JPH0329130B2 - - Google Patents

Info

Publication number
JPH0329130B2
JPH0329130B2 JP59060850A JP6085084A JPH0329130B2 JP H0329130 B2 JPH0329130 B2 JP H0329130B2 JP 59060850 A JP59060850 A JP 59060850A JP 6085084 A JP6085084 A JP 6085084A JP H0329130 B2 JPH0329130 B2 JP H0329130B2
Authority
JP
Japan
Prior art keywords
zinc
electrode plate
negative electrode
electrolyte
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59060850A
Other languages
Japanese (ja)
Other versions
JPS60207250A (en
Inventor
Kenichiro Jinnai
Eiichi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP59060850A priority Critical patent/JPS60207250A/en
Publication of JPS60207250A publication Critical patent/JPS60207250A/en
Publication of JPH0329130B2 publication Critical patent/JPH0329130B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

A 産業上の利用分野 本発明は亜鉛−臭素電池の負極に用いる電極
板、特にカーボンプラスチツク電極板の物理的特
性の改善に関するものである。 B 発明の概要 本発明は、高い電池効率をもつ亜鉛−臭素二次
電池を得るため、負極電解液と接する負極用電極
板面上の表面粗さ値が、0.1μm以上である電極板
としたものである。 C 従来の技術 亜鉛−臭素電池は高いエネルギー密度をもち、
古くから実用化を図るため研究されてきたが、近
年エネルギー有効利用の観点から再び脚光を浴
び、活発な実用開発がなされている。 例えば第1図は従来の電解液循環型の亜鉛−臭
素二次電池の基本的構成を示すもので、図中1は
単セル、2は正極室、3は負極室、4は多孔質膜
から成る隔膜、5は正極用電極板、6は負極用電
極板(成型体)、7は正極電解液、8は負極電解
液、9は正極電解液貯槽、10は負極電解液貯
槽、11および12はポンプである。 上記のような従来の亜鉛−臭素電池の負極側で
は、以下に記すような自己放電が生じることが知
られている。 (a) 正極用電極板5から負極用電極板6へ隔膜4
を透過して拡散してくる臭素及び電解液による
自己放電 (b) 負極用電極板6の表面と電析亜鉛との密着性
低下による自己放電 以上のうち特に後者(b)の自己放電が生じた場合
には著しく電池効率が低下する。その理由として
以下の事が上げられる。 電析亜鉛の密着性の低下によつて負極用電極板
と電析亜鉛との接触抵抗の増加によつ電圧効率が
低下すること。及び接触抵抗の増加によつて放電
できない亜鉛(未反応亜鉛)が電極板表面に残留
し電気量効率が低下すること。 また、本電池は1日8時間充電、8時間停止、
さらに8時間放電を行なう負荷平準化(load
leveling)用として使用される。そのため充電後
の停止時間には、電解液の循環を停止して電解液
を貯蔵槽に返し、自己放電を防止している。この
際、亜鉛の密着性が悪いと電析亜鉛中に残存する
電解液が多くなり、該電解液中への混入臭素と亜
鉛との間で自己放電が生じ、電池効率が低下す
る。 D 発明が解決しようとする問題点 電析亜鉛の密着性低下は金属電極を使用するこ
とによつて抑制できるが、加工性、耐臭素性の点
で問題があるため、通常カーボンプラスチツク電
極を用いることが好ましい。そのため該カーボン
プラスチツク電極板において、密着性を向上させ
る事が問題となつていた。 本発明は前述の従来技術の問題点を解決するた
めになされたものであり、亜鉛−臭素電池の負極
電極に用いるカーボンプラスチツク電極において
高い密着性をもち、自己放電が少なく、電池効率
の高い電極板を提供することを目的とする。 E 問題点を解決するための手段 本発明は、成型体6から亜鉛−臭素電池の負極
用電極板であつて、成型体6は樹脂マトリツクス
と導電性付与剤とが混練されたものであり、負極
電解液8に接する表面粗さ値が、0.1μm以上であ
る亜鉛−臭素電池の負極用電極板とすることによ
り前述の問題点を解決したものである。 F 作用 本発明においては、前記負極用電極板の負極電
解液に接する面上の任意の地点での表面粗さ値
が、0.1μm以上であるため、表面の微細な凹凸が
増加する。これにより、従来に比べ電析亜鉛の密
着性が高くなる。そのため自己放電が減少し、亜
鉛−臭素電池の電池効率を向上させることができ
る。 G 実施例 実施例 1 電極板の表面をサンドペーパを用いて変化せし
め、表面粗さとクーロン効率及び過電圧の経時変
化の関係を調べた。 (a) 使用したカーボンプラスチツク電極板の組成 カーボンブラツク:20〜40重量% ポリエチレン:60〜80重量% (b) 使用した市販のサンドペーパ毎のカーボンプ
ラスチツク電極表面の十点平均粗さ及び20m
A/cm2の電流密度で30分充電した析出亜鉛の引
きはがし強さを以下に示す。
A. Industrial Application Field of the Invention The present invention relates to improving the physical properties of electrode plates, particularly carbon plastic electrode plates, used as negative electrodes in zinc-bromine batteries. B. Summary of the Invention In order to obtain a zinc-bromine secondary battery with high battery efficiency, the present invention provides an electrode plate having a surface roughness value of 0.1 μm or more on the surface of the negative electrode plate in contact with the negative electrode electrolyte. It is something. C. Conventional technology Zinc-bromine batteries have high energy density;
Although it has been studied for a long time in order to put it into practical use, it has recently come back into the spotlight from the perspective of effective energy use, and active practical development is being carried out. For example, Figure 1 shows the basic configuration of a conventional electrolyte circulation type zinc-bromine secondary battery, where 1 is a single cell, 2 is a positive electrode chamber, 3 is a negative electrode chamber, and 4 is a porous membrane. 5 is a positive electrode plate, 6 is a negative electrode plate (molded body), 7 is a positive electrode electrolyte, 8 is a negative electrode electrolyte, 9 is a positive electrode electrolyte storage tank, 10 is a negative electrode electrolyte storage tank, 11 and 12 is a pump. It is known that self-discharge as described below occurs on the negative electrode side of the conventional zinc-bromine battery as described above. (a) Diaphragm 4 from positive electrode plate 5 to negative electrode plate 6
