JPS62222568A - Manufacture of lithium battery - Google Patents

Manufacture of lithium battery

Info

Publication number
JPS62222568A
JPS62222568A JP61063770A JP6377086A JPS62222568A JP S62222568 A JPS62222568 A JP S62222568A JP 61063770 A JP61063770 A JP 61063770A JP 6377086 A JP6377086 A JP 6377086A JP S62222568 A JPS62222568 A JP S62222568A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
organic solvent
electrode active
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61063770A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Kazunobu Matsumoto
和伸 松本
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61063770A priority Critical patent/JPS62222568A/en
Publication of JPS62222568A publication Critical patent/JPS62222568A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To lower current density and to reduce polarization to increase the utilization of a positive electrode by treating positive active material powder or a positive electrode with a surface active agent soluble in an organic solvent to give the affinity to organic solvent onto the particle surface of the positive active material. CONSTITUTION:Positive active material powder or a positive electrode is treated with a surface active agent soluble in an organic solvent to give the affinity to organic solvent onto the particle surface of the positive active material. Since the wide surface area of the positive active material particles is utilized in the battery reaction, current density is reduced and the utilization of the positive electrode is increased. Oleic amid-ethylene oxide addition product, oleic amide, oleic diethanol amide, oleoyl diethanol amine, or a mixture of these compounds is preferable as the surface active agent. Before treatment, the surface active agent is dissolved in an organic solvent, or dissolved in an electrolyte using an organic solvent as the electrolyte solvent. Titanium disulfide is used as a positive active material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池の製造方法に係り、さらに詳しく
はその正極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a lithium battery, and more particularly to improvement of a positive electrode thereof.

〔従来の技術〕[Conventional technology]

従来、リチウム電池の正極は、正¥FA活物質粉末を加
圧成形するか、あるいは正極活物質粉末に結着剤として
ポリテトラフルオロエチレン粉末を添加、混合した正極
合剤を加圧成形することによって作製されていた(例え
ば特開昭55−146880号公報)。
Conventionally, positive electrodes for lithium batteries have been made by pressure molding positive FA active material powder, or by pressure molding a positive electrode mixture in which polytetrafluoroethylene powder is added and mixed as a binder to positive electrode active material powder. (for example, Japanese Patent Laid-Open No. 146880/1983).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、二硫化チタンなどの正極活物質は有機溶媒と
のなじみが悪く、また結着剤として用いられるポリテト
ラフルオロエチレン粉末も有機溶媒に対するなじみが悪
いため、正極活物質の粒子表面が部分的にしか電解液に
濡れず、そのため正極活物質粒子の全表面を電池反応に
利用することができず、正極活物質の粒子表面中、電解
液に濡れた部分だけが電池反応に関与するため、電流書
度が高くなり、その結果、分極が大きくなって、正極の
利用率が低下するという問題があった。
However, positive electrode active materials such as titanium disulfide have poor compatibility with organic solvents, and polytetrafluoroethylene powder used as a binder also has poor compatibility with organic solvents, so the particle surface of the positive electrode active material partially Therefore, the entire surface of the positive electrode active material particle cannot be used for the battery reaction, and only the part of the positive electrode active material particle surface that is wet with the electrolyte participates in the battery reaction, so the current There is a problem in that the degree of writing becomes high, and as a result, polarization becomes large and the utilization rate of the positive electrode decreases.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、正極活物質粉末または正極を有機溶媒に可溶
な界面活性剤で処理して正極活物質の粒子表面に親有機
溶媒性を付与することによって、正極活物質の粒子表面
を広い面禎で電池反応に利用できるようにして、電流密
度を下げ、正極の利用率を向上させたものである。
In the present invention, the particle surface of the positive electrode active material can be spread over a wide area by treating the positive electrode active material powder or the positive electrode with a surfactant soluble in an organic solvent to impart organophilic properties to the particle surface of the positive electrode active material. This makes it possible to use it for battery reactions, lowering the current density and improving the utilization rate of the positive electrode.

