JPH0732008B2 - Method for manufacturing battery separator - Google Patents

Method for manufacturing battery separator

Info

Publication number
JPH0732008B2
JPH0732008B2 JP57058864A JP5886482A JPH0732008B2 JP H0732008 B2 JPH0732008 B2 JP H0732008B2 JP 57058864 A JP57058864 A JP 57058864A JP 5886482 A JP5886482 A JP 5886482A JP H0732008 B2 JPH0732008 B2 JP H0732008B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
separator
battery
concentrated sulfuric
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57058864A
Other languages
Japanese (ja)
Other versions
JPS58175256A (en
Inventor
勉 岩城
博志 川野
守 石飛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57058864A priority Critical patent/JPH0732008B2/en
Publication of JPS58175256A publication Critical patent/JPS58175256A/en
Publication of JPH0732008B2 publication Critical patent/JPH0732008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Cell Separators (AREA)

Description

【発明の詳細な説明】 現在、各種の一次電池や二次電池、さらには燃料電池
が、ポータブル機器,移動用,据置用,予備用さらには
独立電源用などに利用されている。電池を構成要素に分
けると、大部分の電池は、正極,負極,電解質,セパレ
ータ,容器などから成り立っている。
DETAILED DESCRIPTION OF THE INVENTION At present, various types of primary batteries, secondary batteries, and fuel cells are used for portable devices, mobile devices, stationary devices, backup devices, and independent power sources. When a battery is divided into its constituent elements, most of the battery is composed of a positive electrode, a negative electrode, an electrolyte, a separator, a container, and the like.

電池の特性をすぐれたものにするために電極の果たす役
割が大きいことは勿論であり、正極,負極の改良は、永
久に続けられる課題であることは当然であるが、セパレ
ータの役割も見過すとこはできない。マンガン乾電池の
紙セパレータ,自動車用鉛電池の同じく紙セパレータな
どは、電池の特性の向上のためにとくに検討されてい
る。
It goes without saying that the electrodes play a major role in improving the battery characteristics, and improving the positive and negative electrodes is a task that can be continued forever, but the role of the separator is also overlooked. I can't come here. Paper separators for manganese dry batteries and similar paper separators for lead batteries for automobiles have been particularly studied for improving battery characteristics.

電池におけるセパレータの最も大きな役割は、正極と負
極を隔離して電子的な短絡を防止することである。その
ため一次電池では耐電解液性が重視され、二次電池では
その他に充電時での酸化に対して耐えることが要求され
る。燃料電池ではほぼ一次電池の場合と同じである。た
だしこの場合には、酸素や水素などガスが活物質になる
のでこれの混合を防止することが重要である。
The most important role of the separator in the battery is to separate the positive electrode and the negative electrode to prevent an electronic short circuit. Therefore, the electrolytic solution resistance is important in the primary battery, and the secondary battery is also required to withstand oxidation during charging. The fuel cell is almost the same as the case of the primary cell. However, in this case, a gas such as oxygen or hydrogen becomes an active material, so that it is important to prevent the gas from being mixed.

セパレータの他の重要な特性として電解液の保持性があ
る。電池を電解液を豊富に用いる系と、密閉形のように
セパレータに電解液を保持させる系とに分けると、この
ような電解液の保持性はとくに後者の系で重要なことは
当然である。このような電解液の保持性を重視して、と
くに密閉形の一次,二次電池では、天然繊維系の不織布
や織布が用いられる。また、アルカリ電解液を用いる場
合には、耐アルカリ性を考慮してポリアミドから成る不
織布や織布が最もよく用いられている。しかし、このよ
うに電解液の保持性にすぐれた材料は、一般的には、耐
アルカリ性や耐酸性に関しては問題があり、たとえばポ
リアミドは、一応の耐アルカリ性は有しているが、高温
度のもとや、非常に長期にわたると強度が低下し、短絡
の原因になることが知られている。もちろん天然繊維、
つまりセルロース系ではこのような傾向はさらに顕著で
ある。
Another important property of the separator is electrolyte retention. When the battery is divided into a system that uses abundant electrolyte solution and a system that retains the electrolyte solution in a separator like a sealed type, it is natural that such electrolyte retention property is particularly important in the latter system. . With a focus on such electrolyte retention, particularly in sealed primary and secondary batteries, natural fiber-based non-woven fabrics or woven fabrics are used. When an alkaline electrolyte is used, a nonwoven fabric or woven fabric made of polyamide is most often used in consideration of alkali resistance. However, such a material having excellent electrolyte retention generally has a problem with respect to alkali resistance and acid resistance. For example, polyamide has tentative alkali resistance but has a high temperature. It is known that the strength is lowered over a very long period of time and causes a short circuit. Natural fiber, of course,
That is, this tendency is more remarkable in the cellulosic system.

