JPS63205067A - Zinc/iodine secondary battery - Google Patents

Zinc/iodine secondary battery

Info

Publication number
JPS63205067A
JPS63205067A JP62037398A JP3739887A JPS63205067A JP S63205067 A JPS63205067 A JP S63205067A JP 62037398 A JP62037398 A JP 62037398A JP 3739887 A JP3739887 A JP 3739887A JP S63205067 A JPS63205067 A JP S63205067A
Authority
JP
Japan
Prior art keywords
zinc
separator
iodine
secondary battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62037398A
Other languages
Japanese (ja)
Inventor
Hiroshi Sugawa
須川 浩
Yukihiro Yoda
與田 幸廣
Koji Sugimoto
杉本 宏次
Shunji Yoshida
芳田 俊爾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62037398A priority Critical patent/JPS63205067A/en
Publication of JPS63205067A publication Critical patent/JPS63205067A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To make long-term use possible by using a nitrocellulose porous film as a separator. CONSTITUTION:A nitrocellulose porous film is used as a separator. In order to prevent internal short circuit caused by zinc crystals, the maximum pore size of the nitrocellulose porous film is preferable to be limited to 5.0mum or below, further effective to be limited to 1.0mum or below, and furthermore optimum to be limited to 0.5mum or below. A maximum pore size of 5.0mum or below does not means that pores exceeding 5.0mum are excluded and means that the number of pores having a maximum pore size of 5.0mum or below is 80% or more, preferably 90% or more. By using this separator, no dendritic or mossy zinc crystals are produced and long-term use is made possible.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は亜鉛/ヨウ素二次電池に関し、詳しくは充電の
際に負極上で起こる亜鉛デンドライトを防止できる亜鉛
/ヨウ素二次電池に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a zinc/iodine secondary battery, and more particularly to a zinc/iodine secondary battery that can prevent zinc dendrites from occurring on the negative electrode during charging. .

[従来技術] 近年、小型軽量て高容量等の優れた特徴を有する新型電
池が種々ti11発されている0例えばナトリウム/イ
オウ二次電池や亜鉛/ハロゲン二次電池等が知られてい
る。しかしナトリウムやハロゲンは反応性が高いために
、その取扱いが難しく(例えば反応のコントロールがで
きない等)、また外部に漏れた場合に問題となる場合が
ある。
[Prior Art] In recent years, various new batteries have been developed that have excellent features such as small size, light weight, and high capacity.For example, sodium/sulfur secondary batteries and zinc/halogen secondary batteries are known. However, since sodium and halogen are highly reactive, they are difficult to handle (for example, the reaction cannot be controlled), and may cause problems if they leak outside.

本発明者はハロゲンの中でも比較的反応性の低いヨウ素
に着目し、亜鉛/ヨウ素二次電池の開発を試みた。
The present inventor focused on iodine, which has relatively low reactivity among halogens, and attempted to develop a zinc/iodine secondary battery.

その結果、ヨウ素及びヨウ素と錯体付加物を形成するポ
リマーとの錯体付加物並びにその中に炭素材料を分散せ
しめ−た組成物を正極活物質として用いることにより、
二次電池として有効に用いられる可能性を有することが
判った。
As a result, by using iodine, a complex adduct of iodine and a polymer forming the complex adduct, and a composition in which a carbon material is dispersed therein, as a positive electrode active material,
It was found that it has the potential to be effectively used as a secondary battery.

しかし亜鉛/ヨウ素二次電池は起電力が1.35Vと手
ごろであり、高出力、高容量化か可能で信頼性の高い反
面、充電の際、デンドライト状あるいはモス状に亜鉛が
析出を起こし易い問題がある。
However, zinc/iodine secondary batteries have an affordable electromotive force of 1.35V, allowing for high output and high capacity, and are highly reliable, but on the other hand, zinc tends to precipitate in the form of dendrites or moss during charging. There's a problem.