正極活物質粉末または正極の界面活性剤処理にあたり、
界面活性剤としては、例えばオレイン酸アミドエチレン
オキサイド付加物、オレイン酸アミド、オレイン酸ジェ
タノールアミド、オレイルジェタノールアミンやそれら
の混合物が好用される。これは、これらの界面活性剤が
正極活物質の粒子表面に親有機溶媒性を付与するという
性質を有することはもとより、有機溶媒に可溶であって
、処理時に正極活物質に悪影曾を及ぼす水を使わなくて
済み、かつ電池内に残存しても電池性能に悪影響を及ぼ
すことが少ないからである。
When treating the positive electrode active material powder or positive electrode with a surfactant,
As the surfactant, for example, oleic acid amide ethylene oxide adduct, oleic acid amide, oleic acid jetanolamide, oleyl jetanolamine, and mixtures thereof are preferably used. This is because these surfactants not only have the property of imparting organophilic properties to the particle surface of the positive electrode active material, but also are soluble in organic solvents and do not have an adverse effect on the positive electrode active material during processing. This is because it eliminates the need to use water that causes harmful effects, and even if water remains in the battery, it has little negative effect on battery performance.

処理にあたっては、界面活性剤は有機溶媒に溶解するか
、または有機溶媒を電解液溶媒として用いる電解液に熔
解される。その際の濃度としては、0.5〜5重量%に
するのが好ましい。有i熔媒としては、界面活性剤を溶
解する能力を持つものであれば特に限定されることなく
、各種のものを用い(するが、電解液の溶媒として用い
ることができるものであれば、処理後の除去を要しない
ので、特に好都合である。
In processing, the surfactant is dissolved in an organic solvent or in an electrolyte using an organic solvent as the electrolyte solvent. The concentration at that time is preferably 0.5 to 5% by weight. As the solvent, there are no particular limitations, and various solvents can be used as long as they have the ability to dissolve the surfactant (however, as long as they can be used as a solvent for the electrolytic solution, This is particularly advantageous since no post-processing removal is required.

界面活性剤による処理は、例えば正極活物質粉末を界面
活性剤を溶解した有機溶媒溶液に浸漬するか、あるいは
正極(なお、ここで正極とは、正極活物質の加圧成形体
または正極活物質に結着剤や導電助剤などの添加剤を添
加、混合した正極合剤の加圧成形体をいう)を界面活性
剤を溶解した電解液と共に電池組立に供し、電池内で正
極活物質と界面活性剤とが接触して処理が進行するよう
に行われる。もとより、正極活物質粉末を界面活性剤を
熔解した電解液に浸漬してもよいし、また、正極を界面
活性剤を溶解した有機溶媒中に浸漬したのち、通常の電
池組立を行ってもよい。
The treatment with a surfactant can be carried out, for example, by immersing the positive electrode active material powder in an organic solvent solution in which the surfactant is dissolved, or by immersing the positive electrode active material powder in an organic solvent solution containing a surfactant, or by immersing the positive electrode active material powder in a positive electrode (here, the positive electrode refers to a pressure-molded product of the positive electrode active material or a positive electrode active material). A press-molded body of a positive electrode mixture prepared by adding and mixing additives such as a binder and a conductive aid) is used for battery assembly together with an electrolyte in which a surfactant is dissolved, and the positive electrode active material and the mixture are mixed together in the battery. The treatment is carried out in such a way that the treatment progresses through contact with the surfactant. Of course, the positive electrode active material powder may be immersed in an electrolytic solution in which a surfactant is dissolved, or the positive electrode may be immersed in an organic solvent in which a surfactant is dissolved, and then normal battery assembly may be performed. .

処理後、溶媒が電解液溶媒または電解液である場合には
、ことさら溶媒の除去をする必要がなく、正極活物質粉
末を湿潤状態のままで加圧成形に供してもよいし、また
、前記したように正極を界面活性剤を熔解した電解液と
共に電池組立に供し、電池内で正極を界面活性剤で処理
してもよい。
After the treatment, if the solvent is an electrolytic solution solvent or an electrolytic solution, there is no need to particularly remove the solvent, and the positive electrode active material powder may be subjected to pressure molding in a wet state. As described above, the positive electrode may be subjected to battery assembly together with an electrolytic solution in which a surfactant is dissolved, and the positive electrode may be treated with the surfactant within the battery.