これらに対して、オレフィン系樹脂、とくにポリエチレ
ンやポリプロピレンを材料とする不織布や織布は、耐電
解液性や耐酸化性の点ですぐれている。したがって電池
の長寿命化のためのセパレータ材料としては、好ましい
といえる。ところがこれらポリエチレンやポリプロピレ
ン製のセパレータは、電解液への親和性が極端に悪く、
またその保持性も悪い。現状では、このような点を緩和
するために、界面活性剤をオレフィン系樹脂の不織布や
織布に含浸させて、電解液への親和性や保持性の改良を
はかっている。しかし、電解液への親和性があって、な
お電池内で電解液に長期にわたって影響を受けず、また
耐酸化性も十分あるような界面活性剤がないので、この
ような界面活性剤の処理では、初期の電池特性がよくて
も長期にわたると電解液のセパレータへの保持の低下に
伴う特性劣化をもたらしていた。
On the other hand, non-woven fabrics and woven fabrics made of olefin resins, particularly polyethylene and polypropylene, are excellent in electrolytic solution resistance and oxidation resistance. Therefore, it can be said that it is preferable as a separator material for extending the battery life. However, these polyethylene and polypropylene separators have extremely poor affinity for the electrolytic solution,
Also, its retention is poor. At present, in order to mitigate such a point, a non-woven fabric or a woven fabric of an olefin resin is impregnated with a surfactant so as to improve the affinity and retention of the electrolyte. However, since there is no surfactant that has an affinity for the electrolytic solution, is not affected by the electrolytic solution in the battery for a long time, and has sufficient oxidation resistance, treatment of such a surfactant is not possible. However, even if the initial battery characteristics were good, the characteristics were deteriorated due to a decrease in the retention of the electrolytic solution in the separator over a long period of time.

このようなオレフィン系樹脂のセパレータの親和性を大
にして、それ自体が電解液との親和性をよくするための
最も簡単な方法として、発煙硫酸やクロル硫酸などによ
るスルフォン化処理がある。たとえば発煙硫酸はとくに
このようなオレフィン系セパレータの電解液親和性の向
上に効果があり、これによって上記欠点が大幅に解消で
きることがわかった。すなわち、たとえばポリプロピレ
ンの不織布を10%の発煙硫酸中に室温で浸せきすると、
ポリプロピレンは白色から褐色に変化する。40分間ほど
放置後に、硫酸中とアルカリ溶液中とに水洗を介して交
互に浸せきしてみると、褐色の度合いがアルカリ中では
やゝうすく、酸中では濃くなることや,水に対するぬれ
は飛躍的に向上し、また赤外線吸収スペトクル分析で、
スルフォン基が確認できるなど、明らかにポリプロピレ
ンの親水性が向上していることがわかった。
The simplest method for increasing the affinity of such an olefin resin separator and improving the affinity with the electrolytic solution itself is sulfonation treatment with fuming sulfuric acid or chlorosulfuric acid. For example, it has been found that fuming sulfuric acid is particularly effective in improving the affinity of the olefin-based separator with an electrolytic solution, and thus the above-mentioned drawbacks can be largely eliminated. That is, for example, when a polypropylene non-woven fabric is immersed in 10% fuming sulfuric acid at room temperature,
Polypropylene changes from white to brown. After leaving it for about 40 minutes and then dipping it in sulfuric acid and an alkaline solution alternately through washing with water, the degree of brown becomes slightly thin in alkali, thick in acid, and wet to water jumps. Improved, and with infrared absorption spectrum analysis,
It was found that the hydrophilicity of polypropylene was clearly improved, such as the confirmation of sulfone groups.

