JPH0449748B2 - - Google Patents

Info

Publication number
JPH0449748B2
JPH0449748B2 JP58223262A JP22326283A JPH0449748B2 JP H0449748 B2 JPH0449748 B2 JP H0449748B2 JP 58223262 A JP58223262 A JP 58223262A JP 22326283 A JP22326283 A JP 22326283A JP H0449748 B2 JPH0449748 B2 JP H0449748B2
Authority
JP
Japan
Prior art keywords
electrode
bromine
metal
discharge
porous conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58223262A
Other languages
Japanese (ja)
Other versions
JPS60117560A (en
Inventor
Akihiko Hirota
Eiichi Fujii
Toshinori Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP58223262A priority Critical patent/JPS60117560A/en
Publication of JPS60117560A publication Critical patent/JPS60117560A/en
Publication of JPH0449748B2 publication Critical patent/JPH0449748B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は電解液循環型金属−臭素バイポーラ型
積層二次電池の臭素活物質側電極として使用する
のに好適な多孔質導電性シートをバツキングした
表面処理電極において適当な比表面積を有する材
料により電極を形成させることにより、電気化学
的反応の効率向上とその効率の安定維持を図つた
優れた金属−臭素二次電池に関するものである。 〔従来技術〕 金属(例えばZn、Cd、Fe、Pb等)−臭素電池
において使用される電極としては、従来からある
貴金属例えば白金等を用いた金属電極と、プラス
チツク等に導電性を有する物質例えばカーボン等
を混練させ、電導性を有したプラスチツク電極及
び炭素自体を利用した炭素電極等が使用されてい
る。 先ず、金属電極においては、本電池の充電時に
おいて発生する臭素の腐食性を考慮すると、貴金
属に限定されることになる。これら金属を電極に
使用した場合、電気抵抗は非常に小さく、電池の
電圧効率も良好である。また放電時において、放
電時間も長く、クーロン効率も優れている。然し
ながら貴金属を使用するため当然コストが高くな
るため実用向ではない。 次に炭素電極も上述の金属電極に次いで電気抵
抗値は低いが、機械的強度が弱く、特に耐衝撃に
よるクラツク発生が有り、その信頼性に問題があ
つた。更に一般的に炭素電極は多孔性の為、電極
を隔離板として機能を持たせるバイポーラ型直列
積層電池システムには不適であつた。 最後にプラスチツク電極においても寿命は満足
出来るが電気抵抗が高く、又クーロン効率におい
て電極表面の電気抵抗も当然高いので、活物質の
電極反応抵抗も大となり低い効率しか出ない問題
点があつた。 本発明者らは叙上の金属−臭素二次電池の電極
として先に特願昭57−204460号において、亜鉛−
臭素電池のプラスチツク電極表面に多孔質導電性
シートの層を形成させたことを特徴とするプラス
チツク電極が電池の特性を向上せしめることを見
出した。 〔発明の目的〕 本発明は従来の金属、炭素、プラスチツク電極
とも夫々経済性寿命効率等において種々問題点が
あり十分金属(特に亜鉛)−臭素電池に適用可能
な電極が見い出されなかつたので、従来の問題点
を解決し実用可能電極を得るために、先に提案し
たプラスチツク電極表面に導電性シートをバツキ
ングした表面処理電極において、バツキングされ
る導電性シートの特性を改良し優れた金属−臭素
二次電池を得ることを目的とする。 〔発明の概要〕 本発明の要旨とするところは、多孔質導電性板
状体と、導電性物質を含むポリオレフイン樹脂板
状体とを一体成形してなる電極であつて、該電極
の多孔質導電性板状体表面を正極側電解液と接す
るようにした金属−臭素二次電池において、前記
電極に一体成形された多孔質導電性板状体の孔径
3.0nm〜8μmの範囲の空孔の空孔量を0.1cm3/g以
上にしたことを特徴とする金属−臭素二次電池で
ある。本発明の電池における電極の基体を構成す
るものとしては、遊離臭素またはイオン状態の臭
素と長時間接触していても変質の起りにくいもの
という条件を満足させる必要からポリオレフイン
が使用される。 またプラスチツク電極は、例えば密度0.94g/
cm3以上の高密度ポリエチレン100重量部にカーボ
ンブラツク50重量部を混練してプレス成形などに
より電極(以下CPという。)を作ることができ
る。 本発明でいう多孔質導電性板状体とは、例えば
ポリアクリロニトリルから作られる導電性の炭素
繊維によるフエルト状、ニツト状またはクロス状
などの布帛の形態を保つているものを指し、この
ような形態を有するとプラスチツク電極表面上に
層を形成する際の取扱に有利となる。またこの多
孔質導電性板状体には化学処理等によつて、数1/
10nm〜数100nmの微細孔を有し、その気孔率は
2.0%以上である炭素繊維または多孔質金属シー
ト等から作られているが、本発明はクロス形態の
多孔質炭素繊維(以下C−CCという)を用い、
これらをCPの、枠付成形時に従来法にて熱圧着
し、多孔性導電性シート熱圧着電極(以下CC−
CPという。)とし適用することが好ましい。 本発明者の研究の結果、C−CC−CPの金属
(Zn)−Br2電池の正極としての最適な比表面積は
実用的には100m2/g以上、好ましくは300m3/g
以上、最も好ましいのは500〜600m2/gであるこ
とを実施例により確認した。即ち、金属−臭素電
池は放電初期は活物質である臭素分子(Br2)の
量が多いので、特に問題はないが、活物質である
臭素分子の量が少なくなる放電末期では、正極電
極で臭素分子の移動が遅れるために生じる過電圧
(所謂、濃度過電圧)が増加し、反応性が低下す
ることとなる。従つて、放電末期においても反応
活性に富んだ電極とするためには、臭素分子を良
好に電極面積に捕らえることができる電極とする
必要がある。そこで、後述する実施例で、金属−
臭素電池の活物質である臭素分子と有効に電気化
学反応をなすのに充分な比表面積として100m2
g以上を確認した。従つて、他のバツキング可能
な導電性シートの場合もバツキングして得られた
電極の比抵抗が0.4Ωcm以下であれば、上記の比
表面積の範囲となるもの凡てについて、当金属−
Br2電池の正極として使用可能であることが云え
る。 更に多孔性導電性シートとして空孔量の異なる
4種のC−CCをCPに熱圧着して得られたCC−
CPの比表面積や種々の電流密度による放電々位
(Vm)特性を比較検討した結果C−CCの気孔率
が異なるに従つてCC−CPの比表面積Ssも変化
し、その放電々位特性の優れているものは比表面
積Ssの大きな値を示し、放電々位特性と電極比
表面積とは何らかの相関性があることが判る。 次に炭素繊維を多孔質にしてそれをCP表面に
熱圧着したものは放電々位特性が向上するが、空
孔量(Po値)としては、3.0nm〜8μmの空孔直径
(D径)範囲において0.1cm3/g以上であること、
とりわけ0.5cm3/g以上だと金属(例えばZn)−臭
素(Br2)電池のエネルギー効率70%を満足でき
ることが後述の実施例によつて明らかになつた。
即ち、多孔質導電性板状体表面の比表面積と放電
末期の反応活性とは相関があることが示された
が、多孔質導電性板状体の空孔量(即ち、空孔の
孔径の分布)と、放電電位特性との関係を検討し
た。具体的には、孔径の範囲と放電電位との関係
を見ると、孔径が3.0nm〜8μm範囲の分布と放電
電位との相関関係があり、その範囲の孔径の増加
が臭素の反応の向上に最も寄与していることが確
認された。また最高の放電々位特性を得るために
は、上記の直径範囲では40mA/cm2放電までは、
約0.4cm3/g以上必要であることが確認され、次
に、他の多孔質導電性板状体においては、上述し
たようにCPに熱圧着したものが0.4Ωcm以下の比
抵抗を持つものであれば、3.0nm〜8μmの空孔直
径(D径)範囲で空孔量(Pv値)が増加すれば、
平均電位が向上し、金属−Br2電池の正極として
