JPH01267950A - Separator for battery - Google Patents

Separator for battery

Info

Publication number
JPH01267950A
JPH01267950A JP63096011A JP9601188A JPH01267950A JP H01267950 A JPH01267950 A JP H01267950A JP 63096011 A JP63096011 A JP 63096011A JP 9601188 A JP9601188 A JP 9601188A JP H01267950 A JPH01267950 A JP H01267950A
Authority
JP
Japan
Prior art keywords
fibers
particles
electrolyte
polyolefin resin
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63096011A
Other languages
Japanese (ja)
Other versions
JP2734523B2 (en
Inventor
Yasuko Ito
康子 伊藤
Munehisa Ikoma
宗久 生駒
Koji Yuasa
浩次 湯浅
Shoichi Ikeyama
正一 池山
Hiroshi Kawano
川野 博志
Isao Matsumoto
功 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63096011A priority Critical patent/JP2734523B2/en
Publication of JPH01267950A publication Critical patent/JPH01267950A/en
Application granted granted Critical
Publication of JP2734523B2 publication Critical patent/JP2734523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a battery with less self-discharge and excellent charging/ discharging cyclic lifetime even though it is stored in high temp. atmosphere for a long period of time by fixing a terminal of polyolefin resin to the surface of polyolefin type resin fibers, and affixing a hydrophile organic substance having anti-electrolyte property. CONSTITUTION:Particles 3 of polyolefin resin are fixed to the surface of polyolefin resin fibers 2, and a hydrophile organic substance having anti- electrolyte property is dispersed on or covers the surfaces of these fibers 2 or particles 3. Accordingly the separator material is not dissolved or does not produce impurity ions even in an alkaline electrolyte with high temp. and high concentration, which prevents promotion of the self-discharging caused by separator material. Because particles 3 of polyolefin resin are fixed to the surfaces of the fibers 2, the electrolyte is retained in voids between the particles 3 and fibers 2 to enhance the liquid retaining property of the separator, which should enhance the charging/discharging cyclic lifetime.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、樹脂性の不織布あるいは織布を主構成材料に
用いた電池用セパレータであって、電池の保存特性、と
くに高温雰囲気下における自己放電特性の改良およびサ
イクル寿命の向上に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is a battery separator using a resinous non-woven fabric or woven fabric as the main constituent material, which improves battery storage characteristics, particularly self-discharge characteristics under high temperature atmosphere. and cycle life.

従来の技術 一般に電池用セパレータには電池の安 性と充放電特性
の向上の観点から正負極の短絡防止と電解液の保持性の
2特性が重要である。さらに最近ポータプル機器用の電
源に用いる電池は保存特性、とくに高温雰囲気における
自己放電特性と充放電サイクル寿命の向上が要求されて
いる。一般に、電池の自己放電を促進する要因は、電池
内の不純物が正負極の酸化還元反応に関与する場合が多
い。
BACKGROUND OF THE INVENTION Generally speaking, battery separators have two important characteristics from the viewpoint of improving battery safety and charging/discharging characteristics: preventing short circuits between the positive and negative electrodes and retaining electrolyte. Furthermore, recently, batteries used as power supplies for portable devices are required to have improved storage characteristics, particularly self-discharge characteristics in high-temperature atmospheres, and improved charge/discharge cycle life. Generally, a factor that promotes self-discharge of a battery is that impurities within the battery often participate in the redox reaction of the positive and negative electrodes.

とくに、高温雰囲気中で長期間保存した場合、電池の構
成材料であるセパレータが分解し、自己放電を促進する
という問題がある。
In particular, when stored in a high-temperature atmosphere for a long period of time, there is a problem that the separator, which is a constituent material of the battery, decomposes and promotes self-discharge.

一例を上げれば従来電池用セパレータとして、特にアル
カリ電解液を用いるN1−Ctl電油などの密閉形電池
では、電解液の保持性と耐アルカリ性を考慮してポリア
ミド系繊維から成る不織布、織布が最もよく用いられて
きた。しかし、ポリアミド系繊維は、高濃度のアルカリ
電解液中において高温度で長期保存した場合や、過充電
時に発生する酸素ガスなどにより、ポリアミド繊維が分
解し。
For example, as conventional battery separators, especially for sealed batteries such as N1-Ctl electrolyte that uses alkaline electrolyte, non-woven fabrics and woven fabrics made of polyamide fibers are used in consideration of electrolyte retention and alkali resistance. It has been the most commonly used. However, polyamide fibers decompose when stored at high temperatures in highly concentrated alkaline electrolytes for long periods of time, or due to oxygen gas generated during overcharging.