電解液には、通常、1.2−ジメトキシエタン、L2−
ジェトキシエタン、プロピレンカーボネート、T−ブチ
ロラクトン、エチレンカーボネート、テトラヒドロフラ
ン、2−メチル−テトラヒドロフラン、1,3−ジオキ
ソラン、4−メチル−1,3−ジオキソランの単独また
は2種以上の混合溶媒を電解液溶媒とし、これに例えば
LiCIO4、LiPF6、LiAsF6、LiSbF
6、Lil3F4、L iB (Cs H5)4などの
電解質を熔解した有機電解液が用いられる。また、上記
電解液中におけるLiPF6などの電解質を安定化させ
るために、例えばヘキサメチルホスホリックトリアミド
などの安定化剤を電解液中に加えておくことも好ましく
採用される。そして、前述したような観点から、界面活
性剤を溶解する有機溶媒を選択するにあたっては、上記
例示の電解液溶媒の中から採用するのが好ましい。
The electrolyte usually contains 1,2-dimethoxyethane, L2-
Jetoxyethane, propylene carbonate, T-butyrolactone, ethylene carbonate, tetrahydrofuran, 2-methyl-tetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane alone or in a mixture of two or more as the electrolyte solvent, For example, LiCIO4, LiPF6, LiAsF6, LiSbF
6, an organic electrolyte solution in which an electrolyte such as Lil3F4 or LiB (Cs H5)4 is dissolved is used. Further, in order to stabilize the electrolyte such as LiPF6 in the electrolytic solution, it is also preferably employed to add a stabilizer such as hexamethylphosphoric triamide to the electrolytic solution. From the above-mentioned viewpoint, when selecting an organic solvent for dissolving the surfactant, it is preferable to select an organic solvent from among the above-mentioned exemplified electrolyte solution solvents.

正極活物質としては、例えば二硫化チタン(Tis2)
、二硫化モリブデン(MO32)、三硫化モリブデン(
MO33)、二硫化鉄(FeS2)、硫化ジルコニウム
(ZrS2)、二硫化ニオブ(NbS2)、三硫化リン
ニッケル(NiPS3)、バナジウムセレナイド(VS
e2)、五酸化バナジウム(■2o5)、十三酸化バナ
ジウム(V6O13)などが用いられる。また、負極に
はリチウムまたはリチウム合金が用いられる。上記リチ
ウム合金としては、例えばリチウム−アルミニウム合金
、リチウム−鉛合金、リチウム−インジウム合金、リチ
ウム−ガリウム合金、リチウム−インジウム−ガリウム
合金、リチウム−マグネシウム合金、リチウム−亜鉛合
金などが用いられる。
As the positive electrode active material, for example, titanium disulfide (Tis2)
, molybdenum disulfide (MO32), molybdenum trisulfide (
MO33), iron disulfide (FeS2), zirconium sulfide (ZrS2), niobium disulfide (NbS2), nickel phosphorus trisulfide (NiPS3), vanadium selenide (VS
e2), vanadium pentoxide (■2o5), vanadium trioxide (V6O13), etc. are used. Furthermore, lithium or a lithium alloy is used for the negative electrode. Examples of the lithium alloy used include lithium-aluminum alloy, lithium-lead alloy, lithium-indium alloy, lithium-gallium alloy, lithium-indium-gallium alloy, lithium-magnesium alloy, and lithium-zinc alloy.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例に 硫化チタン粉末をオレイン酸アミドエチレンオキサイド
付加物を溶解したプロピレンカーボネート溶液(オレイ
ン酸アミドエチレンオキサイド付加物の濃度:2重量%
)に浸漬した後、L1mAh相当量秤取し、これにポリ
テトラフルオロエチレン粉末を5重量%添加して混合し
た後、金型に充填し、100kg/aJの圧力で加圧成
形して直径7mow、厚さ0.5mmの正極を作製した
In an example, titanium sulfide powder was dissolved in a propylene carbonate solution containing an oleic acid amide ethylene oxide adduct (concentration of oleic acid amide ethylene oxide adduct: 2% by weight).
), weighed out an amount equivalent to L1mAh, added 5% by weight of polytetrafluoroethylene powder and mixed it, then filled it into a mold and pressure-molded it at a pressure of 100kg/aJ to form a diameter of 7mow. , a positive electrode with a thickness of 0.5 mm was produced.