(b) Self-discharge due to decreased adhesion between the surface of the negative electrode plate 6 and the deposited zinc Among the above, the latter (b) particularly occurs. In this case, battery efficiency will drop significantly. The reasons for this are as follows. A decrease in voltage efficiency due to an increase in contact resistance between the negative electrode plate and the deposited zinc due to a decrease in the adhesion of the deposited zinc. Also, due to an increase in contact resistance, zinc that cannot be discharged (unreacted zinc) remains on the electrode plate surface, resulting in a decrease in electricity efficiency. In addition, this battery can be charged for 8 hours a day, stopped for 8 hours,
Load leveling (load
used for leveling). Therefore, during the stop time after charging, the circulation of the electrolyte is stopped and the electrolyte is returned to the storage tank to prevent self-discharge. At this time, if the adhesion of zinc is poor, a large amount of the electrolytic solution remains in the deposited zinc, and self-discharge occurs between the bromine mixed in the electrolytic solution and the zinc, resulting in a decrease in battery efficiency. D Problems to be Solved by the Invention The decrease in adhesion of deposited zinc can be suppressed by using metal electrodes, but since there are problems in workability and bromine resistance, carbon plastic electrodes are usually used. It is preferable. Therefore, it has been a problem to improve the adhesion of the carbon plastic electrode plate. The present invention has been made to solve the problems of the prior art described above, and provides a carbon plastic electrode used as a negative electrode of a zinc-bromine battery that has high adhesion, little self-discharge, and high battery efficiency. The purpose is to provide a board. E Means for Solving the Problems The present invention is an electrode plate for a negative electrode of a zinc-bromine battery made from a molded body 6, in which the molded body 6 is a mixture of a resin matrix and a conductivity imparting agent, The above-mentioned problems are solved by providing an electrode plate for a negative electrode of a zinc-bromine battery having a surface roughness value of 0.1 μm or more in contact with the negative electrode electrolyte 8. F Effect In the present invention, since the surface roughness value at any point on the surface of the negative electrode plate in contact with the negative electrolyte is 0.1 μm or more, fine irregularities on the surface increase. This increases the adhesion of the deposited zinc compared to the conventional method. Therefore, self-discharge is reduced and the battery efficiency of the zinc-bromine battery can be improved. G Examples Example 1 The surface of the electrode plate was changed using sandpaper, and the relationship between surface roughness, coulomb efficiency, and overvoltage changes over time was investigated. (a) Composition of the carbon plastic electrode plate used Carbon black: 20-40% by weight Polyethylene: 60-80% by weight (b) Ten-point average roughness of the carbon plastic electrode surface and 20 m for each commercially available sandpaper used
The peeling strength of the deposited zinc after charging at a current density of A/cm 2 for 30 minutes is shown below.

