JPS61203569A - Pasted negative plate for alkaline storage battery - Google Patents

Pasted negative plate for alkaline storage battery

Info

Publication number
JPS61203569A
JPS61203569A JP60043464A JP4346485A JPS61203569A JP S61203569 A JPS61203569 A JP S61203569A JP 60043464 A JP60043464 A JP 60043464A JP 4346485 A JP4346485 A JP 4346485A JP S61203569 A JPS61203569 A JP S61203569A
Authority
JP
Japan
Prior art keywords
paste
solvent
cloth
electrode plate
ethylene glycol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60043464A
Other languages
Japanese (ja)
Inventor
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP60043464A priority Critical patent/JPS61203569A/en
Publication of JPS61203569A publication Critical patent/JPS61203569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/747Woven material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/246Cadmium electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/806Nonwoven fibrous fabric containing only fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the energy density of the pasted negative plate of an alkaline storage battery and enable rapid charging of the battery by packing a given woven carbon fiber cloth or similar material with a paste prepared by mixing a powder mixture of cadmium oxide and the like with a solvent such as ethylene glycol and an ionic macromolecular compound. CONSTITUTION:A powdery mixture of cadmium oxide, metallic cadmium, nickel, etc. is mixed with a solvent such as ethylene glycol or isopropyl alcohol and at least one ionic macromolecular compound soluble in this solvent to prepare a paste. Next, after a woven or nonwoven cloth of carbon fibers with diameter of 4-100mu is immersed in the paste and continuously passed through it, the impregnated cloth is partially dried in a dryer maintained at a given temperature. Following that, the thickness of the partially dried cloth is adjusted to a given level and then a hot air dryer is used to remove the solvent such as ethylene glycol prior to cutting the cloth into given dimensions.

Description

【発明の詳細な説明】 #業上の利用分野 本発明はアルカリ蓄電池用負極板に関するものである。[Detailed description of the invention] #Business field of use The present invention relates to a negative electrode plate for an alkaline storage battery.

従来技術とその間に点 アルカリ蓄電池用負極板として、焼結式、及びペースト
式極板が一般的に知られている。
In the prior art, sintered type and paste type electrode plates are generally known as negative electrode plates for point alkaline storage batteries.

しかし焼結式極板は、穿孔銅板芯金にカーボニルニラナ
ル粉末を焼結させたもので、実用強度を有する多孔度は
80%程度が限界である。又、この焼結体は十数ミクロ
ンの微細孔から成っているため、活物質粉末を直接充填
することは不可能であり、硝酸々性あるいは硫酸々検水
溶液中でカドミウムイオンとし、これを微細孔に含浸さ
せた後、アルカリ水溶液中で活物質である水酸化カドミ
ウムに変化させる。いわゆる溶液含浸法を用いなければ
充填できない。この工程は非常に煩雑であり、且つ低多
孔度で芯金を有することより、極板重量あたりに活物質
の占める割合は、約60襲程度である。
However, the sintered electrode plate is made by sintering carbonyl niranal powder onto a perforated copper plate core, and the porosity that provides practical strength is limited to about 80%. In addition, since this sintered body consists of micropores of more than ten microns, it is impossible to directly fill the active material powder, so cadmium ions are formed in a nitric-acid or sulfuric acid-containing water solution, and then finely dispersed. After impregnating the pores, it is converted into the active material cadmium hydroxide in an alkaline aqueous solution. It cannot be filled without using the so-called solution impregnation method. This process is very complicated, and since the electrode plate has a core metal with low porosity, the ratio of the active material to the weight of the electrode plate is about 60 times.

この欠点を改良するべく、高性能なペースト式負極板が
望まれている。
In order to improve this drawback, a high-performance paste-type negative electrode plate is desired.

従来の酸化カドミウム、ニッケル粉末、短繊維等をP、
V、A増粘剤の添加された水溶液で混練しペースト状と
なし、ニッケルメッキ穿孔漠板からなる芯金にこれを塗
着せしめてなるペースト式負極板がある。
Conventional cadmium oxide, nickel powder, short fibers, etc. are replaced with P,
There is a paste-type negative electrode plate which is made by kneading a paste with an aqueous solution containing V and A thickeners and applying the paste to a core made of a nickel-plated perforated plate.