有効となると云える。斯くしてD径範囲における
Pv値とVmとの関係から熱圧着電極の選定が出来
る訳である。尚、ポリオレフイン樹脂板状体を一
体成形した電極の比表面積、空孔量は、一体成形
前の多孔質導電性板状体単独の値でなく、一体成
形した後の電極の多孔質導電性板状体側の電極表
面の比表面積及び空孔量である。多孔質導電性板
状体はポリオレフイン樹脂板状体と接している面
は直接臭素との反応に寄与せず、また一体成形加
工の際に機械的な作用により活性表面が破壊され
たり脱落する場合があるので、電極表面の比表面
積と共に多孔質導電性板状体自体の表面積、空孔
量を記載した。 以下実施例によつて本発明の構成及び効果を具
体的に説明する。 〔発明の実施例〕 実施例 1 密度0.94g/cm3以上の高密度ポリエチレン100
部にカーボンブラツク50部を混練してプレス成形
により作成したカーボンプラスチツチ(以下CP)
に、化学処理によつて微細孔を設けた炭素繊維を
シート状にしたクロス形態の多孔質炭素繊維(以
下C−CCという)の微細孔の大きさや量を異な
らしめ全体としてBTE法による比表面積Ss0
(m2/g)の異なるC−CCをCPに従来の枠付電
極成形方法で熱圧着によりバツキングさせた4種
(A,B,C,D)のクロス形態多孔質炭素繊維
バツキングカーボンプラスチツク(以下C−CC
−CP)についてBET法により比表面積Ss(m2
g)を測定し更に正極電解液として3mol/の
ZnBr2+Br2にて種々の電流密度による平均放電
電位Vm(V)(Ag−Agcl標準電極に対する)特性
を試験した。この結果を次の第1表に示す。
[Technical Field of the Invention] The present invention relates to a surface-treated electrode backed with a porous conductive sheet suitable for use as an electrode on the bromine active material side of a metal-bromine bipolar type stacked secondary battery with an electrolyte circulation type. The present invention relates to an excellent metal-bromine secondary battery that improves the efficiency of electrochemical reactions and stably maintains the efficiency by forming electrodes from a material that has a surface area. [Prior Art] Electrodes used in metal (e.g. Zn, Cd, Fe, Pb, etc.)-bromine batteries include conventional metal electrodes using noble metals such as platinum, and conductive materials such as plastics. Plastic electrodes kneaded with carbon or the like and having electrical conductivity, and carbon electrodes using carbon itself are used. First, metal electrodes are limited to noble metals, considering the corrosive nature of bromine generated during charging of this battery. When these metals are used for electrodes, the electrical resistance is extremely low and the voltage efficiency of the battery is also good. Furthermore, during discharge, the discharge time is long and the Coulombic efficiency is excellent. However, since precious metals are used, the cost is naturally high, so it is not suitable for practical use. Next, carbon electrodes also have the lowest electrical resistance value next to the metal electrodes mentioned above, but their mechanical strength is weak and cracks occur particularly due to impact resistance, which poses problems in their reliability. Furthermore, because carbon electrodes are generally porous, they are not suitable for bipolar series stacked battery systems in which the electrodes function as separators. Finally, plastic electrodes also have a satisfactory lifespan, but have a high electrical resistance, and in terms of Coulomb efficiency, the electrical resistance of the electrode surface is naturally high, so the electrode reaction resistance of the active material is also large, resulting in a problem that only low efficiency can be achieved. The present inventors previously proposed zinc-bromine as an electrode for the above-mentioned metal-bromine secondary battery in Japanese Patent Application No. 57-204460.
It has been found that a plastic electrode of a bromine battery, which is characterized by having a porous conductive sheet layer formed on its surface, improves the characteristics of the battery. [Purpose of the Invention] The present invention was developed because conventional metal, carbon, and plastic electrodes each had various problems in terms of economic efficiency, life efficiency, etc., and an electrode sufficiently applicable to metal (particularly zinc)-bromine batteries had not been found. In order to solve the conventional problems and obtain a practical electrode, we proposed a surface-treated electrode in which a conductive sheet is back-packed on the surface of a plastic electrode. The purpose is to obtain secondary batteries. [Summary of the Invention] The gist of the present invention is to provide an electrode formed by integrally molding a porous conductive plate-like body and a polyolefin resin plate-like body containing a conductive substance, the porous In a metal-bromine secondary battery in which the surface of the conductive plate is in contact with the electrolyte on the positive electrode side, the pore diameter of the porous conductive plate integrally formed with the electrode