この正極と、負極にはリチウムを用い、電解液には4−
メチル−1,3−ジオキソランと1.2−ジメトキシエ
タンとヘキサメチルホスホリックトリアミドの容量比6
0:35:5の混合溶媒にLiPF5をln+ol/A
熔解した有機電解液を用いて、第1図に示す構造のリチ
ウム電池を作製した。
Lithium is used for this positive electrode and negative electrode, and 4-
Volume ratio of methyl-1,3-dioxolane, 1,2-dimethoxyethane and hexamethylphosphoric triamide 6
LiPF5 in a mixed solvent of 0:35:5 ln+ol/A
A lithium battery having the structure shown in FIG. 1 was manufactured using the molten organic electrolyte.

第1図において、1は負極で、前述のようにリチウムか
らなり、2は前述のように界面活性剤(オレイン酸アミ
ドエチレンオキサイド付加物)で処理した二硫化チタン
を正極活物質として用いた正極である。3は前述の電解
液であり、4は微孔性ポリプロピレンフィルムからなる
セパレータで、5はポリプロピレン不織布からなる電解
液吸収体である。6はポリプロピレン製の環状ガスゲッ
トで、7はステンレス鋼製で外面にニッケルメッキを施
した負極缶であり、8はステンレス鋼製で外面にニッケ
ルメンキを施した正極缶である。9はステンレス鋼製網
からなる負極側の簗電体である。
In FIG. 1, 1 is a negative electrode made of lithium as described above, and 2 is a positive electrode using titanium disulfide treated with a surfactant (oleic acid amide ethylene oxide adduct) as a positive electrode active material as described above. It is. 3 is the aforementioned electrolytic solution, 4 is a separator made of a microporous polypropylene film, and 5 is an electrolytic solution absorber made of a polypropylene nonwoven fabric. 6 is an annular gas get made of polypropylene, 7 is a negative electrode can made of stainless steel with a nickel plated outer surface, and 8 is a positive electrode can made of stainless steel with a nickel plated outer surface. Reference numeral 9 denotes a negative electrode side electrical body made of stainless steel mesh.

実施例2 二硫化チタン粉末46mgにポリテトラフルオロエチレ
ン粉末3I1gを添加して混合し、これを金型に充填し
100 kg / ciの圧力で加圧成形して直径71
mm、厚さ0,5a+mの正極を作製した。
Example 2 1 g of polytetrafluoroethylene powder 3I was added to 46 mg of titanium disulfide powder, mixed, filled into a mold, and press-molded at a pressure of 100 kg/ci to a diameter of 71 mm.
A positive electrode with a thickness of 0.5 mm and a thickness of 0.5 mm was produced.

電解液には実施例1と同様に4−メチル−1,3−ジオ
キソランと1.2−ジメトキシエタンとへキサメチルホ
スホリックトリアミドの容量比60 : 35:5の混
合溶媒にLiPF6を1a+ol/j!熔解したものを
用い、この電解液100重量部に対してオレイン酸アミ
ドエチレンオキサイド付加物を1重量部の割合で加えて
熔解した。
As in Example 1, the electrolyte was a mixed solvent of 4-methyl-1,3-dioxolane, 1,2-dimethoxyethane, and hexamethylphosphoric triamide in a volume ratio of 60:35:5, and 1a+ol/LiPF6. j! Using the melted product, oleic acid amide ethylene oxide adduct was added at a ratio of 1 part by weight to 100 parts by weight of this electrolytic solution, and the mixture was melted.