この極板は、活物質がP、V、Aや短繊維の如き有機高
分子によってのみ芯金に保持されているため、楡着時あ
るいは化成時のガツシングのために活物質の脱落を生じ
る。さらに芯金から表面活物質粒子までの距離が、かな
りあるため急速充電における酸素ガス吸収速度が押<、
比較的低率充電にしかオ使用できなかった。しかしなが
ら極板取量あたりに占める活物質比率は70〜80%で
あり、焼結式極板より向上している。
In this electrode plate, since the active material is held on the core metal only by organic polymers such as P, V, A, and short fibers, the active material falls off due to gutting during bonding or chemical formation. Furthermore, since there is a considerable distance from the core metal to the surface active material particles, the oxygen gas absorption rate during rapid charging is reduced.
It could only be used for relatively low rate charging. However, the active material ratio per electrode plate amount is 70 to 80%, which is improved compared to the sintered electrode plate.

近年、安価で高エネルギー密度で且つ急速充電可能な負
極板の開発が望まれている。
In recent years, there has been a desire to develop negative electrode plates that are inexpensive, have high energy density, and are capable of rapid charging.

発明の目的 本発明は高エネルギー密度で且つ急速充電可能な負極板
を提供することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a negative electrode plate that has high energy density and can be rapidly charged.

発明の構成 本発明は上記目的を達成するべく、繊維径が4〜100
μの繊維群よりなる炭素繊維織布あるいは不織布に酸化
カドミウム、金属カドミウム、ニア+ル等の混合粉末を
エチレングリコール、グリセリンあるいはイソプロピル
アルコール等の溶剤とこの溶剤に溶解可能なイオン性高
分子を1種もしくは2種以上とによりペースト状として
充填するアルカリ蓄電池用ペースト式負極板である。
Structure of the Invention In order to achieve the above object, the present invention has a fiber diameter of 4 to 100.
A mixed powder of cadmium oxide, metal cadmium, Nial, etc. is added to a carbon fiber woven or non-woven fabric made of microfibers in a solvent such as ethylene glycol, glycerin or isopropyl alcohol, and an ionic polymer that can be dissolved in this solvent is added to the carbon fiber woven or non-woven fabric. This is a paste-type negative electrode plate for alkaline storage batteries that is filled in a paste form with one or more seeds.

実施例 以下本発明の一実施例について詳述する。Example An embodiment of the present invention will be described in detail below.

酸化カドミウム50〜7rwt%、金属カドミウム20
〜40wt%、ニッケル粉末5〜10wt%をよく混合
しながら、このものに少量のカルボキシメチルセルロー
ス、でんぷん、リグニン、あるいは界面活性剤等が添加
されたエチレングリコール、グリセリンあるいはイソプ
ロピルアルコールを15〜25wt%加えてペースト状
とした。
Cadmium oxide 50-7 rwt%, metal cadmium 20
While thoroughly mixing ~40wt% and 5~10wt% of nickel powder, add 15~25wt% of ethylene glycol, glycerin, or isopropyl alcohol to which a small amount of carboxymethyl cellulose, starch, lignin, or surfactant, etc. has been added. It was made into a paste.

繊維径30μ、長さ80pH、厚味肌9m。Fiber diameter 30μ, length 80pH, thick skin 9m.

巾50簡の多孔度98%の炭素繊維不織布をこのペース
ト液中に浸漬し、連続的に通過させた。繊維不織布の多
孔体中にペーストを浸透させることにより、活物質充填
を行った。
A carbon fiber nonwoven fabric with a width of 50 strips and a porosity of 98% was immersed in this paste solution and passed through it continuously. The active material was filled by infiltrating the paste into the porous body of the fibrous nonwoven fabric.

その後極板表面付近が60〜80℃になるように調整さ
れた赤外線ランプよりなる乾燥機中で部分的に乾燥した
Thereafter, it was partially dried in a dryer equipped with an infrared lamp adjusted so that the temperature near the surface of the electrode plate was 60 to 80°C.

次いでローラプレスによって、所定の厚味に調整した。Next, it was adjusted to a predetermined thickness using a roller press.

厚味調整した極板を温度190°Cの熱風乾燥機を通し
、エチレングリコールあるいはイソプロピルアルコール
等の溶剤を完全に除失し、電池サイズに見合った寸法に
切断した。この極板では負極板重量あたりに占める活物
質重量比率は85〜90%であった。
The thickness-adjusted electrode plate was passed through a hot air dryer at a temperature of 190°C to completely remove the solvent such as ethylene glycol or isopropyl alcohol, and then cut into a size suitable for the battery size. In this electrode plate, the weight ratio of the active material to the weight of the negative electrode plate was 85 to 90%.