生成した不純物(No3)が正負極の酸化還元反応に関
与して自己放電を促進させるという問題がある。
There is a problem in that the generated impurity (No. 3) participates in the redox reaction of the positive and negative electrodes and promotes self-discharge.

そこで、長期間、高温雰囲気中に放置しても、高濃度の
アルカリ電解液に安定なセパレータ材料トシて、ポリプ
ロピレン等のポリオレフィン系樹脂が注目されてきた。
Therefore, polyolefin resins such as polypropylene have attracted attention as separator materials that are stable in high-concentration alkaline electrolytes even when left in a high-temperature atmosphere for a long period of time.

ところが、ポリオレフィン系樹脂は電解液に対する親和
性が乏しく、セパレータとして重要な電解液保持性が劣
るという短所があり、下記のような親水性処理に関する
提案がなされてきた。
However, polyolefin resins have a disadvantage that they have poor affinity for electrolyte solutions and poor electrolyte retention properties, which are important for separators, and the following proposals have been made regarding hydrophilic treatment.

(1)  界面活性剤を樹脂の表面に付着させる。(1) Attach a surfactant to the surface of the resin.

(2)親水性を有する基(アクリル酸等)をグラフト重
合させる。
(2) Graft polymerization of a hydrophilic group (acrylic acid, etc.).

(3)樹脂にプラズマを照射して一〇HO基などを化学
的に吸着させる。
(3) The resin is irradiated with plasma to chemically adsorb 10HO groups and the like.

発明が解決しようとする課題 しかし、前記の方法では、電池を高温で保存した場合、
セパレータが高温、高濃度のアルカリ電解液中で、しか
も過充電時に正極で発生する酸素ガスに触れることによ
り、(1)界面活性剤の分解による不純物イオンの生成
や、(2)アクリル酸イオンや、(3)−CHO基の脱
離が起こり、こ、れらの不純物イオンが正負極の酸化還
元反応に関与して活物質の自己放電反応を促進する。ま
た、充放電サイクルの繰り返しにより正負極板の膨張に
より、セパレータが圧縮され、セパレータ中の電解液が
正負版板中に吸収される。その結果、充放電サイクルの
繰り返しにより電池の内部抵抗が増大し、容量劣化をき
たす。
Problems to be Solved by the Invention However, in the above method, when the battery is stored at high temperature,
When the separator is in a high-temperature, highly concentrated alkaline electrolyte and comes into contact with oxygen gas generated at the positive electrode during overcharging, it can cause (1) the generation of impurity ions due to decomposition of the surfactant, (2) the generation of acrylic acid ions, etc. (3) Elimination of the -CHO group occurs, and these impurity ions participate in the redox reaction of the positive and negative electrodes to promote the self-discharge reaction of the active material. Further, due to the expansion of the positive and negative electrode plates due to repeated charging and discharging cycles, the separator is compressed, and the electrolyte in the separator is absorbed into the positive and negative plates. As a result, the internal resistance of the battery increases due to repeated charging and discharging cycles, resulting in capacity deterioration.

本発明は上記課題を解決するもので、自己放電が少なく
サイクル寿命特性に優れた電池が実現可能なセパレータ
を提供することを目的とする。
The present invention solves the above problems, and aims to provide a separator that can realize a battery with less self-discharge and excellent cycle life characteristics.

課題を解決するだめの手段 この目的を達成するために、本発明は、ポリオレフィン
系樹脂繊維の表面にポリオレフィン系樹脂の粒子を固定
化し、かつ耐電解液性を持つ親水性有機物が該繊維およ
び粒子の表面に分散するかあるいはそれらの表面を被覆
する構成である。
Means for Solving the Problems In order to achieve this object, the present invention immobilizes polyolefin resin particles on the surface of polyolefin resin fibers, and a hydrophilic organic substance having electrolyte resistance is attached to the fibers and particles. It is a structure in which the material is dispersed over or coated on the surface of the surface.