このように発煙硫酸中での浸せきは、オレフィン系セパ
レータの親液性や電解液保持性を向上させるのに極めて
効果があるが、このような処理を大量にする場合に、発
煙硫酸の濃度の調整がやゝはん雑であって、これを十分
調節しないと処理状態にばらつきを生じる。すなわち、
このような発煙硫酸への浸せき時に、発煙硫酸がオレフ
ィン系セパレータの処理に使用されるとともに空気中に
逸散する。処理槽は完全に密閉にならないので、この逸
散も無視できないのである。また、発煙硫酸の量(濃
度)は、処理の進行に大きな影響を与えるので、均一な
スルフォン化オレフィン系セパレータを大量に製造する
には、発煙硫酸濃度のはん雑な調整を必要とする。ま
た、発煙硫酸は環境上においても好ましくなく、また高
価でもある。
Thus, the dipping in fuming sulfuric acid is extremely effective in improving the lyophilicity and electrolyte retention of the olefin-based separator, but when a large amount of such treatment is performed, the concentration of fuming sulfuric acid is increased. The adjustment is rather complicated, and if it is not adjusted sufficiently, the processing state will vary. That is,
Upon such immersion in fuming sulfuric acid, fuming sulfuric acid is used in the treatment of the olefin-based separator and dissipates in the air. This dissipation cannot be ignored because the treatment tank is not completely sealed. In addition, since the amount (concentration) of fuming sulfuric acid has a great influence on the progress of the treatment, in order to produce a uniform sulfonated olefin-based separator in a large amount, it is necessary to make a rough adjustment of the fuming sulfuric acid concentration. Further, fuming sulfuric acid is environmentally unfavorable and expensive.

本発明者らは、このような発煙硫酸の代わりに単に濃硫
酸を用いても、処理温度を高くすることによって、オレ
フィン系セパレータの電解液への親和性や保持性を大幅
に改良できることを見出し、提案した。すなわち、市販
の濃硫酸をそのまゝ用いることにより、発煙硫酸の場合
よりも濃度の調調が容易であり、環境上の問題も少な
い。
The present inventors have found that even by simply using concentrated sulfuric acid instead of such fuming sulfuric acid, by increasing the treatment temperature, the affinity and retention of the olefin-based separator to the electrolytic solution can be significantly improved. ,Proposed. That is, by using commercially available concentrated sulfuric acid as it is, it is easier to adjust the concentration than in the case of fuming sulfuric acid, and there are few environmental problems.

しかし、工業的な規模で処理をするためには、温度を10
0〜120℃程度に保つ必要がある。100℃以下では処理の
早さは極端に遅くなり、また120℃を越えるとスルフォ
ン化と同時に深黒色に変化するので、炭化を生じ、強度
も低下してしまう。したがって、発煙硫酸に比べると処
理の調整は容易ではあるが、温度と時間のコントロール
を極めて厳密にしないと工業的に均一なスルフォン化セ
パレータが得られ難い点が問題として残った。
However, in order to process on an industrial scale, the temperature should be 10
It is necessary to keep the temperature between 0 and 120 ℃. If the temperature is less than 100 ° C, the processing speed becomes extremely slow, and if it exceeds 120 ° C, it turns into a deep black color simultaneously with sulfonation, so that carbonization occurs and the strength also decreases. Therefore, although the treatment is easier to adjust than fuming sulfuric acid, the problem remains that it is difficult to obtain an industrially uniform sulfonated separator unless the temperature and time are strictly controlled.

そこで本発明では、市販の濃硫酸(濃度98%程度)をそ
のまま用いるのではなく、これを少量の水で希釈して濃
度を90〜97%程度にした濃硫酸を用いるものである。こ
のようなわずかな希釈でも、とくに黒色化への影響がや
や緩和されるので、温度コントロールや時間のコントロ
ールをそれほど厳密に行わなくてもよく、工業的に楽な
条件で均一なセパレータが得られるのである。好ましい
条件としては、濃度90%程度では1時間程度,93%で45
分程度,95%では35分,97%では25分程度が一つの目安で
ある。
Therefore, in the present invention, commercially available concentrated sulfuric acid (concentration of about 98%) is not used as it is, but concentrated sulfuric acid diluted with a small amount of water to a concentration of about 90 to 97% is used. Even with such a slight dilution, the effect on blackening is somewhat alleviated, so it is not necessary to strictly control temperature and time, and a uniform separator can be obtained under industrially easy conditions. Of. The preferred conditions are 90% concentration for about 1 hour and 93% for 45
About 95 minutes, 35 minutes at 95%, 25 minutes at 97% is one guide.

これらの処理をすると、赤外線吸収スペトクル分析でス
ルフォン基の存在が確認でき、黒化の度合は比較的少な
い。なお、浸せき後のセパレータは直接水洗すると水と
濃硫酸の稀釈熱によりセパレータが変形するので、セパ
レータからは十分濃硫酸を除去し、水洗前にたとえば稀
硫酸に浸せきするなどにより、大きな稀釈熱が発生しな
いようにすることが重要である。
With these treatments, the presence of sulfone groups can be confirmed by infrared absorption spectrum analysis, and the degree of blackening is relatively small. It should be noted that if the separator after immersion is directly washed with water, the separator will be deformed due to the dilution heat of water and concentrated sulfuric acid. It is important not to occur.