この析出物は下地への密着性が悪く、また客間が大きく
なり正極と負極間の短絡を招くなど亜鉛を負極とする二
次電池の実用化の障害になることが判った。
It has been found that this precipitate has poor adhesion to the substrate, increases the size of the space, and causes short circuits between the positive and negative electrodes, which impedes the practical application of secondary batteries using zinc as the negative electrode.

亜鉛デンドライト防止に関しては、アルカリ系の電池で
は有効な対策が種々提案されているか、本電池のような
酸性の電解液を使用する二次電池に対しては検討も少な
く、いまだ有効な対策か見いだされていない。
Regarding the prevention of zinc dendrites, various effective measures have been proposed for alkaline batteries, but there are few studies on secondary batteries that use acidic electrolytes like this battery, and it is unclear whether effective measures have been found yet. Not yet.

そこで本発明の目的は、上記の難点を解消し長期間の使
用に耐える亜鉛/ヨウ素二次電池を提供することにある
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a zinc/iodine secondary battery that overcomes the above-mentioned difficulties and can be used for a long period of time.

[問題点を解決するための手段] 本発明者らは、上記目的を達成すべく鋭意検討した結果
、亜鉛を活物質とする負極と、ヨウ素及びヨウ素と錯体
付加物を形成する能力のあるポリマーとの錯体付加物並
びにその中に炭素材料を分散せしめた組成物を活物質と
する正極の間にセパレーターを有する亜鉛/ヨウ素二次
電池において、セパレーターとしてニトロセルロース製
多孔膜を用いることを特徴とする亜鉛/ヨウ素二次電池
により」二足[1的が達成されることを見いたした。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have developed a negative electrode containing zinc as an active material, iodine and a polymer capable of forming a complex adduct with iodine. A zinc/iodine secondary battery having a separator between the positive electrode and a positive electrode comprising a complex adduct of the complex adduct with the active material and a composition in which a carbon material is dispersed therein, characterized in that a porous membrane made of nitrocellulose is used as the separator. We have found that two goals can be achieved with a zinc/iodine secondary battery.

即ち、デンドライト状あるいはモス状の析出による電池
寿命の劣化は本質的には負極と正極間の内部短絡に起因
していると推定される0本発明者らはこのため、長期間
の充放電サイクルの使用に耐える電池をつくるにはこの
デンドライト状あるいはモス状の析出による結晶の成長
を電池の内部抵抗をそれほど大きくしないで物理的に抑
止する方法によつて上記難点を解決できるものと考えた
In other words, it is presumed that the deterioration of battery life due to dendrite-like or moss-like precipitation is essentially caused by an internal short circuit between the negative electrode and the positive electrode. In order to create a battery that can withstand the use of batteries, we thought that the above-mentioned difficulties could be solved by a method of physically inhibiting the growth of crystals due to dendrite-like or moss-like precipitation without increasing the internal resistance of the battery.

このためセパレーターについて種々検討した結果、ある
種のセパレーターを用いると改善の効果か有効であるこ
とを見いだした。
As a result of various studies regarding separators, it was found that the use of a certain type of separator is effective in improving the process.

一般に電池のセパレーターとしては塩化ビニル、ポリエ
チレン、ポリプロピレン、ナイロン、ゴム、フェノール
樹脂、ポリビニルアルコール。
Generally, battery separators are made of vinyl chloride, polyethylene, polypropylene, nylon, rubber, phenolic resin, and polyvinyl alcohol.

セルロースなどが用いられている。しかし実際にどのセ
パレーターを用いるかは適用する電池の系で異なってく
る。
Cellulose etc. are used. However, which separator is actually used depends on the battery system to which it is applied.