作用 この構成によって、セパレータ材料が高温、高濃度のア
ルカリ電解液中においても分解や、不純物イオンを生成
しないため、セパレータ材料に起因する自己放電の促進
が防げる。
Function: With this configuration, the separator material does not decompose or generate impurity ions even in a high-temperature, high-concentration alkaline electrolyte, so that promotion of self-discharge caused by the separator material can be prevented.

また、ポリオレフィン系樹脂の粒子が前記繊維の表面に
固定化されていることによシ、粒子と繊維の隙間に電解
液が保持され、セパレータの保液性が向上する結果、充
放電サイクル寿命が向上することとなる。
In addition, because the polyolefin resin particles are immobilized on the surface of the fibers, the electrolyte is retained in the gaps between the particles and the fibers, improving the liquid retention properties of the separator, resulting in a shorter charge/discharge cycle life. It will improve.

実施例 以下本発明を実施例により説明する。Example The present invention will be explained below with reference to Examples.

平均径約15μm、平均要約4Qj1mlのポリプロピ
レン製繊維の集合体を解きほぐして分散させ、不織布を
構成する。得られた不織布を150’Cの熱ロール間に
通過させて各繊維を互いに熱融着させ、最終的に厚さ0
.21+1.多孔度約60%のポリプロピレン製不織布
を得る。
An aggregate of polypropylene fibers having an average diameter of about 15 μm and an average size of 4Qj 1 ml is loosened and dispersed to form a nonwoven fabric. The obtained nonwoven fabric is passed between heated rolls at 150'C to heat-fuse each fiber to each other, and finally the thickness is 0.
.. 21+1. A polypropylene nonwoven fabric having a porosity of about 60% is obtained.

この不織布を、それぞれ粒子径2μmのポリプロピレン
粉末を分散させたカルボキシメチルセルロースを含む溶
液と前記と同じポリプロピレン粉末を分散させたポリビ
ニルアルコールを含む溶液に浸漬し、160°Cで乾燥
してポリプロピレン製繊維の表面にポリプロピレンの粒
子を固定化した親水性を有する2種類のセパレータを得
る。比較例として、同じ不織布を、カルボキシメチルセ
ルロースのみの溶液と、界面活性剤のポリアルキルノニ
ルフェニルエーテルのみの溶液に浸漬、乾燥し、ポリプ
ロピレン製繊維に親水性のみを有する2種類のセパレー
タを得る。それぞれのセパレータを順にa、b、c、d
とする。第1図に得られた不織布aの概略図を示す。第
2図に比較例の不織布Cの概略図を示す。第1図の1は
カルボキシメチルセルロース、2はポリプロピレン繊維
、3はポリプロピレン粒子、4はポリプロピレン粒子が
基材上に固定化された部分である。また−同図の斜線部
6はカルボキシメチルセルロースが、ポリプロピレンの
繊維および固定化された粒子3の表面をコーティングし
ている部分である。本実施例のbの不織布も、第1図と
同様である。
This nonwoven fabric was immersed in a solution containing carboxymethyl cellulose in which polypropylene powder with a particle size of 2 μm was dispersed, and in a solution containing polyvinyl alcohol in which the same polypropylene powder as above was dispersed, and dried at 160°C to form polypropylene fibers. Two types of hydrophilic separators having polypropylene particles immobilized on their surfaces are obtained. As a comparative example, the same nonwoven fabric was immersed in a solution containing only carboxymethyl cellulose and a solution containing only polyalkyl nonylphenyl ether as a surfactant and dried to obtain two types of separators having only hydrophilic properties for polypropylene fibers. Separate each separator in order a, b, c, d
shall be. FIG. 1 shows a schematic diagram of the obtained nonwoven fabric a. FIG. 2 shows a schematic diagram of nonwoven fabric C as a comparative example. In FIG. 1, 1 is carboxymethyl cellulose, 2 is polypropylene fiber, 3 is polypropylene particles, and 4 is a portion where the polypropylene particles are immobilized on the base material. Furthermore, the shaded area 6 in the same figure is the area where carboxymethyl cellulose coats the surfaces of the polypropylene fibers and immobilized particles 3. The nonwoven fabric b of this example is also the same as that shown in FIG.