負極にはリチウムを用い、前記のように作製した正極と
上記のようにオレイン酸アミドエチレンオキサイド付加
物を添加した電解液とを用い、それ以外は実施例1と同
様にして、第1図に示す構造のリチウム電池を作製した
Lithium was used as the negative electrode, the positive electrode prepared as described above, and the electrolytic solution to which the oleic acid amide ethylene oxide adduct was added as described above. A lithium battery with the structure shown was fabricated.

比較例1 電解液にオレイン酸アミドエチレンオキサイド付加物を
添加することを行わなかったほかは実施例2と同様にし
て第1図に示す構造のリチウム電池を作製した。
Comparative Example 1 A lithium battery having the structure shown in FIG. 1 was produced in the same manner as in Example 2 except that the oleic acid amide ethylene oxide adduct was not added to the electrolytic solution.

上記のように作製した実施例1〜2の電池および比較例
1の電池を25℃、放電電流0.76mA (正極のみ
かけ表面積あたり2mA/cd)で放電したときの放電
特性を第2図に示す。
Figure 2 shows the discharge characteristics when the batteries of Examples 1 and 2 and the battery of Comparative Example 1 produced as described above were discharged at 25°C and a discharge current of 0.76 mA (2 mA/cd per apparent surface area of the positive electrode). show.

第2図に示すように、実施例1および実施例2の電池は
、比較例1の電池に比べて、放電容量が大きかった。こ
れは、実施例では、界面活性剤で処理して正極活物質の
粒子表面に親有機溶媒性を付与したため、正極活物質の
電解液に対する濡れ性が改善され、正極活物質の粒子表
面が広い面積で放電反応に利用できるようになり、電流
密度が低くなって、分極が小さくなり、正極の利用率が
向上したためであると考えられる。
As shown in FIG. 2, the batteries of Example 1 and Example 2 had larger discharge capacities than the battery of Comparative Example 1. This is because in the example, the particle surface of the positive electrode active material was treated with a surfactant to give organophilic properties to the particle surface of the positive electrode active material, so the wettability of the positive electrode active material to the electrolyte was improved and the particle surface of the positive electrode active material was wide. This is thought to be because the area became available for discharge reaction, the current density became lower, the polarization became smaller, and the utilization rate of the positive electrode improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、正極活物質粉末また
は正極を有機溶媒に可溶な界面活性剤で処理することに
より、正極活物質の粒子表面に親有機溶媒性を付与する
ことによって、正極活物質の粒子表面を広い面積で電池
反応に利用できるようにして、電流密度を下げ、分極を
小さくして、正極の利用率を向上させることができた。
As explained above, in the present invention, the positive electrode active material powder or the positive electrode is treated with a surfactant soluble in an organic solvent to impart organophilic properties to the particle surface of the positive electrode active material. By making a wide area of the particle surface of the active material available for battery reactions, we were able to lower the current density, reduce polarization, and improve the utilization rate of the positive electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るリチウム電池の一例を示す断面図
であり、第2図は実施例1〜2の電池と比較例1の電池
の放電特性を示す図である。 1・・・負極、 2・・・正極、 3・・・電解液蒸1
 閉 第 2閏 放電容量(mAh)
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the batteries of Examples 1 and 2 and the battery of Comparative Example 1. 1... Negative electrode, 2... Positive electrode, 3... Electrolyte vapor 1
Closed 2nd leap discharge capacity (mAh)

Claims (3)