以下、本発明を実施例により説明する。Hereinafter, the present invention will be described with reference to examples.

第1図は本発明によるセパレータの処理工程を示す。1
はオレフィン系樹脂繊維の不織布または織布からなる長
尺帯状のセパレータ材料であり、ロール2に巻かれてい
る。3は濃度90〜97%の濃硫酸4を収容した耐酸性の容
器であり、図示しない加熱装置により、濃硫酸の温度を
115±2℃に保持している。5は攪拌装置である。6,6は
セパレータ材料1を濃硫酸4中に浸せきするためのガイ
ドロールである。7,7は材料1を駆動するためのロール
で、材料1からこれに含まれている濃硫酸を絞りとる役
目も有する。
FIG. 1 shows a process of treating a separator according to the present invention. 1
Is a long strip-shaped separator material made of a non-woven fabric or a woven fabric of olefin resin fibers, and is wound around a roll 2. 3 is an acid-resistant container containing concentrated sulfuric acid 4 having a concentration of 90 to 97%. The temperature of concentrated sulfuric acid is controlled by a heating device (not shown).
The temperature is kept at 115 ± 2 ° C. 5 is a stirrer. Reference numerals 6 and 6 are guide rolls for immersing the separator material 1 in the concentrated sulfuric acid 4. Numerals 7 and 7 are rolls for driving the material 1 and also have a role of squeezing the concentrated sulfuric acid contained in the material 1 from the material 1.

8は稀硫酸9を収納した容器であり、濃硫酸で処理後の
セパレータ材料1は、ガイドロール10,10により稀硫酸
9に浸せきされる。11,11は駆動用ロールであり、セパ
レータ材料に含まれる稀硫酸を絞りとる役目も果たす。
12は攪拌装置である。
Reference numeral 8 is a container containing dilute sulfuric acid 9, and the separator material 1 treated with concentrated sulfuric acid is dipped in the dilute sulfuric acid 9 by the guide rolls 10, 10. 11 and 11 are drive rolls, which also serve to squeeze the dilute sulfuric acid contained in the separator material.
12 is a stirrer.

上記のセパレータ材料1として厚さ0.2mm,多孔度約60%
の市販のポリプロピレン不織布を用いた。この不織布を
濃硫酸の濃度に応じて前述のような時間濃硫酸中へ浸さ
れる速度で搬送した。次に稀硫酸を収容した容器8を3
個用意し、これらに各々98%濃硫酸と水との混合割合が
容積比で7:3,5:5,3:7の溶液を入れ、これらに順次浸せ
きする工程を経た後、水洗,乾燥した。
The separator material 1 has a thickness of 0.2 mm and a porosity of about 60%.
The commercially available polypropylene non-woven fabric of was used. This non-woven fabric was conveyed at such a speed as to be immersed in the concentrated sulfuric acid for the time described above depending on the concentration of the concentrated sulfuric acid. Next, place the container 8 containing dilute sulfuric acid in 3
Prepare individually, put a solution of 98% concentrated sulfuric acid and water at a mixing ratio of 7: 3,5: 5,3: 7 by volume, and soak them in order, then wash and dry. did.

以上のようにして得られたセパレータをAとし、これに
界面活性剤の0.3重量%水溶液を含浸し、乾燥したもの
をBとする。また比較例として95%濃硫酸で処理したポ
リプロピレン不織布をC、これに界面活性剤の0.3重量
%水溶液を含浸し、乾燥したものをDとする。
The separator obtained as described above is designated as A, impregnated with a 0.3 wt% aqueous solution of a surfactant and dried, and designated as B. As a comparative example, a polypropylene nonwoven fabric treated with 95% concentrated sulfuric acid is designated as C, and a non-woven fabric impregnated with a 0.3% by weight aqueous solution of a surfactant and dried is designated as D.

まず、これらのセパレータの親液性を比較するため、幅
4cmの帯状にし、その先端をか性カリの30重量%水容液
に浸せきし、30秒経過時点での平均の液吸い上げ高さを
調べた。その結果、Cは吸い上げほぼ0,Dは約8mm,Aは14
mm,Bは18mmであった。本発明のセパレータは、電解液の
親和性がよいことがわかる。
First, in order to compare the lyophilicity of these separators,
A 4 cm strip was soaked in a 30 wt% aqueous solution of caustic potash, and the average liquid suction height after 30 seconds was examined. As a result, C sucks up almost 0, D is about 8 mm, A is 14
mm, B was 18 mm. It can be seen that the separator of the present invention has a good affinity for the electrolytic solution.

つぎに、各セパレータを用いて単2形の密閉形ニッケル
−カドミウムアルカリ蓄電池を構成した。この電池の5
時間率の放電容量は2Ahとした。まず、第2図に、0.4A
で7時間充電後の2A放電(25℃)の結果を示す。親液性
が劣るCはやや性能が悪い。また0℃での2A放電では、
第3図のようにC、さらにDも劣化してきて、低温ほど
親液性が劣る悪影響が現れていることがわかる。
Next, using each separator, a sealed AA nickel-cadmium alkaline storage battery was constructed. 5 of this battery
The discharge capacity at the time rate was set to 2 Ah. First, in Figure 2, 0.4A
The results of 2 A discharge (25 ° C) after charging for 7 hours are shown. C, which is inferior in lyophilicity, has slightly poor performance. Also, with 2A discharge at 0 ℃,
As shown in FIG. 3, C and D also deteriorate, and it can be seen that the lower the temperature, the worse the lyophilic property is.

つぎに、各電池を0.4Aで7時間充電し2Aで放電する条件
で充放電を繰り返した。第4図は、このサイクルを600
・繰り返した後の25℃での2A放電の結果であり、Cは勿
論のことDでも界面活性剤の能力の低下により性能は大
幅に低下しており、本発明のセパレータの優秀さが明ら
かである。
Next, charging / discharging was repeated under the condition that each battery was charged at 0.4 A for 7 hours and discharged at 2 A. Figure 4 shows this cycle 600
It is the result of 2A discharge at 25 ° C after repeated, and the performance of the separator of the present invention is drastically lowered not only in C but also in D, and the performance of the separator of the present invention is clearly deteriorated. is there.

なお、各電池の組み立て時に、電解液の注入速度を調べ
たところ、水酸化リチウム20g/lを含む比重1.25のか性
カリ水溶液を6c.c.入れる際に、Cはそのまゝではほと
んど入らずに減圧にして注入し、Dでは約50秒,Aでは同
じく約42秒間,Bでは約30秒間であった。このことから、
本発明のセパレータについても液注入をはやめるために
は界面活性剤を少量含ませることは効果的である。
In addition, when assembling each battery, the injection speed of the electrolyte was examined, and when C6.c. of a caustic potash solution with a specific gravity of 1.25 containing 20 g / l of lithium hydroxide was added, C hardly entered as it was. It was injected under reduced pressure for about 50 seconds for D, about 42 seconds for A, and about 30 seconds for B. From this,
Also in the separator of the present invention, it is effective to include a small amount of a surfactant in order to stop the liquid injection.

実施例では、オレフィン系樹脂としてポリプロピレンを
用い、また電池としてアルカリ電池を用いたが、勿論そ
の他にポリエチレンでも同じ効果があり、酸性電解液を
用いる電池についても同様に適用できる。
In the examples, polypropylene was used as the olefin resin and an alkaline battery was used as the battery, but of course, polyethylene has the same effect, and the same can be applied to a battery using an acidic electrolyte.

また、濃硫酸処理後の水洗までの工程で、実施例では、
濃度の調整が簡単で他の物質が入らない稀硫酸を用いた
が、他の塩溶液などでも一応水洗時の稀釈熱を減少させ
る効果はある。
Also, in the process up to washing with water after the concentrated sulfuric acid treatment, in the example,
We used dilute sulfuric acid, whose concentration is easy to adjust and other substances do not enter, but other salt solutions have the effect of reducing the heat of dilution during washing.

以上のように本発明によれば、オレフィン系樹脂の織布
もしくは不織布からなるセパレータの長寿命の性質は残
しつつ、電解液による親液性やその保持性を向上させる
ことができる。
As described above, according to the present invention, it is possible to improve the lyophilicity by the electrolytic solution and the retention thereof while keeping the long-life property of the separator made of the woven or non-woven fabric of the olefin resin.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例におけるセパレータの処理工程
を示す図、第2図〜第4図は各種セパレータを用いたニ
ッケル−カドミウム電池の放電特性の比較を示す。
FIG. 1 is a diagram showing a treatment process of a separator in an example of the present invention, and FIGS. 2 to 4 are comparisons of discharge characteristics of nickel-cadmium batteries using various separators.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】オレフィン系樹脂からなる織布もしくは不
織布を温度100〜120℃で濃度90〜97%の濃硫酸浴に浸せ
き処理する工程、その後前記濃度より低濃度の濃硫酸に
浸せきする工程、続いて水洗する工程を有する電池用セ
パレータの製造法。
1. A step of immersing a woven or non-woven fabric made of an olefin resin in a concentrated sulfuric acid bath having a concentration of 90 to 97% at a temperature of 100 to 120 ° C., and then a step of immersing it in concentrated sulfuric acid having a concentration lower than the above concentration. A method for manufacturing a battery separator, which has a subsequent step of washing with water.
JP57058864A 1982-04-07 1982-04-07 Method for manufacturing battery separator Expired - Lifetime JPH0732008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57058864A JPH0732008B2 (en) 1982-04-07 1982-04-07 Method for manufacturing battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57058864A JPH0732008B2 (en) 1982-04-07 1982-04-07 Method for manufacturing battery separator

Publications (2)

Publication Number Publication Date
JPS58175256A JPS58175256A (en) 1983-10-14
JPH0732008B2 true JPH0732008B2 (en) 1995-04-10

Family

ID=13096583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57058864A Expired - Lifetime JPH0732008B2 (en) 1982-04-07 1982-04-07 Method for manufacturing battery separator

Country Status (1)

Country Link
JP (1) JPH0732008B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213722A (en) * 1987-11-17 1993-05-25 Matsushita Electric Industrial Co., Ltd. Method of making a separator material for a storage battery
JPH01146270A (en) * 1987-12-01 1989-06-08 Matsushita Electric Ind Co Ltd Sealed alkaline storage battery
JP2568016B2 (en) * 1992-01-09 1996-12-25 大和紡績株式会社 Sulfonated ultrafine fiber aggregate and method for producing the same
JP4717260B2 (en) * 2001-05-16 2011-07-06 日本バイリーン株式会社 Battery separator and battery
JP4203262B2 (en) 2002-05-22 2008-12-24 三菱製紙株式会社 Nonwoven fabric for separators for alkaline batteries
CN109524579A (en) * 2018-11-15 2019-03-26 邹平铭波电源有限公司 Nickel-metal hydride battery and preparation method thereof comprising novel meson

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191956A (en) * 1981-05-19 1982-11-25 Matsushita Electric Ind Co Ltd Manufacture of separator for battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191956A (en) * 1981-05-19 1982-11-25 Matsushita Electric Ind Co Ltd Manufacture of separator for battery

Also Published As

Publication number Publication date
JPS58175256A (en) 1983-10-14

Similar Documents

Publication Publication Date Title
CN104151588B (en) Diaphragm for lithium-sulfur batteries and preparation method of lithium-sulfur batteries
KR980012684A (en) Sealed Lead Acid Battery
CN115064651B (en) Double-functional protective layer modified zinc anode and preparation method thereof
JPH0732008B2 (en) Method for manufacturing battery separator
JP2001250529A (en) Alkaline secondary battery
CN110350129B (en) Lithium ion battery composite diaphragm with electrochemical activity and preparation method thereof
CN104425856A (en) Lithium-air battery and positive electrode
JPS58194254A (en) Manufacturing method of battery separator
US3269869A (en) Inter-electrode separator
US4032697A (en) Methods of producing electrodes for alkaline batteries
JPH11144698A (en) Separator for secondary battery
EP0221645A1 (en) Improved alkaline battery separator and method for making same
JPH06140018A (en) Separator for alkali battery and its manufacture
US4713126A (en) Process for manufacturing negative cadmium electrodes for sealed alkaline battery cells
JP2762443B2 (en) Manufacturing method of battery separator
JP2590520B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPS5715364A (en) Formation of electrode for paste type lead-acid battery
JPS62160657A (en) Nonaqueous electrolyte battery
JPS58194255A (en) Manufacturing method of battery separator
JPS6119056A (en) Separator for battery
CN115117553A (en) Functionalized diaphragm and preparation method and application thereof
JPH08236094A (en) Separator for alkaline storage battery
JP2590519B2 (en) Sealed alkaline storage battery separator and method for producing the same
JPH04121948A (en) Separater for alkaline battery and its manufacture
JPS5889774A (en) Cell