This is a metal-bromine secondary battery characterized in that the amount of pores in the range of 3.0 nm to 8 μm is 0.1 cm 3 /g or more. Polyolefin is used as the material constituting the electrode substrate in the battery of the present invention because it is necessary to satisfy the condition that it is resistant to deterioration even if it is in contact with free bromine or ionic bromine for a long time. In addition, plastic electrodes have a density of, for example, 0.94g/
Electrodes (hereinafter referred to as CP) can be made by kneading 50 parts by weight of carbon black with 100 parts by weight of high-density polyethylene of cm 3 or more and press molding. The porous conductive plate-like material used in the present invention refers to a material that maintains the form of a felt-like, knit-like, or cloth-like fabric made of conductive carbon fibers made from polyacrylonitrile. The shape is advantageous for handling when forming a layer on the surface of a plastic electrode. In addition, this porous conductive plate-like material can be made by chemical treatment, etc.
It has micropores of 10 nm to several 100 nm, and its porosity is
Although it is made from carbon fibers or porous metal sheets with a carbon content of 2.0% or more, the present invention uses cross-shaped porous carbon fibers (hereinafter referred to as C-CC),
These are thermocompression bonded using a conventional method during frame molding of CP, and porous conductive sheet thermocompression bonded electrodes (hereinafter referred to as CC-
It's called CP. ) is preferably applied. As a result of research by the present inventor, the optimum specific surface area of C-CC-CP as a positive electrode for metal (Zn)-Br 2 batteries is practically 100 m 2 /g or more, preferably 300 m 3 /g.
As mentioned above, it was confirmed from the examples that the most preferable range is 500 to 600 m 2 /g. In other words, metal-bromine batteries have a large amount of active material, bromine molecules (Br 2 ), at the beginning of discharge, so there is no particular problem, but at the end of discharge, when the amount of active material, bromine molecules, decreases, the positive electrode Overvoltage (so-called concentration overvoltage) generated due to the delay in the movement of bromine molecules increases, resulting in a decrease in reactivity. Therefore, in order to provide an electrode that is highly reactive even at the end of discharge, it is necessary to provide an electrode that can trap bromine molecules well in the electrode area. Therefore, in the examples described later, metal-
100m 2 /
g or more was confirmed. Therefore, in the case of other conductive sheets that can be buckled, as long as the specific resistance of the electrode obtained by buckling is 0.4Ωcm or less, the metal -
It can be said that it can be used as a positive electrode for Br 2 batteries. Furthermore, as a porous conductive sheet, CC-
As a result of a comparative study of the specific surface area of CP and discharge level (Vm) characteristics depending on various current densities, it was found that as the porosity of C-CC differs, the specific surface area Ss of CC-CP also changes. The excellent ones show a large value of the specific surface area Ss, and it can be seen that there is some correlation between the discharge level characteristics and the electrode specific surface area. Next, carbon fibers made porous and thermocompressed onto the CP surface improve the discharge characteristics, but the pore volume (Po value) is 3.0 nm to 8 μm in pore diameter (D diameter). Must be 0.1 cm 3 /g or more within the range,