【表】【table】

【表】 表面粗さの異なる上記カーボンプラスチツク電
極板を用いて亜鉛を20mA/cm2の定電流で電析さ
せ、数日間放電後20mA/cm2の電流密度で放電
し、クーロン効率及び過電圧の経時変化を無処理
電極と比較し求めた。得られた結果を第2図及び
第3図に示す。 第2図及び第3図に示されるように無処理電極
板Aに比べて、#1500のサンドペーパで表面を粗
くした電極板Bでは、クーロン効率の減少及び電
圧効率の低下を表わす過電圧の異常増加が抑えら
れていることがわかる。 実施例 2 電極板表面の十点平均粗さRz(μm)とクーロ
ン効率との関係を求め、その結果を第4図に示
す。電流密度は実施例1と同様である。 第4図から明らかなように電極板の表面粗さが
0.1μm以上のときクーロン効率は80%以上と、高
い効率が得られることがわかつた。 実施例 3 #1500のサンドペーパを使用した電極板Bと無
処理電極板Aの20mA/cm2電流密度での放電曲線
を求め、その結果を第5図に示す。但し充電時間
は20mA/cm2の電流密度で30分とした。第5図に
示されるように表面を粗くする処理をした電極板
Bは無処理電極板Aに比べて亜鉛の電極電位及び
放電時間とも優れていることを示している。なお
第5図のA、Bに対応する放電終了後の電極板の
表面状態を第6図に示したが、無処理電極板Aに
おいては、放電後においても亜鉛(イ)が残留してい
ることが明らかである。 以上の実施例においては、電極板の表面を粗く
する処理に際し、サンドペーパのような機械的手
段を用いたが、エツチング等の化学的手段あるい
はオゾン照射等の物理的手段等他のどんな手段を
用いてもよい。 H 発明の効果 本発明においては、前記負極用電極板の負極電
解液と接する面上の任意の地点での表面粗さ値
が、0.1μm以上であるため、表面の微細な凹凸が
増加する。これにより、従来に比べ電析亜鉛の密
着性が高くなる。そのため自己放電が減少し、亜
鉛−臭素電池の電圧効率、クーロン効率、電池効
率を向上させることができる。
[Table] Using the above carbon plastic electrode plates with different surface roughnesses, zinc was deposited at a constant current of 20 mA/cm 2 , and after discharging for several days, discharge was performed at a current density of 20 mA/cm 2 to determine the Coulombic efficiency and overvoltage. Changes over time were determined by comparing with untreated electrodes. The results obtained are shown in FIGS. 2 and 3. As shown in Figures 2 and 3, compared to untreated electrode plate A, electrode plate B, whose surface has been roughened with #1500 sandpaper, has an abnormal increase in overvoltage, which indicates a decrease in Coulomb efficiency and a decrease in voltage efficiency. can be seen to be suppressed. Example 2 The relationship between the ten-point average roughness Rz (μm) of the electrode plate surface and the Coulomb efficiency was determined, and the results are shown in FIG. The current density is the same as in Example 1. As is clear from Figure 4, the surface roughness of the electrode plate is
It was found that when the diameter is 0.1 μm or more, the Coulomb efficiency is 80% or more, indicating that high efficiency can be obtained. Example 3 The discharge curves of electrode plate B using #1500 sandpaper and untreated electrode plate A at a current density of 20 mA/cm 2 were determined, and the results are shown in FIG. However, the charging time was 30 minutes at a current density of 20 mA/cm 2 . As shown in FIG. 5, electrode plate B subjected to surface roughening treatment is superior to untreated electrode plate A in both zinc electrode potential and discharge time. Figure 6 shows the surface condition of the electrode plate after discharge corresponding to A and B in Figure 5, but in untreated electrode plate A, zinc (a) remains even after discharge. That is clear. In the above examples, mechanical means such as sandpaper was used to roughen the surface of the electrode plate, but any other means such as chemical means such as etching or physical means such as ozone irradiation may be used. It's okay. H Effects of the Invention In the present invention, since the surface roughness value at any point on the surface of the negative electrode plate in contact with the negative electrolyte is 0.1 μm or more, fine irregularities on the surface increase. This increases the adhesion of the deposited zinc compared to the conventional method. Therefore, self-discharge is reduced, and the voltage efficiency, Coulomb efficiency, and battery efficiency of the zinc-bromine battery can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解液循環型の亜鉛−臭素二次電池の
基本的構成であつて、充電時を示す説明図、第2
図は実施例1におけるクーロン効率の経時変化を
示すグラフ、第3図は同じく過電圧の経時変化を
示すグラフ、第4図は実施例2におけるクーロン
効率と負極用電極板の十点平均粗さの関係を示す
グラフ、第5図は実施例3における表面処理の放
電曲線に与える影響を示すグラフ、第6図は同じ
く放電終了後の電極表面状態の模式図である。 1……単セル、4……隔膜、5……正極用電極
板、6……負極用電極板(成型体)、7……正極
電解液、8……負極電解液。
Figure 1 shows the basic configuration of an electrolyte circulation type zinc-bromine secondary battery.
The figure is a graph showing the change in Coulombic efficiency over time in Example 1, FIG. 3 is a graph showing the change in overvoltage over time, and FIG. FIG. 5 is a graph showing the relationship, and FIG. 5 is a graph showing the influence of surface treatment on the discharge curve in Example 3, and FIG. 6 is a schematic diagram of the electrode surface state after completion of discharge. 1... Single cell, 4... Diaphragm, 5... Electrode plate for positive electrode, 6... Electrode plate for negative electrode (molded body), 7... Positive electrode electrolyte, 8... Negative electrode electrolyte.