本発明は亜鉛/ヨウ素二次電池に用いるセパレーターに
関して検討したものである。詳しく説明すれば、本発明
のセパレーターは単に正極、負極の接触を防止するだけ
でなく、デンドライト状あるいはモス状に成長してくる
亜鉛の結晶を機械的強度をもって阻止することが期待さ
れているのである。
The present invention is a study on separators used in zinc/iodine secondary batteries. To explain in detail, the separator of the present invention is expected to not only prevent contact between the positive and negative electrodes, but also to prevent the growth of zinc crystals in the form of dendrites or moss with mechanical strength. be.

この理由からすればセパレーターの多孔性が重要な事柄
となってくる。すなわちテントライト状あるいはモス状
の亜鉛結晶は非常に細かい結晶として負極より正極にむ
かって成長してくる。従って機械的強度だけでなく、セ
パレーターの細孔の中を亜鉛の結晶が通過できないよう
にしなければならない。
For this reason, the porosity of the separator becomes an important matter. In other words, tentrite-like or moss-like zinc crystals grow as very fine crystals from the negative electrode toward the positive electrode. Therefore, in addition to mechanical strength, it is necessary to prevent zinc crystals from passing through the pores of the separator.

このような観点から鋭意検討した結果、ニトロセルロー
ス製多孔nQが本発明の電池のセパレーターとして好ま
しいことがわかった。さらに亜鉛結晶による内部短絡を
防ぐためには該ニトロセルロース製膜の孔の最大孔径は
5.0g、m以下が好ましく、さらに 1.0ル謬以下
であれば効果的であり、さらに0.5μ■以下が最適で
あることか判った。
As a result of intensive studies from this point of view, it was found that porous nQ made of nitrocellulose is preferable as the separator for the battery of the present invention. Furthermore, in order to prevent internal short circuits due to zinc crystals, the maximum pore diameter of the nitrocellulose membrane is preferably 5.0 g, m or less, more preferably 1.0 μm or less, and more preferably 0.5 μm or less. I found the following to be optimal.

本発明において最大孔径が5.0#L■以下というのは
、多孔の中で5.0JLmを越えるものを全く排除する
訳ではなく、全孔数のうちの80%以上、好ましくは9
a%以上が5.0ルー以下であればよいことを意味する
ものである。
In the present invention, the maximum pore diameter of 5.0 #L or less does not completely exclude pores larger than 5.0 JLm, but it is more than 80% of the total number of pores, preferably 9
This means that it is sufficient that a% or more is 5.0 Roux or less.

また孔径とは、孔が円形の場合にはその直径をいい、円
形以外の場合には同面積の円に換算したときの当該円の
直径をいう。
In addition, the pore diameter refers to the diameter when the pore is circular, and when the pore is not circular, the diameter of the circle when converted to a circle with the same area.

さらに該孔径とは、ニトロセルロース膜の表面と裏面で
孔径が異なる場合には、小さい方の径をいう。
Furthermore, when the pore diameters are different between the front and back surfaces of the nitrocellulose membrane, the pore diameter refers to the smaller diameter.

ざらに又、孔は膜面に路内−に多数分散していることか
好ましいが、例えば膜の単位面m (rTI’)当り、
 0.3〜0.9m’となる程度の細孔を有することか
好ましい。
It is preferable that the pores are dispersed in large numbers on the membrane surface, but for example, per unit surface m (rTI') of the membrane,
It is preferable that the pores have a size of 0.3 to 0.9 m'.

ざらに又、本発明のセパレーターはニトロセルロース膜
に他のセパレーター(例えば、ニトロセルロース膜、イ
オン交換膜など)を重ね合わせて組合せ使用する場合も
含まれる。
Furthermore, the separator of the present invention also includes a case where a nitrocellulose membrane is used in combination with another separator (for example, a nitrocellulose membrane, an ion exchange membrane, etc.).