【特許請求の範囲】[Claims] (1)リチウム電池の製造にあたり、正極活物質粉末ま
たは正極を有機溶媒に可溶な界面活性剤で処理して、正
極活物質の粒子表面に親有機溶媒性を付与することを特
徴とするリチウム電池の製造方法。
(1) In the production of lithium batteries, a lithium battery characterized by treating the positive electrode active material powder or the positive electrode with a surfactant soluble in an organic solvent to impart organophilic solvent properties to the particle surface of the positive electrode active material. How to manufacture batteries.
(2)正極活物質が二硫化チタンである特許請求の範囲
第1項記載のリチウム電池の製造方法。
(2) The method for manufacturing a lithium battery according to claim 1, wherein the positive electrode active material is titanium disulfide.
(3)界面活性剤がオレイン酸アミドエチレンオキサイ
ド付加物、オレイン酸アミド、オレイン酸ジエタノール
アミドおよびオレイルジエタノールアミンよりなる群か
ら選ばれた少なくとも1種である特許請求の範囲第1項
または第2項記載のリチウム電池の製造方法。
(3) Claim 1 or 2, wherein the surfactant is at least one selected from the group consisting of oleic acid amide ethylene oxide adduct, oleic acid amide, oleic acid diethanolamide, and oleyl diethanolamine. lithium battery manufacturing method.
JP61063770A 1986-03-20 1986-03-20 Manufacture of lithium battery Pending JPS62222568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063770A JPS62222568A (en) 1986-03-20 1986-03-20 Manufacture of lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063770A JPS62222568A (en) 1986-03-20 1986-03-20 Manufacture of lithium battery

Publications (1)

Publication Number Publication Date
JPS62222568A true JPS62222568A (en) 1987-09-30

Family

ID=13238936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063770A Pending JPS62222568A (en) 1986-03-20 1986-03-20 Manufacture of lithium battery

Country Status (1)

Country Link
JP (1) JPS62222568A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100445434B1 (en) * 2002-07-10 2004-08-21 삼성에스디아이 주식회사 Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using same
US6872489B2 (en) * 2002-02-27 2005-03-29 Rovcal, Inc. Alkaline cell with gassing inhibitors
JP2006302617A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery
US7226696B2 (en) 2002-02-27 2007-06-05 Rayovac Corporation Alkaline cell with performance enhancing additives

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6872489B2 (en) * 2002-02-27 2005-03-29 Rovcal, Inc. Alkaline cell with gassing inhibitors
US7169504B2 (en) 2002-02-27 2007-01-30 Rovcal, Inc. Alkaline cell with performance enhancing additives
US7226696B2 (en) 2002-02-27 2007-06-05 Rayovac Corporation Alkaline cell with performance enhancing additives
US7749654B2 (en) 2002-02-27 2010-07-06 Rovcal, Inc. Alkaline cell with performance enhancing additives
US8691439B2 (en) 2002-02-27 2014-04-08 Spectrum Brands, Inc. Alkaline cell with performance enhancing additives
KR100445434B1 (en) * 2002-07-10 2004-08-21 삼성에스디아이 주식회사 Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using same
JP2006302617A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Manufacturing method of electrode for secondary battery

Similar Documents

Publication Publication Date Title
JP2020521283A (en) Electrochemical cell passivator
WO1998040923A1 (en) Nonaqueous electrolyte battery and charging method therefor
JPS63102173A (en) Lithium secondary battery
JPS63187569A (en) Nonaqueous secondary battery
KR101656406B1 (en) Electrode, battery and method of manufacturing the electrode
JPS5981869A (en) Manufacture of lithium battery
JPS6166369A (en) Lithium secondary battery
JPS62222568A (en) Manufacture of lithium battery
JPH01264172A (en) Manufacture of organic electrolyte battery
JPS63264865A (en) Manufacture of negative electrode for secondary battery
KR100385700B1 (en) Non-aqueous secondary battery with superior high-temperature cycle life
JPS62165879A (en) Secondary cell
JPH0355770A (en) Lithium secondary battery
JPH03285271A (en) Battery
US2191231A (en) Negative electrode for lead-acid storage batteries and method of producing the same
CN117832615A (en) Functional additive, electrolyte and lithium-sulfur battery
JPS62168344A (en) Nonaqueous electrolyte battery
KR19990084563A (en) Manufacturing method of active material slurry of secondary battery
JPH04160766A (en) Nonaqueous electrolyte secondary battery
JPS63292572A (en) Organic electrolyte cell
JPS62226561A (en) Lithium secondary battery
JPH01163968A (en) Nonaqueous electrolyte battery
JPS6366849A (en) Nonaqueous electrolyte battery
JPH05234591A (en) Nonaqueous electrolyte battery
JPH03119655A (en) Nonaqueous electrolyte secondary battery