In particular, it has been clarified by the examples described below that the energy efficiency of a metal (for example, Zn)-bromine (Br 2 ) battery of 70% can be satisfied when the density is 0.5 cm 3 /g or more.
In other words, it was shown that there is a correlation between the specific surface area of the surface of the porous conductive plate and the reaction activity at the end of discharge, but the amount of pores in the porous conductive plate (i.e., the diameter of the pores) distribution) and the discharge potential characteristics. Specifically, looking at the relationship between the pore size range and the discharge potential, there is a correlation between the distribution of pore diameters in the 3.0 nm to 8 μm range and the discharge potential, and an increase in the pore size within that range improves the bromine reaction. It was confirmed that it contributed the most. In addition, in order to obtain the best discharge level characteristics, within the above diameter range, up to 40mA/cm 2 discharge is required.
It was confirmed that approximately 0.4 cm 3 /g or more is required, and next, in other porous conductive plate-like materials, those that are thermocompressed to CP as described above have a specific resistance of 0.4 Ωcm or less. Then, if the pore volume (Pv value) increases in the pore diameter (D diameter) range of 3.0 nm to 8 μm,
It can be said that the average potential is improved, making it effective as a positive electrode for metal- Br2 batteries. Thus, in the D diameter range
This means that thermocompression electrodes can be selected based on the relationship between Pv value and Vm. Note that the specific surface area and pore content of an electrode integrally molded with a polyolefin resin plate are not the values of the porous conductive plate alone before integral molding, but the values of the porous conductive plate of the electrode after integral molding. These are the specific surface area and the amount of pores on the electrode surface on the side of the shaped body. The surface of the porous conductive plate that is in contact with the polyolefin resin plate does not directly contribute to the reaction with bromine, and the active surface may be destroyed or fall off due to mechanical action during integral molding. Therefore, in addition to the specific surface area of the electrode surface, the surface area and pore content of the porous conductive plate itself are described. The structure and effects of the present invention will be specifically explained below using Examples. [Embodiments of the invention] Example 1 High-density polyethylene 100 with a density of 0.94 g/cm 3 or more
Carbon plastic (hereinafter referred to as CP) made by kneading 50 parts of carbon black and press molding.
The specific surface area of the cross-shaped porous carbon fiber (hereinafter referred to as C-CC), which is a sheet of carbon fiber with micropores formed through chemical treatment, was determined by the BTE method by varying the size and amount of micropores. Ss 0
Four types (A, B, C, D) of cross-form porous carbon fiber backing carbon plastics made by backing C-CC of different (m 2 /g) onto CP by thermocompression bonding using the conventional framed electrode forming method. (hereinafter C-CC
−CP), the specific surface area Ss (m 2 /
g) and then add 3 mol/g as the positive electrode electrolyte.
The average discharge potential Vm (V) (relative to the Ag-Agcl standard electrode) characteristics at various current densities were tested in ZnBr 2 +Br 2 . The results are shown in Table 1 below.