本発明において、ヨウ素と錯体付加物を形成する能力の
あるポリマーとしては、ポリアクリロニトリル、ポリビ
ニルアルコール、ポリ酢酸ビニル、ナイロン−6、ポリ
ウレタン、ポリテトラメチレンエーテル、ポリ−2−ビ
ニルピリジン等が挙げられるが、もちろんこれらに限定
されるものてはない。
In the present invention, examples of the polymer capable of forming a complex adduct with iodine include polyacrylonitrile, polyvinyl alcohol, polyvinyl acetate, nylon-6, polyurethane, polytetramethylene ether, poly-2-vinylpyridine, etc. However, it is of course not limited to these.

液体の電解質として、従来同様ヨウ化亜鉛水溶液または
これに補助電解質として塩化アンモニウム、塩化カリウ
ム、塩化ナトリウム、臭化カリウム、ヨウ化アンモニウ
ム、ヨウ化カリウムなどを加えたものが用いられる。
As the liquid electrolyte, an aqueous zinc iodide solution or a solution to which ammonium chloride, potassium chloride, sodium chloride, potassium bromide, ammonium iodide, potassium iodide, etc. are added as an auxiliary electrolyte is used as in the conventional case.

また本発明においては、電解液として水溶液を用いてい
るので、該セパレーターは電池の内部抵抗を大きくしな
いため、親木性であった方がより好ましい。
Further, in the present invention, since an aqueous solution is used as the electrolyte, it is more preferable that the separator has wood-philic properties so as not to increase the internal resistance of the battery.

[実施例] 以下、実施例によって本発明の好ましい実施の態様をさ
らに具体的に説明する。なお、本実施例て「部」とある
のは、特にことわらない限り「重量部」を意味する。
[Example] Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to Examples. In this example, "parts" means "parts by weight" unless otherwise specified.

実施例1 微粉化したナイロン−6(東し社製)10部をギ酸25
部に溶解させ、この中に約30メツシユ〜200メツシ
ユの「ケッチェンブラックKB−ECJ (AKZO社
商標)15部をよく混合させながら分散させた。
Example 1 10 parts of micronized nylon-6 (manufactured by Toshi Co., Ltd.) was mixed with 25 parts of formic acid.
15 parts of Ketjenblack KB-ECJ (trademark of AKZO Co., Ltd.) of about 30 to 200 mesh was dispersed therein with thorough mixing.

このようにして得られた溶媒を含む微粉化樹脂炭素複合
体はそのまま理研精機社製粉末成型プレス機を用い、 
600kg/crn’の圧力でディスク状に加圧プレス
して、正極を得た。
The pulverized resin carbon composite containing the solvent obtained in this way was directly processed using a powder molding press manufactured by Riken Seiki Co., Ltd.
A positive electrode was obtained by pressing into a disk shape at a pressure of 600 kg/crn'.

得られた正極を乾燥して、直径2h+m、厚さ2.6−
−、重さ770Bのディスク状正極を得た。
The obtained positive electrode was dried to have a diameter of 2h+m and a thickness of 2.6-
-, a disc-shaped positive electrode weighing 770B was obtained.

本実施例によって組み立てた電池の構成を第1図に示し
た。
The structure of the battery assembled according to this example is shown in FIG.

先に作成したディスク状正極を正極10として用い、負
極20としては直径20曹■、0.3■薦厚の亜鉛板(
三井金属鉱業社製)を用いた。電解液は2.5モル/交
のヨウ化亜鉛及び6モル/又の塩化アンモニウムよりな
るものをガラス繊維症紙30に正極側に2.2g及び負
極側に2gを含浸させて用いた。セパレーター40とし
ては徳山曹達社製「ネオセプター〇M−1膜」 (陽イ
オン交換1I2)を、セパレーター50としては最大孔
径0.2 JLII 、厚さ1:15 p重のニトロセ
ルロース膜(東洋科学産業社製)を第1図に示すように
電解液を含んだガラスmms紙30の間にはさみ込み、
電池を構成した。
The previously prepared disk-shaped positive electrode was used as the positive electrode 10, and the negative electrode 20 was a zinc plate (20 mm in diameter and 0.3 mm thick) (
(manufactured by Mitsui Kinzoku Mining Co., Ltd.) was used. The electrolytic solution was composed of 2.5 mol/alternate zinc iodide and 6 mol/alternate ammonium chloride and was used by impregnating glass fibrosis paper 30 with 2.2 g on the positive electrode side and 2 g on the negative electrode side. The separator 40 was a nitrocellulose membrane with a maximum pore diameter of 0.2 JLII and a thickness of 1:15 p (Toyo Kagaku Co., Ltd.). (manufactured by Sangyo Co., Ltd.) was sandwiched between glass mms paper 30 containing electrolyte as shown in Figure 1,
The battery was configured.

なお第1図において60.60’は支持体、70はパツ
キン、80はリード線、90は白金集電体である。
In FIG. 1, 60 and 60' are a support, 70 is a packing, 80 is a lead wire, and 90 is a platinum current collector.

実験は窒素気流下25℃で行い、10■^の定電流の条
件下、充電より始めた。充電は終止電圧1.5Vまで行
い、放電は終止電圧0.9vまで行った。最初の放電時
の初期短絡電流(Isc)は148■A/am’であっ
た。またこの時の開放電圧(Voc)は1.:lSVで
あった。
The experiment was conducted at 25° C. under a nitrogen stream and started with charging under the condition of a constant current of 10 μ^. Charging was performed to a final voltage of 1.5V, and discharging was performed to a final voltage of 0.9V. The initial short circuit current (Isc) during the first discharge was 148 A/am'. Also, the open circuit voltage (Voc) at this time is 1. :lSV.

その後終止電圧1.5Vまで充電し、終止電圧0.9v
まで放電する充放電テストを作り返した。
After that, charge to the final voltage of 1.5V, and the final voltage is 0.9V.
I recreated the charge/discharge test that discharges the battery up to the maximum.

その結果、100サイクル後でもエネルギー効率、電流
効率はほとんど変化なく行われた。
As a result, the energy efficiency and current efficiency remained almost unchanged even after 100 cycles.

実施例2 微粉化したポリメチレングリコールエーテル(デュポン
社製、商品名「テラタン」、平均分子1z9oo) 6
5部をベンゼンに溶かし、この中に約30メツシユ〜2
00メツシユの群栄化学工業社製炭素m維粉rCF−0
8BT J 35部をよく混合させながら分散させた。
Example 2 Micronized polymethylene glycol ether (manufactured by DuPont, trade name "Teratane", average molecular weight 1z9oo) 6
Dissolve 5 parts in benzene and add about 30 mesh to 2
00 mesh carbon m fiber powder rCF-0 manufactured by Gunei Chemical Industry Co., Ltd.
35 parts of 8BT J was dispersed with thorough mixing.

このようにして得られた溶媒を含む微粉化樹脂炭素複合
体はそのまま理研精機社製粉末成型プレス機を用い、 
600kg/crt+’の圧力でディスク状に加圧プレ
スして正極を得た。得られた正極を乾燥して、直径20
■、厚さ2.5mm、重さ780mgのディスク状正極
を得た。
The pulverized resin carbon composite containing the solvent obtained in this way was directly processed using a powder molding press manufactured by Riken Seiki Co., Ltd.
A positive electrode was obtained by pressing into a disk shape at a pressure of 600 kg/crt+'. The obtained positive electrode was dried to a diameter of 20 mm.
(2) A disk-shaped positive electrode with a thickness of 2.5 mm and a weight of 780 mg was obtained.

本実施例によって組み立てた電池の構成は前記第1図に
示したものと同じである。
The structure of the battery assembled according to this example is the same as that shown in FIG. 1 above.

先に作成したディスク状正極を正極10として用い、負
極20としては直径20■−10,3■I厚の亜鉛板(
三井金属鍼業社製)を用いた。電解液は2.5モル/i
のヨウ化亜鉛及び6モル/文の塩化アンモニウムよりな
るものをガラス繊i1ti1M紙30に正極側に2.2
g及び負極側に2gを含浸させて用いた。セパレータ−
40としては徳山曹達社製「ネオセブターCM−1膜」
 (陽イオン交換膜)を、セパレーター、SOとしては
最大孔径0.2μ諺、厚さ 135牌■のニトロセルロ
ース膜(東洋科学産業社製)を第1図に示すように電解
液を含んだガラスm雑濾紙30の間にはさみ込み、電池
をm成した。
The previously prepared disc-shaped positive electrode was used as the positive electrode 10, and as the negative electrode 20, a zinc plate (
(manufactured by Mitsui Kinzoku Acupuncture Co., Ltd.) was used. Electrolyte is 2.5 mol/i
of zinc iodide and 6 mol/m of ammonium chloride were placed on glass fiber i1ti1M paper 30 on the positive electrode side.
g and the negative electrode side were impregnated with 2 g. Separator
40 is “Neosebuta CM-1 membrane” manufactured by Tokuyama Soda Co., Ltd.
As shown in Figure 1, a nitrocellulose membrane (manufactured by Toyo Kagaku Sangyo Co., Ltd.) with a maximum pore diameter of 0.2μ and a thickness of 135 mm is used as a separator. It was sandwiched between two pieces of miscellaneous filter paper 30 to form a battery.

実験は窒素気流下25℃で行い、 10■Aの定電流の
条件下、充電より始めた。充電は終止電圧1.SVまで
行い、放電は終止電圧0.9vまで行つた。最初の放電
時の初期短絡電流(l5c)は158諺^/crn’で
あった。またこの時の開放電圧(Voc)は1.35V
であった。その後終止電圧1.5Vまで充電し、終止電
圧0.9vまで放電する充放電テストを繰り返した。
The experiment was conducted at 25° C. under a nitrogen stream, and started with charging under the condition of a constant current of 10 μA. Charging is done at a final voltage of 1. The discharge was carried out to SV, and the discharge was carried out to a final voltage of 0.9V. The initial short-circuit current (l5c) at the first discharge was 158/crn'. Also, the open circuit voltage (Voc) at this time is 1.35V
Met. Thereafter, a charge/discharge test was repeated in which the battery was charged to a final voltage of 1.5V and discharged to a final voltage of 0.9V.

その結果、100サイクル後でもエネルギー効率、電流
効率はほとんど変化なく行われた。
As a result, the energy efficiency and current efficiency remained almost unchanged even after 100 cycles.

実施例3 実施例2において、セパレーター50として、孔径1.
0JLs 、厚さ135gmのニトロセルロース膜(東
洋科学産業社製)を用いた以外は、同様にして電池なu
j成した。
Example 3 In Example 2, the separator 50 had a pore diameter of 1.
0JLs, batteries were made in the same manner except that a 135 gm thick nitrocellulose membrane (manufactured by Toyo Kagaku Sangyo Co., Ltd.) was used.
I completed it.

実験は窒素気流下25℃で行い、IOmAの定電流の条
件下、充電より始めた。充電は終止電圧1.5■まで行
い、放電は終止電圧0.9vまで行った。最初の放電時
の初期短絡電流(Isc)は172mA/crn’であ
った。またこの時の開放電圧(Voc)は1.35Vで
あった。その後終止電圧1.5vまで充電し、終止電圧
0.9vまで放電する充放電テストな祿り返した。
The experiment was conducted at 25° C. under a nitrogen stream, and started with charging under constant current conditions of IOmA. Charging was carried out to a final voltage of 1.5V, and discharging was carried out to a final voltage of 0.9V. The initial short circuit current (Isc) during the first discharge was 172 mA/crn'. Further, the open circuit voltage (Voc) at this time was 1.35V. Thereafter, a charge/discharge test was performed in which the battery was charged to a final voltage of 1.5V and discharged to a final voltage of 0.9V.

その結果、100サイクル後でもエネルギー効率、電流
効率はほとんど変化なく行われた。
As a result, the energy efficiency and current efficiency remained almost unchanged even after 100 cycles.

比較例1 実施例1において、ニトロセルロース製多孔膜50がな
いことを除いては実施例1と同様にして電池な構成した
Comparative Example 1 A battery was constructed in the same manner as in Example 1 except that the nitrocellulose porous membrane 50 was not provided.

実験は窒素気流下25℃で行い、10mAの定電流の条
件下、充電より始めた。充電は終止電圧1.5vまで行
い、放電は終止電圧0.9vまで行った。最初の放電時
の初期短絡電流(l5c)は150mA/crn’であ
った。またこの時の開放電圧(Voc)は1.34Vで
あった。その後終止電圧i、svまで充電し、終止電圧
0.9vまで放電する充放電テストを綴り返した。
The experiment was conducted at 25° C. under a nitrogen stream and started with charging under the condition of a constant current of 10 mA. Charging was performed to a final voltage of 1.5v, and discharging was performed to a final voltage of 0.9v. The initial short circuit current (l5c) during the first discharge was 150 mA/crn'. Further, the open circuit voltage (Voc) at this time was 1.34V. Thereafter, a charge/discharge test was repeated in which the battery was charged to the final voltages i and sv and discharged to the final voltage of 0.9v.

その結果、1(1(lサイクル後でもエネルギー効率、
電流効率はほとんど変化なく行われたが、同じ電池を数
多く作成して充放電テストをすると、50サイクルまで
の充放電テストでは20〜35%の故障率てデンドライ
トに起因するトラブルが発生した。また100サイクル
までの充放電テストでは60〜80%の故障率でデンド
ライトに起因するトラブルが発生した。
As a result, the energy efficiency even after 1(1(l cycles),
Although the current efficiency remained almost unchanged, when a large number of the same batteries were made and a charge/discharge test was performed, troubles caused by dendrites occurred with a failure rate of 20 to 35% in charge/discharge tests up to 50 cycles. Further, in charge/discharge tests up to 100 cycles, troubles caused by dendrites occurred with a failure rate of 60 to 80%.

しかし、実施例1、実施例2および実施例3では表1に
示すようにデンドライトに起因する故障率は非常に少な
くなった。
However, in Examples 1, 2, and 3, as shown in Table 1, the failure rate due to dendrites was extremely low.

表     1 C’A明の効果] 以上述べたように本発明によれば、テントライト状ある
いはモス状の亜鉛結晶を発生させることがないため、長
期使用が可能となり、信頼性の高い、かつ生産性の高い
亜鉛/ヨウ素二次電池を提供することができる。なお本
発明によって得られる二次電池はボタン型二次電池、円
筒型二次電池及び角型二次電池に用いられる時、特に有
利な効果を示し、新型二次電池として産業上の利用価値
の高いものである。
Table 1 Effects of C'A Ming] As described above, according to the present invention, since tentite-like or moss-like zinc crystals are not generated, long-term use is possible, and high reliability and productivity can be achieved. A zinc/iodine secondary battery with high properties can be provided. The secondary battery obtained by the present invention exhibits particularly advantageous effects when used as a button-type secondary battery, a cylindrical secondary battery, and a prismatic secondary battery, and has industrial utility value as a new type of secondary battery. It's expensive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の二次電池の構成の1例を示す概略断面
図である。 lO: 正極 20: 負極 30: ガラス繊維症紙 40: セパレーター 50: セパレーター 60: 支持体 60′ : 支持体 70: パツキン 80:  リード線 90: 白金集電体
FIG. 1 is a schematic cross-sectional view showing one example of the configuration of a secondary battery of the present invention. lO: Positive electrode 20: Negative electrode 30: Glass fibrosis paper 40: Separator 50: Separator 60: Support 60': Support 70: Packing 80: Lead wire 90: Platinum current collector

Claims (2)

【特許請求の範囲】[Claims] (1)亜鉛を活物質とする負極と、ヨウ素及びヨウ素と
錯体付加物を形成する能力のあるポリマーとの錯体付加
物並びにその中に炭素材料を分散せしめた組成物を活物
質とする正極の間にセパレーターを有する亜鉛/ヨウ素
二次電池において、セパレーターとしてニトロセルロー
ス製多孔膜を用いることを特徴とする亜鉛/ヨウ素二次
電池。
(1) A negative electrode that uses zinc as an active material, a complex adduct of iodine and a polymer capable of forming a complex adduct with iodine, and a positive electrode that uses as an active material a composition in which a carbon material is dispersed. A zinc/iodine secondary battery having a separator therebetween, characterized in that a porous membrane made of nitrocellulose is used as the separator.
(2)ニトロセルロース製多孔膜の最大孔径が5.0μ
m以下であることを特徴とする特許請求の範囲第1項記
載の亜鉛/ヨウ素二次電池。
(2) The maximum pore diameter of the nitrocellulose porous membrane is 5.0μ
2. The zinc/iodine secondary battery according to claim 1, wherein the zinc/iodine secondary battery is less than or equal to m.
JP62037398A 1987-02-20 1987-02-20 Zinc/iodine secondary battery Pending JPS63205067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62037398A JPS63205067A (en) 1987-02-20 1987-02-20 Zinc/iodine secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62037398A JPS63205067A (en) 1987-02-20 1987-02-20 Zinc/iodine secondary battery

Publications (1)

Publication Number Publication Date
JPS63205067A true JPS63205067A (en) 1988-08-24

Family

ID=12496422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62037398A Pending JPS63205067A (en) 1987-02-20 1987-02-20 Zinc/iodine secondary battery

Country Status (1)

Country Link
JP (1) JPS63205067A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347165A (en) * 2002-05-23 2003-12-05 Mitsubishi Paper Mills Ltd Separator for capacitor
JP2007173447A (en) * 2005-12-21 2007-07-05 Asahi Kasei Fibers Corp Electrical accumulation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003347165A (en) * 2002-05-23 2003-12-05 Mitsubishi Paper Mills Ltd Separator for capacitor
JP2007173447A (en) * 2005-12-21 2007-07-05 Asahi Kasei Fibers Corp Electrical accumulation device

Similar Documents

Publication Publication Date Title
US4552821A (en) Sealed nickel-zinc battery
US4622611A (en) Double layer capacitors
EP0161318B1 (en) Iodine cell
WO2021133263A1 (en) Rechargeable aqueous zinc-iodine cell
US3716411A (en) Rechargeable alkaline manganese cell
JPS63205067A (en) Zinc/iodine secondary battery
JPH0425676B2 (en)
JPS58206048A (en) Alkaline battery
JPS63205066A (en) Zinc/iodine secondary battery
JPS60202666A (en) Paste type cadmium anode plate for alkaline storage battery
JPS6230285Y2 (en)
JPS63205055A (en) Negative current collector of secondary battery
JP2734523B2 (en) Battery separator
JPH06196141A (en) Nickel-hydrogen battery
JPS63205054A (en) Negative current collector of secondary battery
JPH02109263A (en) Lead-acid battery
JP3010992B2 (en) Battery electrode
JPS6243081A (en) Zinc-iodine secondary battery
JP3114419B2 (en) Sealed storage battery
JPH04118853A (en) Separator for lead storage battery
JPH0329130B2 (en)
JPH0794205A (en) Sealed type lead-acid battery
JPH0133912B2 (en)
JPS6074341A (en) Electrolytic retaining body for battery
JPS6226915Y2 (en)