活物質である水素を電気化学的に吸蔵、放出する水素吸
蔵合金負極と、ニッケル酸化物正極とを、上記で得られ
たそれぞれのセパレータを介して渦巻状に捲回し、電解
液として比重1.3の水酸化カリウム水溶液に水酸化リ
チウムを飽和した電解液を注液し、容量10oomAh
の五人サイズの種々の密閉形ニッケル、水素蓄電池を構
成した。さらにもう一つの比較例として、従来のポリア
ミド製不織布を用いて同様な密閉形ニッケル、水素蓄電
池を構成した。これらの電池を完全充電後46°Cで所
定の期間保存した後放電を行い残存容量を調べた。第3
図に保存期間と残存容量比率との関係を示す。残存容量
比率は、標準容量に対する残存容量の比である。自己放
電比率と残存容量との関係は次式で示される。
A hydrogen storage alloy negative electrode that electrochemically absorbs and releases hydrogen as an active material and a nickel oxide positive electrode are spirally wound through the respective separators obtained above to form an electrolytic solution with a specific gravity of 1. The electrolyte solution saturated with lithium hydroxide was poured into the potassium hydroxide aqueous solution in step 3, and the capacity was 10oomAh.
We constructed various sealed nickel and hydrogen storage batteries that were sized for five people. As another comparative example, a similar sealed nickel-hydrogen storage battery was constructed using a conventional polyamide nonwoven fabric. After these batteries were fully charged, they were stored at 46°C for a predetermined period of time and then discharged to examine their remaining capacity. Third
The figure shows the relationship between storage period and remaining capacity ratio. The remaining capacity ratio is the ratio of remaining capacity to standard capacity. The relationship between the self-discharge ratio and the remaining capacity is expressed by the following equation.

残存容量比率(%)=100(%)−自己放電比率(%
) また、同様な方法で作製した電池を、20°Cの雰囲気
中でHamムで4.6時間の充電を行い、その後、0.
50mムで1.Ovまでの放電を行う条件で充放電サイ
クル寿命特性を調べた。第4図に、充放電サイクル数と
放電容量との関係を示す。又表1にセパレータの種類と
500サイクル経過時の放電容量を示す。
Remaining capacity ratio (%) = 100 (%) - Self-discharge ratio (%)
) In addition, a battery prepared in a similar manner was charged for 4.6 hours with Hamam in an atmosphere of 20°C, and then the battery was charged at 0.
1.50mm. The charge/discharge cycle life characteristics were investigated under conditions of discharging up to Ov. FIG. 4 shows the relationship between the number of charge/discharge cycles and discharge capacity. Table 1 also shows the types of separators and the discharge capacity after 500 cycles.

(以 下 余 白) 第3図から明らかなように記号a、bで示した本発明お
よび比較例Cによるセパレータを使用した密閉形ニッケ
ル・水素蓄電池は、自己放電が少なく、46°Cで30
日間保存放置しても60%以上の容量を保持しているこ
とがわかる。又第4図に示すように、ポリプロピレン粉
末を繊維上に固定化しかつ親水性を付与したセパレータ
を用いた本発明のa、bでは、500サイクル経過後も
、放電容量は低下しない。しかし、良好な自己放電特性
を示す比較例Cは、充放電サイクルにより容量低下をき
たす。
(Left below) As is clear from Fig. 3, the sealed nickel-metal hydride storage batteries using separators according to the present invention and comparative example C, indicated by symbols a and b, have little self-discharge, with a temperature of 30% at 46°C.
It can be seen that it retains more than 60% of its capacity even after being stored for several days. Further, as shown in FIG. 4, in cases a and b of the present invention, which use a separator in which polypropylene powder is immobilized on fibers and imparted with hydrophilic properties, the discharge capacity does not decrease even after 500 cycles. However, Comparative Example C, which exhibits good self-discharge characteristics, suffers from a decrease in capacity due to charging and discharging cycles.