【表】 第1表は前記4種類のC−CCの比表面積と、
それらを同一種類のカーボンプラスチツクにバツ
キングしたものの比表面積及びそれらC−CC−
CPのBr20.4〜1.0mol/で電流密度10、20、30、
40及び50mA/cm2放電における放電平均電位
Vn10、Vn20、Vn30、Vn40、Vn50を示したもので
ある。この第1表からC−CC自体の比表面積が
大きいもの程バツキングされたC−CC−CPの比
表面積も大となり、それに従つてZn−Br2電池の
正極としての放電平均電位も高くなつていること
が明らかである。Br2の濃度を0.4〜1.0mol/に
設定したのは、放電末期になりBr2濃度が下がる
と放電電位も下る傾向があり、通常Br2濃度が約
1mol/迄が効率が良い結果を示した。Br2濃度
が1mol/以下になつても放電電位が高ければ
有効放電時間が長くなり効率のよい二次電池を得
ることが出来るためである。更にC−CC−CPの
比表面積と平均電位Vmとの関係特性をプロツト
したものが第1図である。この第1図からも上記
の傾向は明確であり、最適なC−CC−CPの比表
面積は500〜600m2/g(open電位を0.83Vとし
た)実用的には100m2/g以上、好ましくは300
m2/g以上となる。第1図において(Γ)
10mA/cm2、(●)20mA/cm2、(△)
30mA/cm2、(▲)40mA/cm2、(□)
50mA/cm2を示す。 実施例 2 次に実施例1で述べたA、B、C、D4種類の
C−CC−CPをZn−Br2電池の正極(臭素極)と
して用い負極(亜鉛極)に未処理のCP電極を正
極室と負極室間に使用する隔膜として旭化成(株)製
のRAS0.6を用い4種類のZn−Br2電池A、B、
C、Dを構成し、電池特性試験を行なつた。電解
液にはZnBr23mol/に臭素錯化剤として、メ
チル・エチル・モルホリニウム・ブロマイド及び
メチル・エチル・ピロリジニウム・ブロマイドを
夫々0.5mol/加え、負極液にはデンドライト
抑制効果を強めるためSn++(SnCl2の形で)5×
10-4mol/を更に添加した。以上の電解液を用
いて、20mA/cm2で3時間充電し、0Vまで放電
を行ない、その時の電圧効率、クーロン効率及び
エネルギー効率(夫々Veff、Ceff及びEeff%)を
示したのが第2表である。第2表から比表面積の
最も大きいD電極を正極とした電池Dが優れた効
率を示していることが明らかである。これはBr2
極表面の活性点の大きさが原因となつているもの
と思われる。
[Table] Table 1 shows the specific surface area of the above four types of C-CC,
The specific surface area of the same type of carbon plastic and their C-CC-
Current density 10, 20, 30 at CP Br 2 0.4-1.0mol/
Discharge average potential at 40 and 50mA/ cm2 discharge
It shows V n10 , V n20 , V n30 , V n40 , and V n50 . From this Table 1, the larger the specific surface area of C-CC itself, the larger the specific surface area of the buckled C-CC-CP, and accordingly the higher the average discharge potential as the positive electrode of the Zn-Br 2 battery. It is clear that there are The reason why the concentration of Br 2 was set to 0.4 to 1.0 mol/ is that as the Br 2 concentration decreases at the end of discharge, the discharge potential also tends to decrease, and normally the Br 2 concentration is approximately
The results showed that the efficiency was good up to 1 mol/mol. This is because even if the Br 2 concentration is 1 mol/or less, if the discharge potential is high, the effective discharge time will be longer and a highly efficient secondary battery can be obtained. Furthermore, FIG. 1 is a plot of the relationship between the specific surface area of C-CC-CP and the average potential Vm. The above tendency is clear from Figure 1, and the optimal specific surface area of C-CC-CP is 500 to 600 m 2 /g (open potential is 0.83V), which is practically 100 m 2 /g or more. preferably 300
m 2 /g or more. In Figure 1 (Γ)
10mA/cm 2 , (●) 20mA/cm 2 , (△)
30mA/cm 2 , (▲) 40mA/cm 2 , (□)
Indicates 50mA/cm 2 . Example 2 Next, the four types of C-CC-CP described in Example 1, A, B, C, and D, were used as the positive electrode (bromine electrode) of a Zn-Br 2 battery, and an untreated CP electrode was used as the negative electrode (zinc electrode). Four types of Zn-Br 2 batteries A, B,
C and D were constructed and battery characteristic tests were conducted. In the electrolyte, 0.5 mol/each of methyl ethyl morpholinium bromide and methyl ethyl pyrrolidinium bromide were added as bromine complexing agents to 3 mol/ZnBr 2 in the electrolyte, and Sn ++ was added to the negative electrode solution to enhance the dendrite suppression effect. (in the form of SnCl2 ) 5×
An additional 10 −4 mol/was added. Using the above electrolyte solution, the second battery was charged at 20 mA/cm 2 for 3 hours, discharged to 0 V, and showed the voltage efficiency, coulomb efficiency, and energy efficiency (Veff, Ceff, and Eeff%, respectively) at that time. It is a table. From Table 2, it is clear that battery D, in which the D electrode with the largest specific surface area was the positive electrode, exhibited excellent efficiency. This is Br 2
This seems to be caused by the size of the active sites on the extreme surface.