Claims (1)

【特許請求の範囲】 1 成型体6からなる亜鉛−臭素電池の負極用電
極板であつて、 成型体6は、樹脂マトリツクスと導電性付与剤
とが混練されたものであり、 負極電解液8に接する表面粗さ値が、0.1μm以
上である 亜鉛−臭素電池の負極用電極板。
[Scope of Claims] 1. An electrode plate for a negative electrode of a zinc-bromine battery comprising a molded body 6, wherein the molded body 6 is a mixture of a resin matrix and a conductivity imparting agent, and a negative electrode electrolyte 8. An electrode plate for a negative electrode of a zinc-bromine battery, which has a surface roughness value of 0.1 μm or more.
JP59060850A 1984-03-30 1984-03-30 Electrode plate of zinc-bromine cell Granted JPS60207250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59060850A JPS60207250A (en) 1984-03-30 1984-03-30 Electrode plate of zinc-bromine cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59060850A JPS60207250A (en) 1984-03-30 1984-03-30 Electrode plate of zinc-bromine cell

Publications (2)

Publication Number Publication Date
JPS60207250A JPS60207250A (en) 1985-10-18
JPH0329130B2 true JPH0329130B2 (en) 1991-04-23

Family

ID=13154260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59060850A Granted JPS60207250A (en) 1984-03-30 1984-03-30 Electrode plate of zinc-bromine cell

Country Status (1)

Country Link
JP (1) JPS60207250A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752657B2 (en) * 1986-02-06 1995-06-05 田中貴金属工業株式会社 Halogen battery
JPH0189462U (en) * 1987-12-07 1989-06-13
JP2928922B2 (en) * 1988-05-27 1999-08-03 セイコーインスツルメンツ株式会社 Method of manufacturing flat battery

Also Published As

Publication number Publication date
JPS60207250A (en) 1985-10-18

Similar Documents

Publication Publication Date Title
EP0161318B1 (en) Iodine cell
AU597918B2 (en) Surface treated electrodes applicable to zinc-halogen secondary batteries
JPH0329130B2 (en)
US4001037A (en) Lead batteries
JPS5894770A (en) Leakage-less closed type lead battery
JP3374462B2 (en) Sealed lead storage battery
KR102138270B1 (en) Manufacturing method of negative electrode coated with activated carbon as active materials for ultra battery and ultra battery comprising negative electrode for ultra battery manufactured the same
JP2853271B2 (en) Electrolyte static zinc-bromine battery
JP2967632B2 (en) Bipolar electrode for zinc-bromine battery
JPH0159702B2 (en)
JP3944887B2 (en) Alkaline zinc storage battery
JPS61158673A (en) Zinc-halogen battery with porous electrode
JPH0449748B2 (en)
JPH076767A (en) Negative electrode plate for sealed lead-acid battery
JP2853294B2 (en) Electrolyte static type zinc-bromine secondary battery
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPH0732018B2 (en) Polymer battery
JPS6243081A (en) Zinc-iodine secondary battery
JPS63299051A (en) Lead-acid battery
JPS63205067A (en) Zinc/iodine secondary battery
KR100287123B1 (en) Alkali-zinc secondary battery
JP2787058B2 (en) Method for manufacturing electrode plate for lead-acid battery
JPH05283073A (en) Lithium secondary battery
JPH07161342A (en) Separator for lead-acid battery
JPS58147957A (en) Small sealed lead storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term