ポリオレフィン系樹脂に親水性を付与するカルボキシメ
チルやポリビニルアルコールは、耐電解液性が高いため
、長期間、高温度の雰囲気中に保存しても電池内で分解
されにくい。したがって、分解によって不純物イオンは
生じなく、活物質の自己分解反応が促進されないため、
セパレータ材料の分解に起因する自己放電が抑制される
。また、第6図は、電解液が注液された電池内で本発明
aの繊維2とポリプロピレン粒子3の隙間に電解液が保
持されている状態を示す。このように、セパレータの保
液性が向上するため、充放電の繰り返しにより正負極板
の膨張によシ、セパレータが圧縮された場合でも、セパ
レータに電解液が保持された状態が保たれる。したがっ
て電池の内部抵抗の増大による容量劣下が防止できる。
Carboxymethyl and polyvinyl alcohol, which impart hydrophilicity to polyolefin resins, have high electrolyte resistance, so they are difficult to decompose within the battery even if stored in a high-temperature atmosphere for a long period of time. Therefore, impurity ions are not generated by decomposition and the self-decomposition reaction of the active material is not promoted.
Self-discharge caused by decomposition of the separator material is suppressed. Moreover, FIG. 6 shows a state in which the electrolytic solution is held in the gap between the fiber 2 of the present invention a and the polypropylene particles 3 in a battery into which the electrolytic solution is injected. As described above, since the liquid retention property of the separator is improved, even if the separator is compressed due to expansion of the positive and negative electrode plates due to repeated charging and discharging, the state in which the electrolytic solution is retained in the separator is maintained. Therefore, capacity deterioration due to an increase in internal resistance of the battery can be prevented.

なお、本実施例では不織布についてのみ記載したが、織
布についても同様な効果が認められる。
Note that although this example describes only nonwoven fabrics, similar effects can be observed for woven fabrics as well.

また、ポリオレフィン繊維表面にポリオレフィン系樹脂
の粒子を固定化しカルボキシメチルセルロースやポリビ
ニルアルコールを付着した繊維を不織布や織布にして得
たセパレータを用いても同様な効果が認められる。
A similar effect can also be obtained by using a separator made of a nonwoven or woven fabric made of fibers to which particles of polyolefin resin are fixed on the surface of polyolefin fibers and carboxymethyl cellulose or polyvinyl alcohol is attached.

発明の効果 以上のように本発明によれば、ポリオレフィン系樹脂繊
維の表面にポリオレフィン系樹脂の端子を固定化し、か
つ耐電解液性を持つ親水性有機物を付着したことによシ
、高温雰囲気下に長期間保存しても自己放電が少なく、
充放電サイクル寿命の優れた電池を提供することを可能
にするという効果が得られる。
Effects of the Invention As described above, according to the present invention, a polyolefin resin terminal is fixed on the surface of a polyolefin resin fiber, and a hydrophilic organic substance having electrolyte resistance is attached, so that it can be used in a high temperature atmosphere. There is little self-discharge even after long-term storage,
The effect is that it is possible to provide a battery with excellent charge/discharge cycle life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における不織布の概略図、第2
図は従来例の不織布の概略図、第3図は種々のセパレー
タを用いた密閉形ニッケル・水素蓄電池の自己放電特性
図、第4図は寿命特性を示す図、第6図は本発明の実施
例で繊維と粒子との間に電解液が保持された状態を示す
図である。 1・・・・・・カルボキシメチルセルロース、2・・・
・・・ポリプロピレン繊維、3・・・・・・ポリプロピ
レン粒子、4・・・・・・繊維と粒子の固定部分、5・
・・・・・粒子をコーティングしているカルボキシメチ
ルセルロース、6・・・・・・空間部分、7・・・・・
・電解液。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−ガノシホ゛千ジメチル亡)L/I17−ヌ第 1 
図 第 2 図 第3図 保存剤 関 (ヨ) 第4図 兄放電 ブΔクル歌
FIG. 1 is a schematic diagram of a nonwoven fabric in an embodiment of the present invention, and FIG.
The figure is a schematic diagram of a conventional nonwoven fabric, Figure 3 is a diagram of self-discharge characteristics of sealed nickel-metal hydride storage batteries using various separators, Figure 4 is a diagram showing life characteristics, and Figure 6 is a diagram of the implementation of the present invention. It is a figure which shows the state in which the electrolyte solution was held between the fiber and particle in an example. 1... Carboxymethyl cellulose, 2...
... Polypropylene fiber, 3 ... Polypropylene particle, 4 ... Fixed part of fiber and particle, 5.
... Carboxymethyl cellulose coating the particles, 6 ... Space portion, 7 ...
・Electrolyte solution. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--Ganosiho (thousand dimethyl death) L/I17-nu No. 1
Figure 2 Figure 3 Preservative Seki (Yo) Figure 4 Elder brother discharge BuΔkuru song

Claims (2)