【表】 実施例 3 電解液中のBr2濃度を変えた以外は実施例1と
同じ構成で4種のC−CC−CPの25℃にて放電電
位曲線を第2図に示した。 第2図に明らかな様に20mA/cm2における放
電々位特性が優れているものは気孔率及び比表面
積Ssは大きな値を示して居り、放電電位特性と
電極の比表面積とは何らかの相関性があることが
判る。 実施例 4 4種の空孔量の異なる炭素繊維(以下CCとい
う。)を選び、夫等の気孔率Pv値を測定した。
8μmを範囲の区切りとしたのはその値が化学処理
による多孔化の最大孔径に略等しいからである。 次に上記4種の異なるCCをCPに従来方法で熱
圧着し、それら4種のCC−CPを夫々CCA−CP、
CCB−CP、CCC−CP、CCD−CPとし、これら電
極の放電電位特性を求め第3表にまとめた。
[Table] Example 3 The discharge potential curves of four types of C-CC-CP at 25° C. are shown in FIG. 2 with the same configuration as in Example 1 except that the Br 2 concentration in the electrolyte was changed. As is clear from Figure 2, those with excellent discharge potential characteristics at 20 mA/cm 2 have large values of porosity and specific surface area Ss, and there is some correlation between the discharge potential characteristics and the specific surface area of the electrode. It turns out that there is. Example 4 Four types of carbon fibers with different pore contents (hereinafter referred to as CC) were selected, and their porosity Pv values were measured.
The range was set at 8 μm because this value was approximately equal to the maximum pore diameter created by chemical treatment. Next, the four different CCs mentioned above were bonded to the CP by thermocompression using a conventional method, and the four types of CC-CP were CC A -CP, CC A -CP,
CC B -CP, CC C -CP, and CC D -CP, and the discharge potential characteristics of these electrodes were determined and summarized in Table 3.