この負極板と完全放電状態にある焼結式正極板、並びに
ポリプロピレン不織布よりなるセパレータを巻き込み、
電槽に挿入した。′!t#液として水酸化カリウム水溶
液を注液し、封口した。封口後の電池は、−昼夜放置し
、電解液との親和性をもたした。
This negative electrode plate, a sintered positive electrode plate in a fully discharged state, and a separator made of polypropylene nonwoven fabric are rolled up.
Insert it into the battery. ′! An aqueous potassium hydroxide solution was injected as the t# solution, and the container was sealed. After sealing, the battery was left for day and night to develop affinity with the electrolyte.

この様にして作成された電池は、AAサイズで公称容量
が700 #lAhの密閉形ニッケルカド之つム電池と
なった。
The battery thus prepared was a sealed nickel-cadm battery of AA size and a nominal capacity of 700 #lAh.

従来法による焼結式負極板を用いた同一サイズでは公称
容量が500mAhであった。これらの電池を常温1゛
0で1.5時間充電した後、10で終止電圧1.oov
まで放電し、エネルギー密度(Ah/&g)を測定した
In the same size using a conventional sintered negative electrode plate, the nominal capacity was 500 mAh. After charging these batteries for 1.5 hours at room temperature 1.0, the final voltage of 1.5 hours was reached. oov
The energy density (Ah/&g) was measured.

本発明の電池はエネルギー密度が33ムh/#であり、
従来法による電池は22Ah/、であった。
The battery of the present invention has an energy density of 33 μh/#,
The battery according to the conventional method had a power consumption of 22 Ah/.

本発明に用いた金属カドミウムは通常の密閉形ニッケル
カドミウムを正極容量制限とするために必要とされる放
電リザーブを形成するものであり、約30%程度が適切
な量であった。
The metal cadmium used in the present invention forms the discharge reserve required to limit the positive electrode capacity of ordinary sealed nickel cadmium, and the appropriate amount was about 30%.

カルボキシメチルセルロース、でんぷん、リグニンスル
ホン酸、あるいは界面活性剤等のイオン性高分子は活物
質利用率を向上させるものであり、1セルあたり数ダを
添加したところ、約70%の利用率の向上が認められた
Ionic polymers such as carboxymethyl cellulose, starch, lignin sulfonic acid, or surfactants improve the utilization rate of active materials, and when a few dabs were added per cell, the utilization rate increased by about 70%. Admitted.

通常、炭素繊維をアルカリ溶液中で使用する場合、ニッ
ケルメッキ等のコーティングを行うが、本発明の炭素繊
維はメッキ処理を施さずに充放電させても、有害な炭酸
根を生成させることがなかった。
Normally, when carbon fibers are used in an alkaline solution, they are coated with nickel plating or the like, but the carbon fibers of the present invention do not generate harmful carbonate radicals even when charged and discharged without plating. Ta.

炭素繊維を正極導電材に使用した場合、充電末期に発生
する活性な酸素により酸化分解するために、大量の炭酸
根が生成する。
When carbon fiber is used as a positive electrode conductive material, a large amount of carbonate radicals are generated due to oxidative decomposition due to active oxygen generated at the end of charging.

しかしながら、本発明の場合負極板に使用したため、充
電時酸素は発生しない。負極板において、充電末期水素
により、OH4等の分解が考えられるが、本発明では密
閉形ニッケルカドミウム電池に適用したため、公知の如
く負極板には、充電リザーブと称し1正極板が完全充電
されても尚余分の水酸化カドミウムをもっているので、
水素発生することは無い。
However, in the case of the present invention, since it is used for the negative electrode plate, oxygen is not generated during charging. In the negative electrode plate, hydrogen at the end of charging may decompose OH4, etc. However, since the present invention is applied to a sealed nickel cadmium battery, the negative electrode plate has a charge reserve, which is called a charge reserve, and one positive electrode plate is fully charged. Since it still has extra cadmium hydroxide,
No hydrogen is generated.

炭素繊維を導電材に使用した場合、負極活物質利用率は
約40%と焼結式極板の約65%に比較し、劣っていた
が、ペースト液中にアニオン性高分子を含有させた場合
、活物質利用率が68%と向上し、焼結式極板と同等以
上の利用率を得ることができた。
When carbon fiber was used as the conductive material, the negative electrode active material utilization rate was approximately 40%, which was inferior to approximately 65% for sintered electrode plates, but by incorporating an anionic polymer into the paste liquid. In this case, the active material utilization rate improved to 68%, which was equal to or higher than that of the sintered electrode plate.

使用する炭素繊維は細い程高率放電特性が良好であった
が、コストあるいは繊維の引っばり強度を考慮した場合
、4〜100μ程度が実用上望ましい。
The thinner the carbon fibers used, the better the high rate discharge characteristics, but in consideration of cost or tensile strength of the fibers, it is practically desirable that the carbon fibers be about 4 to 100 microns.

発明の効果 上述した如く、本発明によるアルカリ蓄電池用ペースト
式負極板は、高エネルギー密度で且つ急速充電が可能で
あり、安価で生産性に優れた極板を提供でき、その工業
的価値は極めて大である。
Effects of the Invention As mentioned above, the paste-type negative electrode plate for alkaline storage batteries according to the present invention has high energy density and is capable of rapid charging, and can provide an inexpensive electrode plate with excellent productivity, and its industrial value is extremely high. It's large.

Claims (2)

【特許請求の範囲】[Claims] (1)繊維径が4〜100μの繊維群よりなる炭素繊維
織布あるいは不織布に酸化カドミウム、金属カドミウム
、ニッケル等の混合粉末をエチレングリコール、グリセ
リンあるいはイソプロピルアルコール等の溶剤と、イオ
ン性高分子を1種もしくは2種以上とによりペースト状
として充填することを特徴とするアルカリ蓄電池用ペー
スト式負極板。
(1) Mixed powders of cadmium oxide, metal cadmium, nickel, etc. are added to a carbon fiber woven or nonwoven fabric made of fibers with a fiber diameter of 4 to 100 μm, and a solvent such as ethylene glycol, glycerin, or isopropyl alcohol, and an ionic polymer. A paste type negative electrode plate for an alkaline storage battery, characterized in that it is filled in a paste form with one or more types.
(2)イオン性高分子がカルボキシメチルセルローズ、
でんぷん、リグニンスルホン酸、界面活性剤等である特
許請求の範囲第1項記載のアルカリ蓄電池用ペースト式
負極板。
(2) The ionic polymer is carboxymethyl cellulose,
The paste-type negative electrode plate for an alkaline storage battery according to claim 1, which is made of starch, lignin sulfonic acid, surfactant, etc.
JP60043464A 1985-03-05 1985-03-05 Pasted negative plate for alkaline storage battery Pending JPS61203569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60043464A JPS61203569A (en) 1985-03-05 1985-03-05 Pasted negative plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60043464A JPS61203569A (en) 1985-03-05 1985-03-05 Pasted negative plate for alkaline storage battery

Publications (1)

Publication Number Publication Date
JPS61203569A true JPS61203569A (en) 1986-09-09

Family

ID=12664432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60043464A Pending JPS61203569A (en) 1985-03-05 1985-03-05 Pasted negative plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS61203569A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2965108A1 (en) * 2010-09-22 2012-03-23 Commissariat Energie Atomique ELECTRODE CURRENT COLLECTOR FOR LITHIUM BATTERIES

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2965108A1 (en) * 2010-09-22 2012-03-23 Commissariat Energie Atomique ELECTRODE CURRENT COLLECTOR FOR LITHIUM BATTERIES
WO2012038634A1 (en) * 2010-09-22 2012-03-29 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electrode for lithium batteries and its method of manufacture

Similar Documents

Publication Publication Date Title
GB2109985A (en) Recharcheable electrical storage batteries
CN102420330A (en) Electrode material of nickel-hydrogen battery and preparation method thereof and nickel-hydrogen battery
KR100222746B1 (en) Gas-tight alkaline accumulator
JPH03743B2 (en)
JPS61203569A (en) Pasted negative plate for alkaline storage battery
JPH0429189B2 (en)
JPS645421B2 (en)
JP2854926B2 (en) Manufacturing method of cadmium negative electrode for alkaline storage battery
JP3397216B2 (en) Nickel plate, method of manufacturing the same, and alkaline storage battery using the same
JP2552393B2 (en) Lithium battery
JP2530281B2 (en) Alkaline storage battery
JPH041992B2 (en)
JPS5875767A (en) Manufacture of nickel electrode for battery
JPH04248268A (en) Electrode of battery
JP2564172B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2564176B2 (en) Cadmium negative electrode plate for sealed alkaline secondary battery and sealed alkaline secondary battery using the negative electrode plate
JP2553902B2 (en) Alkaline secondary battery
JPS61124060A (en) Paste type positive pole plate for alkaline storage battery
JPS61124061A (en) Nickel positive pole plate for alkaline storage battery
JPH07335210A (en) Electrode for alkaline battery
JPS6220258A (en) Sealed nickel-cadmium storage battery
JP2001325955A (en) Nickel positive electrode plate and alkaline storage cell
JPH07320732A (en) Nickel electrode plate
JPS607347B2 (en) Manufacturing method of cathode for sealed zinc-alkaline storage battery
JPS63148541A (en) Rechargeable battery