【特許請求の範囲】[Claims] (1)ポリオレフィン系樹脂を主構成材料とする繊維の
不織布あるいは織布から成る電池用セパレータであって
、前記繊維の表面にポリオレフィン系樹脂の粒子が固定
化されており、かつ耐電解液性を有する親水性有機物が
、前記繊維および粒子の表面に分散するかあるいはそれ
らの表面を被覆している電池用セパレータ。
(1) A battery separator made of a nonwoven or woven fabric of fibers whose main constituent material is polyolefin resin, in which particles of the polyolefin resin are immobilized on the surface of the fibers, and which has electrolyte resistance. A battery separator in which a hydrophilic organic substance having a hydrophilic organic substance is dispersed on or coats the surfaces of the fibers and particles.
(2)前記親水性有機物が、セルロース系接着剤もしく
はポリビニルアルコールである特許請求の範囲第1項記
載の電池用セパレータ。
(2) The battery separator according to claim 1, wherein the hydrophilic organic substance is a cellulose adhesive or polyvinyl alcohol.
JP63096011A 1988-04-19 1988-04-19 Battery separator Expired - Lifetime JP2734523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096011A JP2734523B2 (en) 1988-04-19 1988-04-19 Battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096011A JP2734523B2 (en) 1988-04-19 1988-04-19 Battery separator

Publications (2)

Publication Number Publication Date
JPH01267950A true JPH01267950A (en) 1989-10-25
JP2734523B2 JP2734523B2 (en) 1998-03-30

Family

ID=14153250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096011A Expired - Lifetime JP2734523B2 (en) 1988-04-19 1988-04-19 Battery separator

Country Status (1)

Country Link
JP (1) JP2734523B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146515A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JP2014007373A (en) * 2012-06-25 2014-01-16 Dong Hou Separator for capacitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146515A1 (en) * 2012-03-28 2013-10-03 日本ゼオン株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
CN104170121A (en) * 2012-03-28 2014-11-26 日本瑞翁株式会社 Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JP5652572B2 (en) * 2012-03-28 2015-01-14 日本ゼオン株式会社 Porous membrane for secondary battery and method for producing the same, electrode for secondary battery, separator for secondary battery, and secondary battery
JPWO2013146515A1 (en) * 2012-03-28 2015-12-14 日本ゼオン株式会社 Porous membrane for secondary battery and method for producing the same, electrode for secondary battery, separator for secondary battery, and secondary battery
US9620760B2 (en) 2012-03-28 2017-04-11 Zeon Corporation Porous membrane for secondary batteries, method for producing same, electrode for secondary batteries, separator for secondary batteries, and secondary battery
JP2014007373A (en) * 2012-06-25 2014-01-16 Dong Hou Separator for capacitor

Also Published As

Publication number Publication date
JP2734523B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP2653415B2 (en) Battery provided with gas diffusion electrode and method for charging and discharging the same
JP3287367B2 (en) Sealed nickel zinc battery
JP2014139880A (en) Separator for alkaline electrolyte secondary battery, alkaline electrolyte secondary battery, and method for manufacturing alkaline electrolyte secondary battery
JPH01267950A (en) Separator for battery
JPS62291871A (en) Enclosed type nickel-cadmium storage battery
JP3006371B2 (en) Battery
JPH07130392A (en) Alkaline storage battery
JP3114419B2 (en) Sealed storage battery
JPS6243081A (en) Zinc-iodine secondary battery
JP3234244B2 (en) Method for producing separator for nickel-cadmium battery
JPH0722028A (en) Sealed alkaline zinc storage battery
JP2855677B2 (en) Sealed lead-acid battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JPH0410176B2 (en)
JPS63126175A (en) Closed type lead storage battery
JPS6074341A (en) Electrolytic retaining body for battery
JPS63205067A (en) Zinc/iodine secondary battery
JPH04206476A (en) Organic electrolyte battery
JPS63164165A (en) Cadmium electrode for alkaline storage battery and its manufacture
JPH07161342A (en) Separator for lead-acid battery
JPS63148535A (en) Separator for enclosed lead storage battery
JPS62136754A (en) Hermetically sealed lead storage battery
JPS63146360A (en) Cadmium electrode for alkaline storage battery
JPS61203569A (en) Pasted negative plate for alkaline storage battery
JPS6243080A (en) Iodine battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11