〔発明の効果〕〔Effect of the invention〕

本発明は、多孔質導電性板状体と、導電性物質
を含むポリオレフイン樹脂板状体とを一体成形し
てなる電極であつて、該電極の多孔質導電性板状
体表面を正極側電解液と接するようにした金属−
臭素二次電池において、前記電極の一体成形され
た多孔質導電性板状体の孔径3.0nm/8μmの範囲
の空孔の空孔量を0.1cm3/g以上としたものであ
る。 多孔質導電性板状体を熱圧着して得られたカー
ボンプラスチツク電極に関して、電極の比表面積
を向上させることにより、活物質である臭素分子
の量が少なくなる放電末期で、臭素分子の濃度過
電圧を抑制することにより、大きなエネルギー効
率の電極を得られることが判つた。 更に、多孔質導電性板状体を熱圧着して得られ
たカーボンプラスチツク電極の特定の空孔直径
(D径)範囲における空孔量(Pv)と、電極の平
均放電電位Vmとの相関性を検討した結果、孔径
3.0nm〜8μmの範囲の空孔の空孔量を0.1cm3/g以
上とすることにより、放電電位値が向上し、放電
末期の反応活性が向上することが判つた。 このため、電極に一体成形された多孔質導電性
板状体が、孔径3.0nm〜8μmの範囲の空孔の空孔
量を0.1cm3/g以上とした金属−臭素二次電池で
は、放電末期においても、放電過電圧を最小に抑
え、信頼性の優れた金属−臭素二次電池を得るこ
とができる。
The present invention is an electrode formed by integrally molding a porous conductive plate and a polyolefin resin plate containing a conductive substance, wherein the surface of the porous conductive plate of the electrode is used for positive electrode side electrolysis. Metal that comes into contact with liquid
In the bromine secondary battery, the integrally molded porous conductive plate of the electrode has a pore volume of 0.1 cm 3 /g or more with a pore diameter in the range of 3.0 nm/8 μm. For carbon plastic electrodes obtained by thermocompression bonding of porous conductive plates, by increasing the specific surface area of the electrode, the concentration overvoltage of bromine molecules can be reduced at the end of discharge when the amount of bromine molecules, which are active materials, decreases. It was found that by suppressing this, it was possible to obtain an electrode with high energy efficiency. Furthermore, the correlation between the amount of pores (Pv) in a specific pore diameter (D diameter) range of a carbon plastic electrode obtained by thermocompression bonding of a porous conductive plate and the average discharge potential Vm of the electrode was determined. As a result of considering the pore diameter
It has been found that by setting the amount of pores in the range of 3.0 nm to 8 μm to 0.1 cm 3 /g or more, the discharge potential value is improved and the reaction activity at the final stage of discharge is improved. Therefore, in a metal-bromine secondary battery in which the porous conductive plate-like body integrally formed with the electrode has a pore volume of 0.1 cm 3 /g or more with a pore diameter in the range of 3.0 nm to 8 μm, it is difficult to discharge Even in the final stage, discharge overvoltage can be minimized and a highly reliable metal-bromine secondary battery can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の効果を示すためのグ
ラフである。
FIGS. 1 to 3 are graphs showing the effects of the present invention.

Claims (1)

【特許請求の範囲】 1 多孔質導電性板状体と、導電性物質を含むポ
リオレフイン樹脂板状体とを一体成形してなる電
極であつて、該電極の多孔質導電性板状体表面を
正極側電解液と接するようにした金属−臭素二次
電池において、 前記電極に一体成形された多孔質導電性板状体
の孔径3.0nm〜8μmの範囲の空孔の空孔量を0.1
cm3/g以上としたことを特徴とする金属−臭素二
次電池。 2 前記空孔量が0.5cm3/g以上であることを特
徴とする特許請求の範囲第1項記載の金属−臭素
二次電池。
[Scope of Claims] 1. An electrode formed by integrally molding a porous conductive plate-like body and a polyolefin resin plate-like body containing a conductive substance, wherein the surface of the porous conductive plate-like body of the electrode is In a metal-bromine secondary battery that is in contact with a positive electrode side electrolyte, the pore volume of pores with a pore diameter in the range of 3.0 nm to 8 μm in the porous conductive plate integrally formed with the electrode is set to 0.1.
A metal-bromine secondary battery characterized by having a density of cm 3 /g or more. 2. The metal-bromine secondary battery according to claim 1, wherein the amount of pores is 0.5 cm 3 /g or more.
JP58223262A 1983-11-29 1983-11-29 Metal-bromine layer-built secondary battery Granted JPS60117560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58223262A JPS60117560A (en) 1983-11-29 1983-11-29 Metal-bromine layer-built secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58223262A JPS60117560A (en) 1983-11-29 1983-11-29 Metal-bromine layer-built secondary battery

Publications (2)

Publication Number Publication Date
JPS60117560A JPS60117560A (en) 1985-06-25
JPH0449748B2 true JPH0449748B2 (en) 1992-08-12

Family

ID=16795346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58223262A Granted JPS60117560A (en) 1983-11-29 1983-11-29 Metal-bromine layer-built secondary battery

Country Status (1)

Country Link
JP (1) JPS60117560A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254670A (en) * 1987-04-10 1988-10-21 Meidensha Electric Mfg Co Ltd Electrode for secondary battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104039A (en) * 1971-08-31 1973-12-26
JPS5034730A (en) * 1973-07-31 1975-04-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104039A (en) * 1971-08-31 1973-12-26
JPS5034730A (en) * 1973-07-31 1975-04-03

Also Published As

Publication number Publication date
JPS60117560A (en) 1985-06-25

Similar Documents

Publication Publication Date Title
AU702190B2 (en) Zinc-bromine battery with non-flowing electrolyte
US20020177040A1 (en) Anode matrix
JP4240030B2 (en) Alkaline zinc storage battery
JPH0449748B2 (en)
CN213150817U (en) Copper current collector
JP2536082B2 (en) Lead acid battery
JP3944887B2 (en) Alkaline zinc storage battery
JPH0329130B2 (en)
JP3087275B2 (en) Sealed lead-acid battery
JPH0677449B2 (en) Lead acid battery
JPS63152867A (en) Polyaniline
JPS6243081A (en) Zinc-iodine secondary battery
JPH10214628A (en) Lead acid-battery and its manufacture
JP3511710B2 (en) Sealed lead-acid battery
JP2977600B2 (en) Lead storage battery
KR100448017B1 (en) An electrode composition for lead storage battery
JPH09147844A (en) Sealed lead-acid battery
JP2686136B2 (en) Cadmium negative electrode for alkaline storage batteries
JPH0582713B2 (en)
JPS60264049A (en) Alkali zinc battery
JPS58137966A (en) Zinc electrode
JPS62108467A (en) Alkaline zinc storage battery
JPH079807B2 (en) Zinc electrode for alkaline storage battery
JPS62154583A (en) Preventing method for dendrite in zinc-iodine secondary battery
JPS6243080A (en) Iodine battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees