポリオレフィン系繊維を主成分とするセパレータを配置した電極群を有する電池において、前記セパレータ中のスルホン基のSOとSOの割合(SO/SO)が0.4〜2.5であり、前記スルホン化処理は、SO ガスを10%含む窒素ガスにより、室温で、前記セパレータに対し、処理を行い、その後、処理されたセパレータをpH13のNaOH溶液のアルカリ槽で中和させ、その後、水洗・乾燥する工程であることを特徴とする電池。In a battery having an electrode group in which a positive electrode plate, a negative electrode plate, and a separator mainly composed of a sulfonated polyolefin-based fiber are disposed between the positive electrode plate and the both, the ratio of SO 4 and SO 3 of the sulfone group in the separator (SO 4 / SO 3) is Ri der 0.4 to 2.5, wherein the sulfonation treatment is the nitrogen gas containing SO 3 gas 10%, at room temperature, to the separator, a process, then, A battery comprising a step of neutralizing a treated separator in an alkaline bath of a NaOH solution having a pH of 13, followed by washing and drying . 前記セパレータの平均繊維径が、3〜15μmであることを特徴とする請求項1記載の電池。The battery according to claim 1, wherein the separator has an average fiber diameter of 3 to 15 μm. 前記セパレータの平均細孔径が、10〜30μmであることを特徴とする請求項1記載の電池。The battery according to claim 1, wherein the separator has an average pore diameter of 10 to 30 μm.
JP2003063320A 2003-03-10 2003-03-10 Manufacturing method of battery and separator used therefor Expired - Fee Related JP4443842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003063320A JP4443842B2 (en) 2003-03-10 2003-03-10 Manufacturing method of battery and separator used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003063320A JP4443842B2 (en) 2003-03-10 2003-03-10 Manufacturing method of battery and separator used therefor

Publications (2)

Publication Number Publication Date
JP2004273306A JP2004273306A (en) 2004-09-30
JP4443842B2 true JP4443842B2 (en) 2010-03-31

Family

ID=33124930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003063320A Expired - Fee Related JP4443842B2 (en) 2003-03-10 2003-03-10 Manufacturing method of battery and separator used therefor

Country Status (1)

Country Link
JP (1) JP4443842B2 (en)

Also Published As

Publication number Publication date
JP2004273306A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
US9450222B2 (en) Electric storage device, and vehicle mounted electric storage system
CN111279527B (en) Lead-acid battery
JP3221337B2 (en) Alkaline storage battery separator
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
KR102542291B1 (en) Method for manufacturing negative electrode for secondary battery
JP3287367B2 (en) Sealed nickel zinc battery
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
JP4443842B2 (en) Manufacturing method of battery and separator used therefor
JPH10302842A (en) Winding type secondary battery
US6933079B2 (en) Separator for alkaline storage battery and alkaline storage battery using the same
JP3209071B2 (en) Alkaline storage battery
JP5488990B2 (en) Lithium ion secondary battery
JP6981978B2 (en) Lithium-ion battery manufacturing method
JP3006371B2 (en) Battery
JP3332139B2 (en) Sealed alkaline storage battery
JP4454260B2 (en) Separator for alkaline secondary battery
CN215184064U (en) Lithium metal battery negative plate and lithium metal battery
JP3436058B2 (en) Alkaline storage battery
JP2884570B2 (en) Sealed alkaline secondary battery
JP4359678B2 (en) Secondary battery electrode and secondary battery using the same
JP4997529B2 (en) Nickel electrode for alkaline battery and method for producing the same
JP3558082B2 (en) Nickel-cadmium secondary battery
KR20230039939A (en) Secondary battery and the manufacturing method
JP2005327546A (en) Control valve type lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100113

R151 Written notification of patent or utility model registration

Ref document number: 4443842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees