JPH0456062A - Manufacture of separator for battery - Google Patents

Manufacture of separator for battery

Info

Publication number
JPH0456062A
JPH0456062A JP2164809A JP16480990A JPH0456062A JP H0456062 A JPH0456062 A JP H0456062A JP 2164809 A JP2164809 A JP 2164809A JP 16480990 A JP16480990 A JP 16480990A JP H0456062 A JPH0456062 A JP H0456062A
Authority
JP
Japan
Prior art keywords
separator
battery
negative electrode
reaction
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2164809A
Other languages
Japanese (ja)
Inventor
Ryuji Kawase
龍二 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2164809A priority Critical patent/JPH0456062A/en
Publication of JPH0456062A publication Critical patent/JPH0456062A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To prevent lower of discharge characteristic of a cadmium negative electrode plate by making polyolefine group resin fiber to contact to the reaction gas including fluorine for reaction, and thereafter, performing interfacial active agent processing to form a separator. CONSTITUTION:Polyolefine group resin fiber is made to contact to the reaction gas including fluorine for reaction, and thereafter, interfacial active agent processing is performed to form a separator. At this stage, nonwoven fabric is desirable as polyolefine group resin fiber. Form of the surface of the resin is changed to improve the hydrophilic property, and a holding capacity of the electrolyte is improved, and lower of a battery capacity with lower of the discharge characteristic of a cadmium negative electrode plate at initial stage of a cycle can be prevented by performing the interfacial active agent processing after the gas processing. A battery having excellent cycle characteristic can be thereby obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、ポリオレフィン系の合成樹脂繊維により構成
される電池用セパレータの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a battery separator made of polyolefin synthetic resin fibers.

(ロ)従来の技術 従来、例えばニッケルーカドミウム蓄電池用のセパレー
タとしては、ナイロン不織布が多く用いられてきた。こ
れはナイロン不織布が適度な強度、ガス透過性および親
水性を有しているためである。しかし、ナイロンは素材
そのものの耐アルカリ性、耐酸化性が十分であるとは言
い難く、特(:45℃以上の高温では比較的簡単に分解
してしまい、電池性能に悪影響を及ぼす炭酸根やアンモ
ニアを生成する。また分解が進むとセパレータとしての
絶縁能力が低下し、ついには電池内部短絡をも引き起こ
すことになる。
(b) Prior Art Conventionally, nylon nonwoven fabrics have been widely used as separators for nickel-cadmium storage batteries, for example. This is because nylon nonwoven fabric has appropriate strength, gas permeability, and hydrophilicity. However, nylon is difficult to say that the material itself has sufficient alkali resistance and oxidation resistance, and it decomposes relatively easily at high temperatures (45°C or higher), and contains carbonate radicals and ammonia, which have a negative effect on battery performance. Furthermore, as the decomposition progresses, the insulating ability of the separator decreases, eventually causing an internal short circuit in the battery.

この問題を解決す、るために、セパレータの素材をポリ
オレフィン系の樹脂に変更しようとする試みが続けられ
ており、特に高温下で使用する電池を中心にポリプロピ
レン不織布が使用されるようになってきた。ポリプロピ
レン不織布は耐アルカリ性、耐酸化性に優れ、また強度
やガス透過性等についてもナイロン不織布と同等のもの
が得られてはいるが、素材自体が親水性に乏しいことか
ら電解液の保持能力が低い。そのためポリプロピレン不
織布をセパレータに使用した電池は、充放電サイクルの
進行に伴ない、セパレータ中の電解液の枯渇を生じ、い
わゆるドライアウトによる電池の寿命低下が、ナイロン
に比べ早いという欠点があった。
In order to solve this problem, attempts have been made to change the separator material to polyolefin-based resins, and polypropylene nonwoven fabrics have come to be used especially in batteries that are used at high temperatures. Ta. Although polypropylene nonwoven fabric has excellent alkali resistance and oxidation resistance, and is equivalent to nylon nonwoven fabric in terms of strength and gas permeability, the material itself has poor hydrophilicity, so its ability to retain electrolyte is poor. low. Therefore, batteries using polypropylene nonwoven fabric as a separator have the disadvantage that as the charge/discharge cycle progresses, the electrolyte in the separator depletes, and the life of the battery decreases more quickly due to so-called dryout than with nylon.

このポリプロピレン不織布の電解液保持能力を向上させ
るために、細I&維や異型断面繊維を使用する試みがな
されているが、その効果は十分ではなく、また放射線等
の照射による親水基のグラフト重合や、スルホン化処理
によるセパレータの親水性向上策も提案されているが、
効果を長期間持続できないという問題があった。
In order to improve the electrolyte retention ability of this polypropylene nonwoven fabric, attempts have been made to use thin I&fibers or fibers with irregular cross sections, but the effects are not sufficient, and the graft polymerization of hydrophilic groups due to irradiation with radiation etc. , measures to improve the hydrophilicity of separators through sulfonation treatment have also been proposed;
There was a problem that the effect could not be sustained for a long period of time.

また特開昭60−109171号公報では、フッ素を含
む反応ガスと反応させることによりポリプロピレンセパ
レータに親水性を付与することが提案されており、この
方法によれば比較的長期間、親水性の維持が期待できる
。しかしこの方法においても問題がないわけではなく、
フッ素ガスにより処理されたセパレータを用いた電池は
、サイクル初期段階でカドミウム負極板の放電性が低下
し、電池が負極支配となり、容量低下が著しいという開
門がある。
Furthermore, JP-A-60-109171 proposes imparting hydrophilicity to a polypropylene separator by reacting it with a fluorine-containing reaction gas. According to this method, hydrophilicity can be maintained for a relatively long period of time. can be expected. However, this method is not without problems,
In a battery using a separator treated with fluorine gas, the discharge performance of the cadmium negative electrode plate decreases in the early stage of the cycle, and the battery becomes dominated by the negative electrode, resulting in a significant decrease in capacity.

(ハ)発明が解決しようとする課題 本発明は前記せる問題点、即ちフッ素ガスにより処理さ
れたセパレータを用いて電池に組み込んだ際、カドミウ
ム負極板の放電性が低下してしまうという問題点を解決
し、フッ素ガス処理による親水性付与の効果を生かせる
セパレータを7M 供しようとするものである。
(c) Problems to be Solved by the Invention The present invention solves the above-mentioned problem, that is, the discharge performance of the cadmium negative electrode plate decreases when it is incorporated into a battery using a separator treated with fluorine gas. We aim to solve this problem and provide a separator 7M that can take advantage of the effect of imparting hydrophilicity through fluorine gas treatment.

(ニ)課題を解決するための手段 本発明の電池用セパレータの製造方法は、ポリオレフィ
ン系樹脂繊維をフ・ノ素を含む反応ガスと接触反応させ
た後、界面活性剤処理してセパレータとすることを特徴
とするものである。
(d) Means for Solving the Problems The method for producing a battery separator of the present invention involves contacting and reacting polyolefin resin fibers with a reaction gas containing fluorine, and then treating the fibers with a surfactant to produce a separator. It is characterized by this.

この時に、前記ポリオレフィン系樹脂繊維は、予め不織
布に構成されているものが望ましい。
At this time, it is preferable that the polyolefin resin fiber is previously formed into a nonwoven fabric.

(ホ)作 用 フッ素ガス処理したセパレータが、カドミウム負極板の
放電性を阻害する原因は次の様に考えられる。一般に繊
維は紡糸される際、静電気防止等の目的で油剤と呼ばれ
る界面活性剤が使用される。フッ素ガス処理を行なう前
のポリプロピレンセパレータにも、水洗等の処理を施さ
ない限り、その繊維表面には界面活性剤が存在しており
、フッ素ガス処理された際その界面活性剤は分解される
ものと考えられる。
(e) Effect The reason why the separator treated with fluorine gas inhibits the discharge performance of the cadmium negative electrode plate is considered to be as follows. Generally, when fibers are spun, a surfactant called an oil agent is used for purposes such as preventing static electricity. Even before fluorine gas treatment, polypropylene separators contain surfactants on the fiber surface unless they are washed with water or other treatment, and the surfactants are decomposed when fluorine gas treatment is applied. it is conceivable that.

界面活性剤は一般にカドミウム負極のサイクルに伴なう
放電性の低下、即ち放電不能な金属カドミウムの凝集、
蓄積を抑制する働きがあることが知られており、フッ素
ガス処理されたセパレータはその繊維表面の界面活性剤
が分解したためにカドミウム負極板の放電性低下を抑制
する効果が消失したものと考えられる。
Surfactants generally reduce the discharge performance of cadmium negative electrodes as they cycle, i.e., the agglomeration of metallic cadmium that cannot be discharged.
It is known that fluorine gas has the effect of suppressing the accumulation of cadmium, and it is thought that the surfactant on the surface of the fibers of the separator treated with fluorine gas has decomposed, so that the effect of suppressing the decline in discharge performance of the cadmium negative electrode plate has disappeared. .

よってガス処理した後、再度セパレータの繊維表面に界
面活性剤処理してやることにより、カドミウム負極板の
放電性低下を抑制できる。
Therefore, by treating the fiber surface of the separator with a surfactant again after the gas treatment, it is possible to suppress a decrease in the discharge performance of the cadmium negative electrode plate.

(へ)実施例 以下に、本発明の実施例と比較例との対比に言及し、詳
述する。
(f) Examples Hereinafter, comparisons between examples of the present invention and comparative examples will be mentioned and explained in detail.

[実施例1] 公知の1.0〜1.5デニ一ル程度の繊維径を有するポ
リプロピレン繊維と、接着性繊維として約1゜0デニー
ルのポリエチレン−ポリプロピレン複合繊維であるES
繊維(チッソ(株)製)を、1:1の重量比率にて均一
混合した後、これを加熱融着して、目付80g/m’、
厚みQ、2Qnunの不織布を作製した。この不織布を
、鉄製の反応容器内に収納し真空排気した後、フッ素ガ
スを窒素ガスで希釈してなる反応ガスを前記容器内に大
気圧になるまで導入して、一定時間接触反応させた。そ
の後、前記不織布を取り出し、その表面にノニオン系界
面活性剤を約0.2重量%噴霧し、本発明のセパレータ
aを得た。
[Example 1] A known polypropylene fiber having a fiber diameter of about 1.0 to 1.5 denier and ES, which is a polyethylene-polypropylene composite fiber of about 1°0 denier, were used as adhesive fibers.
After uniformly mixing fibers (manufactured by Chisso Corporation) at a weight ratio of 1:1, this was heat-fused to obtain a fabric weight of 80 g/m',
A nonwoven fabric with a thickness of Q and 2Qnun was produced. This nonwoven fabric was housed in an iron reaction container and evacuated, and then a reaction gas prepared by diluting fluorine gas with nitrogen gas was introduced into the container until the pressure reached atmospheric pressure, and a contact reaction was carried out for a certain period of time. Thereafter, the nonwoven fabric was taken out, and about 0.2% by weight of a nonionic surfactant was sprayed onto the surface of the nonwoven fabric to obtain a separator a of the present invention.

[比較例1] ガス反応後、界面活性剤処理しないこと以外は、前記実
施例1と同様にして、セパレータbを得た(特開昭60
−109171号公報に開示された技術思想によるもの
)。
[Comparative Example 1] Separator b was obtained in the same manner as in Example 1 except that no surfactant treatment was performed after the gas reaction (Japanese Patent Application Laid-open No. 1983
Based on the technical idea disclosed in Publication No.-109171).

[比較例2] フッ素ガス処理および界面活性剤処理を施していない油
密のポリプロピレン不織布を、セパレータCとした。尚
、この繊維表面には紡糸時に使用される界面活性剤が存
在している。
[Comparative Example 2] Separator C was an oil-tight polypropylene nonwoven fabric that had not been subjected to fluorine gas treatment or surfactant treatment. Incidentally, a surfactant used during spinning is present on the fiber surface.

こうして作製されたセパレータa−Cを用い、公知の焼
結式ニッケル正極と焼結式カドミウム負極とともに巻回
して、それぞれ公称容量1.2A11のSCサイズの密
閉形ニッケルーカドミウム蓄電池A、B、Cを作製した
Using the separators a-C produced in this way, they are wound together with a known sintered nickel positive electrode and a sintered cadmium negative electrode to create SC size sealed nickel-cadmium storage batteries A, B, and C with a nominal capacity of 1.2 A11, respectively. was created.

[実  験] に記電池A−Cを用い、電池のサイクル試験を行った。[experiment] A battery cycle test was conducted using batteries A to C described in .

この時の条件は、各電池を25℃にて1.8A I:1
.5c)の電流で1時間充電を行なった後、1.2A 
(Ic)の電流で終止電圧1.OVまで放電するという
ものである。第1図に、この結果を示す。第1図は、こ
の時のサイクル数と、電池の初期容量に対する容量比を
示す図である。
The conditions at this time are 1.8A I:1 at 25℃ for each battery.
.. After charging for 1 hour at a current of 5c), 1.2A
At a current of (Ic), the final voltage is 1. This means that the battery is discharged to OV. Figure 1 shows the results. FIG. 1 is a diagram showing the number of cycles at this time and the capacity ratio to the initial capacity of the battery.

これより本発明電池Aは、比較電池B、Cよりも、サイ
クル数の進行に伴なう電池容量の低下が少なく、サイク
ル特性が極めて優れたものであることがわかる。比較電
池Bは、フッ素ガス処理によりセパレータに親水性が付
与され電解液保持能力が高まったため、ガス処理されて
いないセパレータを用いた比較電池Cより、セパレータ
のドライアウトによる電池寿命ははるかに長くなってい
るが、ガス処理時の繊維表面の界面活性剤の分解に起因
してカドミウム負極板の放電性が低下し、サイクル初期
段階での容量低下が大きいことがわかる。また比較電池
Cは、繊維にもともと存在している界面活性剤の影響で
サイクル初期段階での劣化はほとんどみられないものの
、七ノでレータに親水性がないためドライアウトによる
寿命低下が早い結果となっている。
From this, it can be seen that the battery A of the present invention shows a smaller decrease in battery capacity as the number of cycles progresses than the comparative batteries B and C, and has extremely excellent cycle characteristics. In Comparative Battery B, the fluorine gas treatment imparted hydrophilicity to the separator and increased its electrolyte retention ability, so the battery life due to separator dryout was much longer than Comparative Battery C, which used a separator that had not been gas-treated. However, it can be seen that the discharge performance of the cadmium negative electrode plate decreases due to the decomposition of the surfactant on the fiber surface during gas treatment, and the capacity decrease is large at the early stage of the cycle. Comparative battery C shows almost no deterioration in the early stages of the cycle due to the influence of the surfactant originally present in the fibers, but due to the lack of hydrophilicity in the ladle, the lifespan decreases quickly due to dryout. It becomes.

これに対し、本発明電池Aは、フッ素ガス処理によるセ
パレータへの親水性付与により、電池寿命が長く且つガ
ス処理時の界面活性剤の分解に伴なうカドミウム負極の
放電性低下の問題をガス処理後の界面活性剤処理により
補なっているため、サイクル初期段階での容量低下もほ
とんどなく、極めて優れたサイクル特性を示しているこ
とがわかる。
In contrast, the battery A of the present invention has a long battery life by imparting hydrophilicity to the separator through fluorine gas treatment, and also solves the problem of decreased discharge performance of the cadmium negative electrode due to decomposition of the surfactant during gas treatment. It can be seen that since this is supplemented by the surfactant treatment after the treatment, there is almost no decrease in capacity at the initial stage of the cycle, and extremely excellent cycle characteristics are exhibited.

尚、本実施例では、ポリプロピレン、ポリエチレンの混
合繊維からなる不織布を用いたが、ポリオレフィン系樹
脂繊維であれば同様の効果が期待できるのは言うまでも
ない。
In this example, a nonwoven fabric made of mixed fibers of polypropylene and polyethylene was used, but it goes without saying that similar effects can be expected if polyolefin resin fibers are used.

(ト)発明の効果 本発明の電池用セパレータの製造方法によれば、ポリオ
レフィン系樹脂繊維とフッ素を含む反応ガスとを接触反
応させてなる繊維を用いたものであるから、樹脂表面の
形態が変化して親水性が向1−シ、電解液の保持能力が
上がり、1つガス処理後の界面活性剤処理により、サイ
クル初期段階のカドミウム負極板の放電性低下に伴なう
電池容量の低下を防止できるものであり、サイクル特性
に優れた電池が提供できるので、その工業的価値は極め
て大きい。
(g) Effects of the Invention According to the method for manufacturing a battery separator of the present invention, since the fibers formed by contacting and reacting polyolefin resin fibers with a fluorine-containing reaction gas are used, the morphology of the resin surface is As a result, the hydrophilicity improves, the electrolyte retention capacity increases, and the surfactant treatment after the gas treatment reduces the battery capacity due to the decrease in the discharge performance of the cadmium negative electrode plate at the early stage of the cycle. Since it is possible to prevent this and provide a battery with excellent cycle characteristics, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電池のサイクル特性図である。 A・・・本発明電池、B、C・・・比較電池。 FIG. 1 is a cycle characteristic diagram of the battery. A: Invention battery, B, C: Comparative battery.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリオレフィン系樹脂繊維を、フッ素を含む反応
ガスと接触反応させた後、界面活性剤処理してセパレー
タとすることを特徴とする電池用セパレータの製造方法
(1) A method for producing a battery separator, which comprises subjecting polyolefin resin fibers to a catalytic reaction with a fluorine-containing reactive gas and then treating the fibers with a surfactant to obtain a separator.
(2)前記ポリオレフィン系樹脂繊維は、予め不織布に
構成されていることを特徴とする請求項(1)記載の電
池用セパレータの製造方法。
(2) The method for manufacturing a battery separator according to claim (1), wherein the polyolefin resin fiber is formed into a nonwoven fabric in advance.
JP2164809A 1990-06-22 1990-06-22 Manufacture of separator for battery Pending JPH0456062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164809A JPH0456062A (en) 1990-06-22 1990-06-22 Manufacture of separator for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164809A JPH0456062A (en) 1990-06-22 1990-06-22 Manufacture of separator for battery

Publications (1)

Publication Number Publication Date
JPH0456062A true JPH0456062A (en) 1992-02-24

Family

ID=15800330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164809A Pending JPH0456062A (en) 1990-06-22 1990-06-22 Manufacture of separator for battery

Country Status (1)

Country Link
JP (1) JPH0456062A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407702B2 (en) 1999-09-13 2008-08-05 Teijin Limited Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator

Similar Documents

Publication Publication Date Title
CN101043091B (en) Nickel hydrogen storage battery
US5558682A (en) Process for producing a wind-type alkaline secondary battery
US6994935B2 (en) Process for producing separator for batteries, the separator for batteries, and alkaline storage batteries using the same
EP2862963A1 (en) Fiber using olefin resin, nonwoven fabric using same, and separator for alkali storage battery
JP4307020B2 (en) Alkaline storage battery
JP3216592B2 (en) Alkaline storage battery
JPH0456062A (en) Manufacture of separator for battery
JPH10125300A (en) Separator for alkaline secondary battery
JP2950935B2 (en) Alkaline storage battery
JP3234244B2 (en) Method for producing separator for nickel-cadmium battery
JPH0546056B2 (en)
CN1220497A (en) Method for making alkaline storage battery
JPS60109171A (en) Separator for battery
US7052800B2 (en) Separator for nickel-metal hydride storage battery and nickel-metal hydride storage battery
JPH01132044A (en) Separator for battery
JPH06196141A (en) Nickel-hydrogen battery
JPH07134979A (en) Battery
JP2003346894A (en) Alkaline storage battery
JPS6229864B2 (en)
JPH07130392A (en) Alkaline storage battery
JPS62222568A (en) Manufacture of lithium battery
JPH01267950A (en) Separator for battery
JP2002110129A (en) Separator for battery and nickel-hydrogen storage battery
JP2002367591A (en) Separator for alkaline battery
JPH10208722A (en) Manufacture of battery separator